Spaces:
Sleeping
Sleeping
File size: 23,252 Bytes
7e12365 667d4c6 7e12365 3e7d5d4 7e12365 194dab6 d969648 c36e1c8 f6dfb38 c110e66 194dab6 a220779 7ead88a a220779 d969648 19a82d9 3e7d5d4 c36e1c8 3e7d5d4 19a82d9 2c8d91a d969648 c36e1c8 24a867b baef3a3 24a867b 194dab6 811d9dc f6dfb38 811d9dc 2c8d91a cfe8e58 2c8d91a c36e1c8 4794c81 811d9dc 2c8d91a 811d9dc c36e1c8 2c8d91a c36e1c8 d1fb552 2c8d91a c36e1c8 2c8d91a 667d4c6 2c8d91a 667d4c6 2c8d91a c36e1c8 d1fb552 19a82d9 c36e1c8 19a82d9 c36e1c8 22ecdd5 667d4c6 22ecdd5 baef3a3 d1fb552 baef3a3 c36e1c8 baef3a3 19a82d9 60b5374 22ecdd5 2c8d91a 22ecdd5 4794c81 2c8d91a 22ecdd5 4794c81 22ecdd5 667d4c6 4794c81 667d4c6 4794c81 c110e66 667d4c6 c110e66 4794c81 d1fb552 baef3a3 d1fb552 c36e1c8 d1fb552 191af43 baef3a3 19a82d9 1500034 3e1f66b 2c8d91a 3e1f66b 795a14d c36e1c8 795a14d c36e1c8 baef3a3 c36e1c8 2c8d91a c36e1c8 795a14d c36e1c8 4794c81 795a14d c36e1c8 baef3a3 c36e1c8 795a14d 2c8d91a c36e1c8 60b5374 1500034 811d9dc c36e1c8 4794c81 c36e1c8 4794c81 c36e1c8 795a14d c36e1c8 4794c81 795a14d c36e1c8 1500034 667d4c6 c36e1c8 4794c81 811d9dc c36e1c8 f6dfb38 c36e1c8 3e1f66b c36e1c8 4794c81 c36e1c8 4794c81 c36e1c8 4794c81 c36e1c8 4794c81 811d9dc 667d4c6 f6dfb38 811d9dc 667d4c6 f6dfb38 667d4c6 811d9dc c36e1c8 4794c81 f6dfb38 4794c81 f6dfb38 4794c81 f6dfb38 795a14d 667d4c6 22ecdd5 667d4c6 22ecdd5 667d4c6 22ecdd5 667d4c6 22ecdd5 667d4c6 22ecdd5 667d4c6 5677abd 22ecdd5 667d4c6 3e1f66b 22ecdd5 667d4c6 22ecdd5 667d4c6 22ecdd5 667d4c6 5677abd 667d4c6 22ecdd5 5677abd 667d4c6 22ecdd5 667d4c6 5677abd c110e66 667d4c6 c110e66 22ecdd5 667d4c6 22ecdd5 667d4c6 4794c81 795a14d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 |
# ================================
# 🪞 MoodMirror+ — Emotion-aware advice
# Tabs: Advice • Emergency numbers • Breathing • Journal
# ================================
import os
import re
import random
import sqlite3
import joblib
import numpy as np
import time
import zipfile
from datetime import datetime
import gradio as gr
from datasets import load_dataset
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.preprocessing import MultiLabelBinarizer
from sklearn.linear_model import LogisticRegression
from sklearn.multiclass import OneVsRestClassifier
from sklearn.pipeline import Pipeline
# ---------------- Storage paths ----------------
def _pick_data_dir():
if os.path.isdir("/data") and os.access("/data", os.W_OK):
return "/data"
return os.getcwd()
DATA_DIR = _pick_data_dir()
os.makedirs(DATA_DIR, exist_ok=True)
DB_PATH = os.path.join(DATA_DIR, "moodmirror.db")
MODEL_PATH = os.path.join(DATA_DIR, "goemo_sklearn.joblib")
MODEL_VERSION = "v13-all-maps-hints"
# ---------------- Crisis & closing ----------------
CRISIS_RE = re.compile(
r"\b(self[- ]?harm|suicid|kill myself|end my life|overdose|cutting|i don.?t want to live|can.?t go on)\b",
re.I,
)
CLOSING_RE = re.compile(
r"\b(thanks?|thank you|bye|goodbye|see you|take care|ok bye|no thanks?)\b",
re.I,
)
CRISIS_NUMBERS_EN = {
"United States": "📞 **988** (Suicide & Crisis Lifeline, 24/7)",
"Canada": "📞 **988** (Suicide Crisis Helpline, 24/7)",
"United Kingdom": "📞 **116 123** (Samaritans, 24/7)",
"Ireland": "📞 **116 123** (Samaritans Ireland, 24/7)",
"France": "📞 **3114** (National Suicide Prevention number, 24/7)",
"Belgium": "📞 **1813** (Zelfmoordlijn, 24/7)",
"Switzerland": "📞 **143** (La Main Tendue / Heart2Heart)",
"Spain": "📞 **024** (Línea 024 — Atención a la conducta suicida, 24/7)",
