Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
# ================================
|
| 2 |
-
# 🪞 MoodMirror+ —
|
| 3 |
-
# - GoEmotions (
|
| 4 |
-
# -
|
| 5 |
-
# -
|
| 6 |
-
# -
|
| 7 |
# ================================
|
| 8 |
import os
|
| 9 |
import re
|
|
@@ -21,6 +21,10 @@ from sklearn.linear_model import LogisticRegression
|
|
| 21 |
from sklearn.multiclass import OneVsRestClassifier
|
| 22 |
from sklearn.pipeline import Pipeline
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
# ---------------- Storage paths ----------------
|
| 25 |
def _pick_data_dir():
|
| 26 |
if os.path.isdir("/data") and os.access("/data", os.W_OK):
|
|
@@ -31,7 +35,7 @@ DATA_DIR = _pick_data_dir()
|
|
| 31 |
os.makedirs(DATA_DIR, exist_ok=True)
|
| 32 |
DB_PATH = os.path.join(DATA_DIR, "moodmirror.db")
|
| 33 |
MODEL_PATH = os.path.join(DATA_DIR, "goemo_sklearn.joblib")
|
| 34 |
-
MODEL_VERSION = "
|
| 35 |
|
| 36 |
# ---------------- Crisis & closing ----------------
|
| 37 |
CRISIS_RE = re.compile(
|
|
@@ -52,7 +56,7 @@ CRISIS_NUMBERS = {
|
|
| 52 |
"Other / Not listed": "Call local emergency (**112/911**) or search “suicide hotline” for your country.",
|
| 53 |
}
|
| 54 |
|
| 55 |
-
# ---------------- Advice library (concise, actionable
|
| 56 |
SUGGESTIONS = {
|
| 57 |
"sadness": [
|
| 58 |
"Go for a 5-minute outside walk and notice three colors.",
|
|
@@ -63,7 +67,7 @@ SUGGESTIONS = {
|
|
| 63 |
"Listen to a song that matches your mood, not one that hides it.",
|
| 64 |
"Wrap yourself in a blanket and slow your exhale for 60 seconds.",
|
| 65 |
"List 3 small things that kept you going today.",
|
| 66 |
-
"Tidy one tiny area
|
| 67 |
"Watch something gentle/nostalgic for 10 minutes.",
|
| 68 |
"Place a hand on your chest and say: ‘This will pass.’",
|
| 69 |
"Write a note to your future self: ‘You made it through this day.’",
|
|
@@ -113,7 +117,7 @@ SUGGESTIONS = {
|
|
| 113 |
"boredom": [
|
| 114 |
"Set a 2-minute timer and start anything small.",
|
| 115 |
"Change your soundtrack; one new song shifts mood.",
|
| 116 |
-
"Move
|
| 117 |
"Read one paragraph on a random topic.",
|
| 118 |
"Sketch, doodle, or hum for 90 seconds.",
|
| 119 |
"Step outside; look up and find three shapes.",
|
|
@@ -133,7 +137,7 @@ SUGGESTIONS = {
|
|
| 133 |
"Let tears come when they need to.",
|
| 134 |
"Light a candle and sit quietly for two minutes.",
|
| 135 |
"Walk somewhere meaningful and notice what you feel.",
|
| 136 |
-
"Create a small ritual
|
| 137 |
"Schedule one kind plan for yourself this week.",
|
| 138 |
"Say: ‘Missing you means I loved you.’",
|
| 139 |
"Place your feet firmly and breathe into your belly.",
|
|
@@ -144,7 +148,7 @@ SUGGESTIONS = {
|
|
| 144 |
"Offer yourself one gentle act you needed today.",
|
| 145 |
"Listen fully to someone for one minute.",
|
| 146 |
"Give a sincere compliment to a stranger.",
|
| 147 |
-
"
|
| 148 |
"Say ‘thank you’ out loud for something small.",
|
| 149 |
"Ask a caring question and wait for the answer.",
|
| 150 |
"Write what love means to you in 3 lines.",
|
|
@@ -177,7 +181,7 @@ SUGGESTIONS = {
|
|
| 177 |
"Try a new route or view in your space.",
|
| 178 |
"Learn a word and use it once.",
|
| 179 |
"List five topics you’d like to explore.",
|
| 180 |
-
"Join a community
|
| 181 |
"Sketch a simple diagram of an idea.",
|
| 182 |
],
|
| 183 |
"gratitude": [
|
|
@@ -205,7 +209,7 @@ SUGGESTIONS = {
|
|
| 205 |
"Organize three items in your space.",
|
| 206 |
"Set a 10-minute timer to focus on one thing.",
|
| 207 |
"Do a gentle neck stretch for 30 seconds.",
|
| 208 |
-
"Check
|
| 209 |
"Open a window and take three breaths.",
|
| 210 |
],
|
| 211 |
}
|
|
@@ -230,7 +234,17 @@ GOEMO_TO_APP = {
|
|
| 230 |
"sadness": "sadness", "surprise": "neutral", "neutral": "neutral",
|
| 231 |
}
|
| 232 |
|
| 233 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
THRESHOLD_BASE = 0.30
|
| 235 |
MIN_THRESHOLD = 0.10
|
| 236 |
|
|
@@ -247,39 +261,27 @@ NEGATION_HINTS_EN = {
|
|
| 247 |
"not happy": "sadness", "not ok": "sadness", "no energy": "boredom",
|
| 248 |
"can't focus": "nervousness", "cannot focus": "nervousness"
|
| 249 |
}
|
| 250 |
-
HINTS_FR = {
|
| 251 |
"pas bien": "sadness", "triste": "sadness", "j'ai peur": "fear",
|
| 252 |
"angoisse": "nervousness", "anxieux": "nervousness",
|
| 253 |
"fatigué": "sadness", "épuisé": "sadness",
|
| 254 |
}
|
| 255 |
|
| 256 |
def augment_text(text: str, history=None) -> str:
|
| 257 |
-
"""Clean +
|
| 258 |
t = clean_text(text)
|
| 259 |
hints = []
|
| 260 |
-
|
| 261 |
-
# emoji hints
|
| 262 |
for k, v in EMOJI_HINTS.items():
|
| 263 |
-
if k in text:
|
| 264 |
-
hints.append(v)
|
| 265 |
-
|
| 266 |
-
# english negations
|
| 267 |
for k, v in NEGATION_HINTS_EN.items():
|
| 268 |
-
if k in t:
|
| 269 |
-
hints.append(v)
|
| 270 |
-
|
| 271 |
-
# french cues
|
| 272 |
lt = text.lower()
|
| 273 |
for k, v in HINTS_FR.items():
|
| 274 |
-
if k in lt:
|
| 275 |
-
hints.append(v)
|
| 276 |
-
|
| 277 |
-
# short-context boost: if message < 8 words, append previous user line
|
| 278 |
if history and len(t.split()) < 8:
|
| 279 |
prev_user = history[-1][0] if history and history[-1] else ""
|
| 280 |
if isinstance(prev_user, str) and prev_user:
|
| 281 |
t = t + " " + clean_text(prev_user)
|
| 282 |
-
|
| 283 |
if hints:
|
| 284 |
t = t + " " + " ".join([f"emo_{h}" for h in hints])
|
| 285 |
return t
|
|
@@ -300,11 +302,11 @@ def init_db():
|
|
| 300 |
def log_session(country, msg, emotion):
|
| 301 |
conn = get_conn()
|
| 302 |
conn.execute("INSERT INTO sessions(ts,country,user_text,main_emotion)VALUES(?,?,?,?)",
|
| 303 |
-
(datetime.utcnow().isoformat(timespec='seconds'), country, msg[:500], emotion))
|
| 304 |
conn.commit()
|
| 305 |
conn.close()
|
| 306 |
|
| 307 |
-
# ----------------
|
| 308 |
def load_goemotions_dataset():
|
| 309 |
ds = load_dataset("google-research-datasets/go_emotions", "simplified")
|
| 310 |
return ds, ds["train"].features["labels"].feature.names
|
|
@@ -316,10 +318,8 @@ def train_or_load_model():
|
|
| 316 |
return bundle["pipeline"], bundle["mlb"], bundle["label_names"]
|
| 317 |
ds, names = load_goemotions_dataset()
|
| 318 |
X_train, y_train = ds["train"]["text"], ds["train"]["labels"]
|
| 319 |
-
|
| 320 |
mlb = MultiLabelBinarizer(classes=list(range(len(names))))
|
| 321 |
Y_train = mlb.fit_transform(y_train)
|
| 322 |
-
|
| 323 |
clf = Pipeline([
|
| 324 |
("tfidf", TfidfVectorizer(lowercase=True, ngram_range=(1,2), min_df=2, max_df=0.9, strip_accents="unicode")),
|
| 325 |
("ovr", OneVsRestClassifier(
|
|
@@ -328,7 +328,6 @@ def train_or_load_model():
|
|
| 328 |
))
|
| 329 |
])
|
| 330 |
clf.fit(X_train, Y_train)
|
| 331 |
-
|
| 332 |
joblib.dump({"version": MODEL_VERSION, "pipeline": clf, "mlb": mlb, "label_names": names}, MODEL_PATH)
|
| 333 |
return clf, mlb, names
|
| 334 |
|
|
@@ -338,11 +337,10 @@ except Exception as e:
|
|
| 338 |