"Germany": "📞 **0800 111 0 111** / **0800 111 0 222** / **116 123** (TelefonSeelsorge, 24/7)",
"Netherlands": "📞 **0800-0113** (free) or **113** (standard rate) — 113 Suicide Prevention",
"Portugal": "📞 **213 544 545**, **912 802 669**, **963 524 660** (SOS Voz Amiga)",
"Australia": "📞 **13 11 14** (Lifeline, 24/7)",
"New Zealand": "📞 **0508 828 865** (Suicide Crisis Helpline — TAUTOKO)",
"India": "📞 **14416** (Tele MANAS, 24/7) or **1800-599-0019** (KIRAN)",
"South Africa": "📞 **0800 567 567** (SADAG Suicide Crisis Helpline, 24/7)",
"Other / Not listed": "Call local emergency (**112/911**) or search “suicide hotline” + your country.",
}
# ---------------- Advice library (5 tips each) ----------------
SUGGESTIONS = {
"sadness": [
"Go for a 5-minute outside walk and name three colors you see.",
"Write what hurts, then add one thing you still care about.",
"Take a warm shower and focus on your shoulders relaxing.",
"Text a safe person: “Can I vent for 2 minutes?”",
"Wrap in a blanket and slow your exhale for 60 seconds.",
],
"fear": [
"Do 5-4-3-2-1 grounding: 5 see, 4 feel, 3 hear, 2 smell, 1 taste.",
"Make your exhale longer than your inhale for eight breaths.",
"Hold something cool (spoon/ice) for 30 seconds and notice the sensation.",
"Name the fear in one clear sentence out loud.",
"Write the worst case, then the most likely case beside it.",
],
"anger": [
"Take space before replying; set a 10-minute timer.",
"Do ten slow exhales through pursed lips.",
"Squeeze then release your fists ten times.",
"Walk fast for five minutes or do one stair flight.",
"Write the crossed boundary; draft one calm sentence.",
],
"nervousness": [
"4-7-8 breathing: in 4s, hold 7s, out 8s (four rounds).",
"Relax your jaw and lower your shoulders.",
"Write worries down; underline what you can control.",
"Pick one tiny task you can finish in five minutes.",
"Hold a warm mug and notice the heat and weight.",
],
"boredom": [
"Set a 2-minute timer and start anything small.",
"Change your soundtrack—put on one new song.",
"Do 15 jumping jacks or a quick stretch.",
"Clean your phone screen or keyboard.",
"Write five quick ideas without editing.",
],
"grief": [
"Hold a photo or object and say their name softly.",
"Drink water and eat something—your body grieves too.",
"Write a short letter to them about today.",
"Create a tiny ritual (song, candle, place).",
"Plan one kind thing for yourself this week.",
],
"love": [
"Send a kind message without expecting a reply.",
"Note three things you appreciate about someone close.",
"Offer yourself one gentle act you needed today.",
"Give a sincere compliment to a stranger.",
"Plan a tiny gesture for tomorrow.",
],
"joy": [
"Pause and take three slow breaths to savor this.",
"Capture it—photo, note, or voice memo.",
"Tell someone why you feel good right now.",
"Move to music for one song.",
"Plan a tiny celebration later today.",
],
"curiosity": [
"Search one concept and read just the first paragraph.",
"Write three quick “what if…?” ideas.",
"Watch a “how does X work?” video for 3 minutes.",
"Learn one new word and use it once.",
"Sketch a simple diagram of an idea.",
],
"gratitude": [
"List three tiny things that made today easier.",
"Thank someone by name for something specific.",
"Notice an everyday object and appreciate its help.",
"Write “I’m lucky that…” and complete it once.",
"Savor your next sip or bite with attention.",
],
"neutral": [
"Take one slow breath and relax your hands.",
"Stand, stretch, and roll your shoulders.",