print("[ERROR] Model load/train:", e)
|
| 339 |
CLASSIFIER, MLB, LABEL_NAMES = None, None, None
|
| 340 |
|
| 341 |
-
# ---------------- Inference
|
| 342 |
def classify_text(text_augmented: str):
|
| 343 |
-
"""Return list[(label_name, prob)]
|
| 344 |
-
if not CLASSIFIER:
|
| 345 |
-
return []
|
| 346 |
proba = CLASSIFIER.predict_proba([text_augmented])[0]
|
| 347 |
max_p = float(np.max(proba)) if len(proba) else 0.0
|
| 348 |
thr = max(MIN_THRESHOLD, THRESHOLD_BASE * max_p + 0.15)
|
|
@@ -350,8 +348,8 @@ def classify_text(text_augmented: str):
|
|
| 350 |
idxs.sort(key=lambda i: proba[i], reverse=True)
|
| 351 |
return [(LABEL_NAMES[i], float(proba[i])) for i in idxs]
|
| 352 |
|
| 353 |
-
def
|
| 354 |
-
labels = classify_text(augment_text(message, history))
|
| 355 |
if not labels:
|
| 356 |
return "neutral"
|
| 357 |
bucket = {}
|
|
@@ -360,18 +358,60 @@ def detect_emotion(message: str, history):
|
|
| 360 |
bucket[app] = max(bucket.get(app, 0.0), p)
|
| 361 |
return max(bucket, key=bucket.get) if bucket else "neutral"
|
| 362 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 363 |
# ---------------- Advice selection with pool (no immediate repeats) ----------------
|
| 364 |
def pick_advice_from_pool(emotion: str, pool: dict, last_tip: str = ""):
|
| 365 |
"""Pool structure: {emotion: {'unused': [tips], 'last': str}}"""
|
| 366 |
tips_all = SUGGESTIONS.get(emotion, SUGGESTIONS["neutral"])
|
| 367 |
entry = pool.get(emotion, {"unused": [], "last": ""})
|
| 368 |
-
|
| 369 |
-
# Refill when empty, avoid immediate repeat of last
|
| 370 |
if not entry["unused"]:
|
| 371 |
-
refill = [t for t in tips_all if t != entry.get("last",
|
| 372 |
random.shuffle(refill)
|
| 373 |
entry["unused"] = refill
|
| 374 |
-
|
| 375 |
tip = entry["unused"].pop(0)
|
| 376 |
entry["last"] = tip
|
| 377 |
pool[emotion] = entry
|
|
@@ -382,31 +422,54 @@ def crisis_block(country):
|
|
| 382 |
msg = CRISIS_NUMBERS.get(country, CRISIS_NUMBERS["Other / Not listed"])
|
| 383 |
return f"💛 You matter. If you're in danger or thinking of harming yourself, please reach out now.\n\n{msg}"
|
| 384 |
|
| 385 |
-
def chat_step(
|
| 386 |
-
|
|
|
|
| 387 |
return crisis_block(country), "#FFD6E7", "neutral", "", advice_pool
|
| 388 |
|
| 389 |
-
|
| 390 |
-
|
| 391 |
tip, advice_pool = pick_advice_from_pool("neutral", advice_pool)
|
| 392 |
return f"• {tip}", "#FFFFFF", "neutral", tip, advice_pool
|
| 393 |
|
| 394 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 395 |
color = COLOR_MAP.get(emotion, "#F5F5F5")
|
| 396 |
if save_session:
|
| 397 |
-
|
|
|
|
| 398 |
|
| 399 |
tip, advice_pool = pick_advice_from_pool(emotion, advice_pool)
|
| 400 |
return f"• {tip}", color, emotion, tip, advice_pool
|
| 401 |
|
| 402 |
# ---------------- UI ----------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 403 |
init_db()
|
| 404 |
|
| 405 |
-
with gr.Blocks(title="🪞 MoodMirror+ —
|
| 406 |
style = gr.HTML("")
|
| 407 |
gr.Markdown(
|
| 408 |
-
"### 🪞 MoodMirror+ — Emotion-aware advice (
|
| 409 |
-
"
|
| 410 |
"_Not medical advice. If unsafe, please reach out for help._"
|
| 411 |
)
|
| 412 |
|
|
@@ -414,26 +477,31 @@ with gr.Blocks(title="🪞 MoodMirror+ — Emotion & Advice") as demo:
|
|
| 414 |
country = gr.Dropdown(list(CRISIS_NUMBERS.keys()), value="Other / Not listed", label="Country")
|
| 415 |
save_ok = gr.Checkbox(False, label="Save anonymized session")
|
| 416 |
|
| 417 |
-
chat = gr.Chatbot(height=
|
| 418 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 419 |
with gr.Row():
|
| 420 |
send = gr.Button("Send", variant="primary")
|
| 421 |
regen = gr.Button("🔁 New advice", variant="secondary")
|
| 422 |
|
| 423 |
-
# State: last detected emotion, last tip, and per-emotion advice pool
|
| 424 |
last_emotion = gr.State("neutral")
|
| 425 |
last_tip = gr.State("")
|
| 426 |
advice_pool = gr.State({}) # emotion -> {"unused":[...], "last":""}
|
| 427 |
|
| 428 |
-
def respond(user_msg, chat_hist, country_choice, save_flag, _emotion, _tip, _pool):
|
| 429 |
-
|
| 430 |
-
|
|
|
|
| 431 |
|
| 432 |
reply, color, emotion, tip, _pool = chat_step(
|
| 433 |
-
user_msg, chat_hist, country_choice, bool(save_flag), _pool
|
| 434 |
)
|
| 435 |
style_tag = f"<style>:root,body,.gradio-container{{background:{color}!important;}}</style>"
|
| 436 |
-
return chat_hist + [[user_msg, reply]], style_tag, emotion, tip, _pool
|
| 437 |
|
| 438 |
def new_advice(chat_hist, _emotion, _tip, _pool):
|
| 439 |
tip, _pool = pick_advice_from_pool(_emotion, _pool, last_tip=_tip)
|
|
@@ -442,13 +510,13 @@ with gr.Blocks(title="🪞 MoodMirror+ — Emotion & Advice") as demo:
|
|
| 442 |
|
| 443 |
send.click(
|
| 444 |
respond,
|
| 445 |
-
inputs=[msg, chat, country, save_ok, last_emotion, last_tip, advice_pool],
|
| 446 |
outputs=[chat, style, last_emotion, last_tip, advice_pool],
|
| 447 |
queue=True
|
| 448 |
)
|
| 449 |
msg.submit(
|
| 450 |
respond,
|
| 451 |
-
inputs=[msg, chat, country, save_ok, last_emotion, last_tip, advice_pool],
|
| 452 |
outputs=[chat, style, last_emotion, last_tip, advice_pool],
|
| 453 |
queue=True
|
| 454 |
)
|
|
|
|
| 1 |
# ================================
|
| 2 |
+
# 🪞 MoodMirror+ — Text + Voice Emotion Detector • Advice-only
|
| 3 |
+
# - Text: GoEmotions (TF-IDF + OneVsRest LR, dataset-only)
|
| 4 |
+
# - Audio: HF pipeline "firdhokk/speech-emotion-recognition-with-openai-whisper-large-v3"
|
| 5 |
+
# - Advice stored in-code (not from a database)
|
| 6 |
+
# - Always returns exactly one advice; "New advice" avoids duplicates
|
| 7 |
# ================================
|
| 8 |
import os
|
| 9 |
import re
|
|
|
|
| 21 |
from sklearn.multiclass import OneVsRestClassifier
|
| 22 |
from sklearn.pipeline import Pipeline
|
| 23 |
|
| 24 |
+
# Optional audio pipeline (lazy import)
|
| 25 |
+
AUDIO_MODEL_ID = "firdhokk/speech-emotion-recognition-with-openai-whisper-large-v3"
|
| 26 |
+
AUDIO_PIPE = None # loaded on first use
|
| 27 |
+
|
| 28 |
# ---------------- Storage paths ----------------
|
| 29 |
def _pick_data_dir():
|
| 30 |
if os.path.isdir("/data") and os.access("/data", os.W_OK):
|
|
|
|
| 35 |
os.makedirs(DATA_DIR, exist_ok=True)
|
| 36 |
DB_PATH = os.path.join(DATA_DIR, "moodmirror.db")
|
| 37 |
MODEL_PATH = os.path.join(DATA_DIR, "goemo_sklearn.joblib")
|
| 38 |
+
MODEL_VERSION = "v9-text+audio"
|
| 39 |
|
| 40 |
# ---------------- Crisis & closing ----------------
|
| 41 |
CRISIS_RE = re.compile(
|
|
|
|
| 56 |
"Other / Not listed": "Call local emergency (**112/911**) or search “suicide hotline” for your country.",
|
| 57 |
}
|
| 58 |
|
| 59 |
+
# ---------------- Advice library (concise, actionable) ----------------
|
| 60 |
SUGGESTIONS = {
|
| 61 |
"sadness": [
|
| 62 |
"Go for a 5-minute outside walk and notice three colors.",
|
|
|
|
| 67 |
"Listen to a song that matches your mood, not one that hides it.",
|
| 68 |
"Wrap yourself in a blanket and slow your exhale for 60 seconds.",
|
| 69 |