"Drink a glass of water mindfully.",
"Organize three items in your space.",
"Set a 10-minute timer to focus on one thing.",
],
}
# full GoEmotions → bucket
GOEMO_TO_APP = {
"admiration": "gratitude",
"amusement": "joy",
"anger": "anger",
"annoyance": "anger",
"approval": "gratitude",
"caring": "love",
"confusion": "nervousness",
"curiosity": "curiosity",
"desire": "joy",
"disappointment": "sadness",
"disapproval": "anger",
"disgust": "anger",
"embarrassment": "nervousness",
"excitement": "joy",
"fear": "fear",
"gratitude": "gratitude",
"grief": "grief",
"joy": "joy",
"love": "love",
"nervousness": "nervousness",
"optimism": "joy",
"pride": "joy",
"realization": "neutral",
"relief": "gratitude",
"remorse": "grief",
"sadness": "sadness",
"surprise": "neutral",
"neutral": "neutral",
}
# ---------------- Preprocessing & Hints ----------------
CLEAN_RE = re.compile(r"(https?://\S+)|(@\w+)|(#\w+)|[^a-zA-Z0-9\s']")
EMOJI_HINTS = {"😭": "sadness", "😡": "anger", "🥰": "love", "😨": "fear", "😴": "boredom"}
HINTS_EN = {
"i'm nervous": "nervousness", "im nervous": "nervousness", "nervous": "nervousness",
"anxious": "nervousness", "anxiety": "nervousness", "panic": "nervousness",
"i'm grieving": "grief", "im grieving": "grief", "grieving": "grief", "grief": "grief",
"sad": "sadness", "depressed": "sadness",
"angry": "anger", "furious": "anger",
"afraid": "fear", "scared": "fear",
}
def clean_text(s: str) -> str:
s = s.lower()
s = CLEAN_RE.sub(" ", s)
s = re.sub(r"\s+", " ", s).strip()
return s
def augment_text(text: str, history=None) -> str:
t = clean_text(text or "")
lt = (text or "").lower()
tags = []
for k, v in EMOJI_HINTS.items():
if k in lt: tags.append(v)
for k, v in HINTS_EN.items():
if k in lt: tags.append(v)
if history and len(t.split()) < 8:
prev_user = history[-1][0] if history and history[-1] else ""
if isinstance(prev_user, str) and prev_user:
t += " " + clean_text(prev_user)
if tags:
t += " " + " ".join(f"emo_{x}" for x in tags)
return t
# ---------------- SQLite ----------------
def get_conn():
return sqlite3.connect(DB_PATH, check_same_thread=False, timeout=10)
def init_db():
conn = get_conn()
conn.execute("""CREATE TABLE IF NOT EXISTS sessions(
id INTEGER PRIMARY KEY AUTOINCREMENT,
ts TEXT, country TEXT, user_text TEXT, main_emotion TEXT
)""")
conn.execute("""CREATE TABLE IF NOT EXISTS journal(
id INTEGER PRIMARY KEY AUTOINCREMENT,
ts TEXT NOT NULL,
emotion TEXT,
title TEXT,
content TEXT
)""")
conn.commit()
conn.close()
def log_session(country, msg, emotion):
conn = get_conn()
conn.execute("INSERT INTO sessions(ts,country,user_text,main_emotion)VALUES(?,?,?,?)",
(datetime.utcnow().isoformat(timespec='seconds'), country, (msg or "")[:500], emotion))
conn.commit()
conn.close()
# ---- Journal helpers ----
def journal_save(title: str, content: str, emotion: str):
title = (title or "").strip()
content = (content or "").strip()
if not content:
return False, "Please write something before saving."
ts = datetime.utcnow().isoformat(timespec='seconds')
conn = get_conn()
conn.execute("INSERT INTO journal(ts, emotion, title, content) VALUES (?,?,?,?)",
(ts, emotion or "", title, content))
conn.commit()
conn.close()
return True, f"Saved ✓ ({ts} UTC)."
def journal_list(search: str = "", limit: int = 50):
q = "SELECT id, ts, emotion, title, content FROM journal"
params = []
if search:
q += " WHERE (LOWER(title) LIKE ? OR LOWER(content) LIKE ? OR LOWER(emotion) LIKE ?)"
s = f"%{search.lower()}%"
params = [s, s, s]
q += " ORDER BY ts DESC LIMIT ?"