"List 3 small things that kept you going today.",
|
| 70 |
+
"Tidy one tiny area to regain a sense of control.",
|
| 71 |
"Watch something gentle/nostalgic for 10 minutes.",
|
| 72 |
"Place a hand on your chest and say: ‘This will pass.’",
|
| 73 |
"Write a note to your future self: ‘You made it through this day.’",
|
|
|
|
| 117 |
"boredom": [
|
| 118 |
"Set a 2-minute timer and start anything small.",
|
| 119 |
"Change your soundtrack; one new song shifts mood.",
|
| 120 |
+
"Move objects slightly — new perspective.",
|
| 121 |
"Read one paragraph on a random topic.",
|
| 122 |
"Sketch, doodle, or hum for 90 seconds.",
|
| 123 |
"Step outside; look up and find three shapes.",
|
|
|
|
| 137 |
"Let tears come when they need to.",
|
| 138 |
"Light a candle and sit quietly for two minutes.",
|
| 139 |
"Walk somewhere meaningful and notice what you feel.",
|
| 140 |
+
"Create a small ritual to honor them.",
|
| 141 |
"Schedule one kind plan for yourself this week.",
|
| 142 |
"Say: ‘Missing you means I loved you.’",
|
| 143 |
"Place your feet firmly and breathe into your belly.",
|
|
|
|
| 148 |
"Offer yourself one gentle act you needed today.",
|
| 149 |
"Listen fully to someone for one minute.",
|
| 150 |
"Give a sincere compliment to a stranger.",
|
| 151 |
+
"Prepare something with care for someone.",
|
| 152 |
"Say ‘thank you’ out loud for something small.",
|
| 153 |
"Ask a caring question and wait for the answer.",
|
| 154 |
"Write what love means to you in 3 lines.",
|
|
|
|
| 181 |
"Try a new route or view in your space.",
|
| 182 |
"Learn a word and use it once.",
|
| 183 |
"List five topics you’d like to explore.",
|
| 184 |
+
"Join a community and read one thread.",
|
| 185 |
"Sketch a simple diagram of an idea.",
|
| 186 |
],
|
| 187 |
"gratitude": [
|
|
|
|
| 209 |
"Organize three items in your space.",
|
| 210 |
"Set a 10-minute timer to focus on one thing.",
|
| 211 |
"Do a gentle neck stretch for 30 seconds.",
|
| 212 |
+
"Check your posture; support your back.",
|
| 213 |
"Open a window and take three breaths.",
|
| 214 |
],
|
| 215 |
}
|
|
|
|
| 234 |
"sadness": "sadness", "surprise": "neutral", "neutral": "neutral",
|
| 235 |
}
|
| 236 |
|
| 237 |
+
# Audio model label -> buckets (best effort; covers typical SER labels)
|
| 238 |
+
AUDIO_LABEL_TO_BUCKET = {
|
| 239 |
+
"anger": "anger", "angry": "anger", "disgust": "anger",
|
| 240 |
+
"fear": "fear", "scared": "fear", "afraid": "fear",
|
| 241 |
+
"happy": "joy", "happiness": "joy", "joy": "joy",
|
| 242 |
+
"sad": "sadness", "sadness": "sadness",
|
| 243 |
+
"neutral": "neutral", "surprise": "neutral", "calm": "neutral",
|
| 244 |
+
"boredom": "boredom", "love": "love"
|
| 245 |
+
}
|
| 246 |
+
|
| 247 |
+
# ---------------- Preprocessing & thresholds (text) ----------------
|
| 248 |
THRESHOLD_BASE = 0.30
|
| 249 |
MIN_THRESHOLD = 0.10
|
| 250 |
|
|
|
|
| 261 |
"not happy": "sadness", "not ok": "sadness", "no energy": "boredom",
|
| 262 |
"can't focus": "nervousness", "cannot focus": "nervousness"
|
| 263 |
}
|
| 264 |
+
HINTS_FR = { # lightweight FR cues (dataset stays EN)
|
| 265 |
"pas bien": "sadness", "triste": "sadness", "j'ai peur": "fear",
|
| 266 |
"angoisse": "nervousness", "anxieux": "nervousness",
|
| 267 |
"fatigué": "sadness", "épuisé": "sadness",
|
| 268 |
}
|
| 269 |
|
| 270 |
def augment_text(text: str, history=None) -> str:
|
| 271 |
+
"""Clean + emoji/negation hints + short-context when short."""
|
| 272 |
t = clean_text(text)
|
| 273 |
hints = []
|
|
|
|
|
|
|
| 274 |
for k, v in EMOJI_HINTS.items():
|
| 275 |
+
if k in text: hints.append(v)
|
|
|
|
|
|
|
|
|
|
| 276 |
for k, v in NEGATION_HINTS_EN.items():
|
| 277 |
+
if k in t: hints.append(v)
|
|
|
|
|
|
|
|
|
|
| 278 |
lt = text.lower()
|
| 279 |
for k, v in HINTS_FR.items():
|
| 280 |
+
if k in lt: hints.append(v)
|
|
|
|
|
|
|
|
|
|
| 281 |
if history and len(t.split()) < 8:
|
| 282 |
prev_user = history[-1][0] if history and history[-1] else ""
|
| 283 |
if isinstance(prev_user, str) and prev_user:
|
| 284 |
t = t + " " + clean_text(prev_user)
|
|
|
|
| 285 |
if hints:
|
| 286 |
t = t + " " + " ".join([f"emo_{h}" for h in hints])
|
| 287 |
return t
|
|
|
|
| 302 |
def log_session(country, msg, emotion):
|
| 303 |
conn = get_conn()
|
| 304 |
conn.execute("INSERT INTO sessions(ts,country,user_text,main_emotion)VALUES(?,?,?,?)",
|
| 305 |
+
(datetime.utcnow().isoformat(timespec='seconds'), country, (msg or "")[:500], emotion))
|
| 306 |
conn.commit()
|
| 307 |
conn.close()
|
| 308 |
|
| 309 |
+
# ---------------- Text model: GoEmotions dataset-only ----------------
|
| 310 |
def load_goemotions_dataset():
|
| 311 |
ds = load_dataset("google-research-datasets/go_emotions", "simplified")
|
| 312 |
return ds, ds["train"].features["labels"].feature.names
|
|
|
|
| 318 |
return bundle["pipeline"], bundle["mlb"], bundle["label_names"]
|
| 319 |
ds, names = load_goemotions_dataset()
|
| 320 |
X_train, y_train = ds["train"]["text"], ds["train"]["labels"]
|
|
|
|
| 321 |
mlb = MultiLabelBinarizer(classes=list(range(len(names))))
|
| 322 |
Y_train = mlb.fit_transform(y_train)
|
|
|
|
| 323 |
clf = Pipeline([
|
| 324 |
("tfidf", TfidfVectorizer(lowercase=True, ngram_range=(1,2), min_df=2, max_df=0.9, strip_accents="unicode")),
|
| 325 |
("ovr", OneVsRestClassifier(
|
|
|
|
| 328 |
))
|
| 329 |
])
|
| 330 |
clf.fit(X_train, Y_train)
|
|
|
|
| 331 |
joblib.dump({"version": MODEL_VERSION, "pipeline": clf, "mlb": mlb, "label_names": names}, MODEL_PATH)
|
| 332 |
return clf, mlb, names
|
| 333 |
|
|
|
|
| 337 |
print("[ERROR] Model load/train:", e)
|
| 338 |
CLASSIFIER, MLB, LABEL_NAMES = None, None, None
|
| 339 |
|
| 340 |
+
# ---------------- Inference: TEXT ----------------
|
| 341 |
def classify_text(text_augmented: str):
|
| 342 |
+
"""Return list[(label_name, prob)] with adaptive threshold; fallback top1."""
|
| 343 |
+
if not CLASSIFIER: return []
|
|
|
|
| 344 |
proba = CLASSIFIER.predict_proba([text_augmented])[0]
|
| 345 |
max_p = float(np.max(proba)) if len(proba) else 0.0
|
| 346 |
thr = max(MIN_THRESHOLD, THRESHOLD_BASE * max_p + 0.15)
|
|
|
|
| 348 |
idxs.sort(key=lambda i: proba[i], reverse=True)
|
| 349 |
return [(LABEL_NAMES[i], float(proba[i])) for i in idxs]
|
| 350 |
|
| 351 |
+
def detect_emotion_text(message: str, history):
|
| 352 |
+
labels = classify_text(augment_text(message or "", history))
|
| 353 |
if not labels:
|
| 354 |
return "neutral"
|
| 355 |
bucket = {}
|
|
|
|
| 358 |
bucket[app] = max(bucket.get(app, 0.0), p)
|
| 359 |
return max(bucket, key=bucket.get) if bucket else "neutral"
|
| 360 |
|
| 361 |
+
# ---------------- Inference: AUDIO ----------------
|
| 362 |
+
def get_audio_pipe():
|
| 363 |
+
global AUDIO_PIPE
|
| 364 |
+
if AUDIO_PIPE is not None:
|
| 365 |
+
return AUDIO_PIPE
|
| 366 |
+
try:
|
| 367 |
+
from transformers import pipeline as hf_pipeline
|
| 368 |
+
AUDIO_PIPE = hf_pipeline("audio-classification", model=AUDIO_MODEL_ID)
|
| 369 |
+
except Exception as e:
|
| 370 |
+
print("[WARN] Audio pipeline not available:", e)
|
| 371 |
+
AUDIO_PIPE = None
|
| 372 |
+
return AUDIO_PIPE
|
| 373 |
+
|
| 374 |
+
def detect_emotion_audio(audio_np_tuple):
|
| 375 |
+
"""
|
| 376 |
+
Gradio Audio (type='numpy') returns (sample_rate:int, data:np.ndarray) or None.
|
| 377 |
+
We return a bucket string or 'neutral' if unavailable.
|
| 378 |
+
"""
|
| 379 |
+
if not audio_np_tuple:
|
| 380 |
+
return None # signal to fallback
|
| 381 |
+
sr, data = audio_np_tuple
|
| 382 |
+
if data is None or (isinstance(data, np.ndarray) and data.size == 0):
|
| 383 |
+
return None
|
| 384 |
+
pipe = get_audio_pipe()
|
| 385 |
+
if pipe is None:
|
| 386 |
+
return None
|
| 387 |
+
try:
|
| 388 |
+
# transformers pipeline accepts (sr, data) tuple directly for recent versions
|
| 389 |
+
# If needed, you can pass a dict: {"array": data, "sampling_rate": sr}
|
| 390 |
+
out = pipe({"array": data, "sampling_rate": int(sr)})
|
| 391 |
+
# out is list of dicts sorted by score desc: [{"label":"happy","score":0.8},...]
|
| 392 |
+
if not out:
|
| 393 |
+
return None
|
| 394 |
+
top = out[0]["label"].lower()
|
| 395 |
+
# map to bucket
|
| 396 |
+
for k, v in AUDIO_LABEL_TO_BUCKET.items():
|
| 397 |
+
if k in top:
|
| 398 |
+
return v
|
| 399 |
+
# fallback guess
|
| 400 |
+
return "neutral"
|
| 401 |
+
except Exception as e:
|
| 402 |
+
print("[WARN] Audio infer failed:", e)
|
| 403 |
+
return None
|
| 404 |
+
|
| 405 |
# ---------------- Advice selection with pool (no immediate repeats) ----------------
|
| 406 |
def pick_advice_from_pool(emotion: str, pool: dict, last_tip: str = ""):
|
| 407 |
"""Pool structure: {emotion: {'unused': [tips], 'last': str}}"""
|
| 408 |
tips_all = SUGGESTIONS.get(emotion, SUGGESTIONS["neutral"])
|
| 409 |
entry = pool.get(emotion, {"unused": [], "last": ""})
|
| 410 |
+
# Refill when empty, avoid immediate repeat
|
|
|
|
| 411 |
if not entry["unused"]:
|
| 412 |
+
refill = [t for t in tips_all if t != entry.get("last","")] or tips_all[:]
|
| 413 |
random.shuffle(refill)
|
| 414 |
entry["unused"] = refill
|
|
|
|
| 415 |
tip = entry["unused"].pop(0)
|
| 416 |
entry["last"] = tip
|
| 417 |
pool[emotion] = entry
|
|
|
|
| 422 |
msg = CRISIS_NUMBERS.get(country, CRISIS_NUMBERS["Other / Not listed"])
|
| 423 |
return f"💛 You matter. If you're in danger or thinking of harming yourself, please reach out now.\n\n{msg}"
|
| 424 |
|
| 425 |
+
def chat_step(user_text, user_audio, history, country, save_session, advice_pool):
|
| 426 |
+
# Crisis only on clear text cues
|
| 427 |
+
if user_text and CRISIS_RE.search(user_text):
|
| 428 |
return crisis_block(country), "#FFD6E7", "neutral", "", advice_pool
|
| 429 |
|
| 430 |
+
# Closing minimal
|
| 431 |
+
if user_text and CLOSING_RE.search(user_text):
|
| 432 |
tip, advice_pool = pick_advice_from_pool("neutral", advice_pool)
|
| 433 |
return f"• {tip}", "#FFFFFF", "neutral", tip, advice_pool
|
| 434 |
|
| 435 |
+
# Prefer audio if provided; else text; else neutral
|
| 436 |
+
emotion = None
|
| 437 |
+
audio_bucket = detect_emotion_audio(user_audio)
|
| 438 |
+
if audio_bucket:
|
| 439 |
+
emotion = audio_bucket
|
| 440 |
+
elif user_text and user_text.strip():
|
| 441 |
+
emotion = detect_emotion_text(user_text, history)
|
| 442 |
+
else:
|
| 443 |
+
emotion = "neutral"
|
| 444 |
+
|
| 445 |
color = COLOR_MAP.get(emotion, "#F5F5F5")
|
| 446 |
if save_session:
|
| 447 |
+
# store text (if any) so DB stays light
|
| 448 |
+
log_session(country, user_text or "[audio only]", emotion)
|
| 449 |
|
| 450 |
tip, advice_pool = pick_advice_from_pool(emotion, advice_pool)
|
| 451 |
return f"• {tip}", color, emotion, tip, advice_pool
|
| 452 |
|
| 453 |
# ---------------- UI ----------------
|
| 454 |
+
def get_conn():
|
| 455 |
+
return sqlite3.connect(DB_PATH, check_same_thread=False, timeout=10)
|
| 456 |
+
|
| 457 |
+
def init_db():
|
| 458 |
+
conn = get_conn()
|
| 459 |
+
conn.execute("""CREATE TABLE IF NOT EXISTS sessions(
|
| 460 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 461 |
+
ts TEXT, country TEXT, user_text TEXT, main_emotion TEXT
|
| 462 |
+
)""")
|
| 463 |
+
conn.commit()
|
| 464 |
+
conn.close()
|
| 465 |
+
|
| 466 |
init_db()
|
| 467 |
|
| 468 |
+
with gr.Blocks(title="🪞 MoodMirror+ — Text & Voice Emotion • Advice-only") as demo:
|
| 469 |
style = gr.HTML("")
|
| 470 |
gr.Markdown(
|
| 471 |
+
"### 🪞 MoodMirror+ — Emotion-aware advice (text + voice)\n"
|
| 472 |
+
"Text model: GoEmotions (dataset-only). Voice model: speech emotion pipeline.\n\n"
|
| 473 |
"_Not medical advice. If unsafe, please reach out for help._"
|
| 474 |
)
|
| 475 |
|
|
|
|
| 477 |
country = gr.Dropdown(list(CRISIS_NUMBERS.keys()), value="Other / Not listed", label="Country")
|
| 478 |
save_ok = gr.Checkbox(False, label="Save anonymized session")
|
| 479 |
|
| 480 |
+
chat = gr.Chatbot(height=400)
|
| 481 |
+
|
| 482 |
+
with gr.Row():
|
| 483 |
+
msg = gr.Textbox(label="Your message (text)", placeholder="Share how you feel...")
|
| 484 |
+
with gr.Row():
|
| 485 |
+
audio = gr.Audio(sources=["microphone", "upload"], type="numpy", label="Or speak (optional)")
|
| 486 |
+
|
| 487 |
with gr.Row():
|
| 488 |
send = gr.Button("Send", variant="primary")
|
| 489 |
regen = gr.Button("🔁 New advice", variant="secondary")
|
| 490 |
|
|
|
|
| 491 |
last_emotion = gr.State("neutral")
|
| 492 |
last_tip = gr.State("")
|
| 493 |
advice_pool = gr.State({}) # emotion -> {"unused":[...], "last":""}
|
| 494 |
|
| 495 |
+
def respond(user_msg, user_audio, chat_hist, country_choice, save_flag, _emotion, _tip, _pool):
|
| 496 |
+
# If both text and audio empty:
|
| 497 |
+
if (not user_msg or not user_msg.strip()) and (user_audio is None):
|
| 498 |
+
return chat_hist + [[user_msg, "Please share a short message or record audio 🙂"]], "", _emotion, _tip, _pool
|
| 499 |
|
| 500 |
reply, color, emotion, tip, _pool = chat_step(
|
| 501 |
+
user_msg, user_audio, chat_hist, country_choice, bool(save_flag), _pool
|
| 502 |
)
|
| 503 |
style_tag = f"<style>:root,body,.gradio-container{{background:{color}!important;}}</style>"
|
| 504 |
+
return chat_hist + [[user_msg if user_msg else "[voice]", reply]], style_tag, emotion, tip, _pool
|
| 505 |
|
| 506 |
def new_advice(chat_hist, _emotion, _tip, _pool):
|
| 507 |
tip, _pool = pick_advice_from_pool(_emotion, _pool, last_tip=_tip)
|
|
|
|
| 510 |
|
| 511 |
send.click(
|
| 512 |
respond,
|
| 513 |
+
inputs=[msg, audio, chat, country, save_ok, last_emotion, last_tip, advice_pool],
|
| 514 |
outputs=[chat, style, last_emotion, last_tip, advice_pool],
|
| 515 |
queue=True
|
| 516 |
)
|
| 517 |
msg.submit(
|
| 518 |
respond,
|
| 519 |
+
inputs=[msg, audio, chat, country, save_ok, last_emotion, last_tip, advice_pool],
|
| 520 |
outputs=[chat, style, last_emotion, last_tip, advice_pool],
|
| 521 |
queue=True
|
| 522 |
)
|