params.append(int(limit))
conn = get_conn()
rows = list(conn.execute(q, params))
conn.close()
options, table = [], []
for (id_, ts, emo, title, content) in rows:
label = f"{ts} — [{(emo or 'neutral')}] {title or (content[:30] + ('…' if len(content) > 30 else ''))}"
options.append((label, id_))
preview = (content or "").replace("\n", " ")
if len(preview) > 120: preview = preview[:120] + "…"
table.append([ts, emo or "—", title or "—", preview])
return options, table
def journal_get(entry_id: int):
conn = get_conn()
cur = conn.execute("SELECT ts, emotion, title, content FROM journal WHERE id = ?", (int(entry_id),))
row = cur.fetchone()
conn.close()
if not row: return None
ts, emo, title, content = row
return {"ts": ts, "emotion": emo or "", "title": title or "", "content": content or ""}
def journal_export_all_zip():
conn = get_conn()
rows = list(conn.execute("SELECT id, ts, emotion, title, content FROM journal ORDER BY ts"))
conn.close()
if not rows:
return None, "No entries to export."
zip_name = os.path.join(DATA_DIR, "journal_all.zip")
with zipfile.ZipFile(zip_name, "w", zipfile.ZIP_DEFLATED) as zf:
for (id_, ts, emo, title, content) in rows:
safe_title = re.sub(r"[^a-zA-Z0-9_\- ]", "_", title or "untitled")
fname = f"{ts[:19].replace(':','-')} - {safe_title}.txt"
text = (
f"Title: {title or '(Untitled)'}\n"
f"Emotion: {emo or '-'}\n"
f"Saved (UTC): {ts}\n"
f"{'-'*40}\n"
f"{content or ''}"
)
zf.writestr(fname, text)
return zip_name, f"Exported {len(rows)} entries."
# ---------------- Model ----------------
def load_goemotions_dataset():
ds = load_dataset("google-research-datasets/go_emotions", "simplified")
return ds, ds["train"].features["labels"].feature.names
def train_or_load_model():
if os.path.exists(MODEL_PATH):
bundle = joblib.load(MODEL_PATH)
if bundle.get("version") == MODEL_VERSION:
return bundle["pipeline"], bundle["mlb"], bundle["label_names"]
ds, names = load_goemotions_dataset()
X_train, y_train = ds["train"]["text"], ds["train"]["labels"]
mlb = MultiLabelBinarizer(classes=list(range(len(names))))
Y_train = mlb.fit_transform(y_train)
clf = Pipeline([
("tfidf", TfidfVectorizer(lowercase=True, ngram_range=(1,2), min_df=2, max_df=0.9, strip_accents="unicode")),
("ovr", OneVsRestClassifier(
LogisticRegression(
solver="saga",
penalty="l2",
C=0.5,
tol=1e-3,
max_iter=5000,
class_weight="balanced"
),
n_jobs=-1
))
])
clf.fit(X_train, Y_train)
joblib.dump({"version": MODEL_VERSION, "pipeline": clf, "mlb": mlb, "label_names": names}, MODEL_PATH)
return clf, mlb, names
try:
CLASSIFIER, MLB, LABEL_NAMES = train_or_load_model()
except Exception as e:
print("[ERROR] Model load/train:", e)
CLASSIFIER, MLB, LABEL_NAMES = None, None, None
def classify_text(text_augmented: str):
if not CLASSIFIER: return []
proba = CLASSIFIER.predict_proba([text_augmented])[0]
max_p = float(np.max(proba)) if len(proba) else 0.0
thr = max(0.10, 0.30 * max_p + 0.15)
idxs = [i for i, p in enumerate(proba) if p >= thr] or [int(np.argmax(proba))]
idxs.sort(key=lambda i: proba[i], reverse=True)
return [(LABEL_NAMES[i], float(proba[i])) for i in idxs]
def detect_emotion_text(message: str, history):
labels = classify_text(augment_text(message, history))
if not labels:
return "neutral"
bucket = {}
for lbl, p in labels:
app = GOEMO_TO_APP.get(lbl.lower(), "neutral")
bucket[app] = max(bucket.get(app, 0.0), p)
return max(bucket, key=bucket.get) if bucket else "neutral"
# ---------------- Advice engine ----------------
def pick_advice_from_pool(emotion: str, pool: dict, last_tip: str = ""):
tips_all = SUGGESTIONS.get(emotion, SUGGESTIONS["neutral"])
entry = pool.get(emotion, {"unused": [], "last": ""})
if not entry["unused"]:
refill = [t for t in tips_all if t != entry.get("last","")] or tips_all[:]
random.shuffle(refill)
entry["unused"] = refill
tip = entry["unused"].pop(0)
entry["last"] = tip
pool[emotion] = entry
return tip, pool
def format_reply(emotion: str, tip: str) -> str:
# removed "why it helps"
return f"Try this now:\n• {tip}"
def crisis_block_en(country):
msg = CRISIS_NUMBERS_EN.get(country, CRISIS_NUMBERS_EN["Other / Not listed"])
return "💛 You matter. If you're in danger or thinking of harming yourself, please reach out now.\n\n" + msg
def chat_step(user_text, history, country, save_session, advice_pool):
if user_text and CRISIS_RE.search(user_text):
return crisis_block_en(country), "neutral", "neutral", "", advice_pool
if user_text and CLOSING_RE.search(user_text):
emotion = "neutral"
tip, advice_pool = pick_advice_from_pool(emotion, advice_pool)
reply = format_reply(emotion, tip)
return reply, "neutral", emotion, tip, advice_pool
emotion = detect_emotion_text(user_text or "", history)
if save_session:
log_session(country, user_text or "", emotion)
tip, advice_pool = pick_advice_from_pool(emotion, advice_pool)
reply = format_reply(emotion, tip)
return reply, emotion, emotion, tip, advice_pool
# ---------------- UI ----------------
init_db()
with gr.Blocks(title="🪞 MoodMirror+") as demo:
gr.Markdown("### 🪞 MoodMirror+ — Emotion-aware advice\n_Not medical advice._")
with gr.Tabs():
# ---- Advice ----
with gr.Tab("Advice"):
with gr.Row():
country = gr.Dropdown(list(CRISIS_NUMBERS_EN.keys()), value="United States", label="Country")
save_ok = gr.Checkbox(False, label="Save anonymized session")
chat = gr.Chatbot(type="tuples", height=380)
msg = gr.Textbox(label="Your message", placeholder="Share how you feel...")
with gr.Row():
send = gr.Button("Send", variant="primary")
regen = gr.Button("🔁 New advice", variant="secondary")
last_emotion = gr.State("neutral")
last_tip = gr.State("")
advice_pool = gr.State({})
def respond(user_msg, chat_hist, country_choice, save_flag, _emotion, _tip, _pool):
if not user_msg or not user_msg.strip():
return chat_hist + [[user_msg, "Please share how you feel 🙂"]], _emotion, _tip, _pool
reply, _, emotion, tip, _pool = chat_step(
user_msg, chat_hist, country_choice, bool(save_flag), _pool
)
return chat_hist + [[user_msg, reply]], emotion, tip, _pool
def new_advice(chat_hist, _emotion, _tip, _pool):
tip, _pool = pick_advice_from_pool(_emotion, _pool, last_tip=_tip)
reply = format_reply(_emotion, tip)
return chat_hist + [[None, reply]], _emotion, tip, _pool
send.click(
respond,
inputs=[msg, chat, country, save_ok, last_emotion, last_tip, advice_pool],
outputs=[chat, last_emotion, last_tip, advice_pool],
)
msg.submit(
respond,
inputs=[msg, chat, country, save_ok, last_emotion, last_tip, advice_pool],
outputs=[chat, last_emotion, last_tip, advice_pool],
)
regen.click(
new_advice,
inputs=[chat, last_emotion, last_tip, advice_pool],
outputs=[chat, last_emotion, last_tip, advice_pool],
)
# ---- Emergency numbers ----
with gr.Tab("Emergency numbers"):
gr.Markdown("#### 📟 Emergency numbers (English)")
country_view = gr.Dropdown(choices=list(CRISIS_NUMBERS_EN.keys()), value="United States", label="Country")
crisis_info = gr.Markdown(value=crisis_block_en("United States"))
def show_crisis_for_country_en(c): return crisis_block_en(c)
country_view.change(show_crisis_for_country_en, inputs=country_view, outputs=crisis_info)
# ---- Breathing ----
with gr.Tab("Breathing"):
gr.Markdown("#### 🌬️ Guided breathing")
with gr.Row():
pattern = gr.Dropdown(
choices=["4-7-8", "Box (4-4-4-4)", "Coherent (5-5, ~6 breaths/min)"],
value="4-7-8", label="Pattern")
cycles = gr.Slider(1, 10, value=4, step=1, label="Number of cycles")
start_btn = gr.Button("Start", variant="primary")
breathe_out = gr.Markdown()
def _steps_for(p):
if p == "4-7-8": return [("Inhale", 4), ("Hold", 7), ("Exhale", 8)]
elif p.startswith("Box"): return [("Inhale", 4), ("Hold", 4), ("Exhale", 4), ("Hold", 4)]
else: return [("Inhale", 5), ("Exhale", 5)]
def run_breathing(pat, n):
steps = _steps_for(pat)
yield "Starting in 3…"; time.sleep(1)
yield "Starting in 2…"; time.sleep(1)
yield "Starting in 1…"; time.sleep(1)
for c in range(1, int(n) + 1):
for label, secs in steps:
for t in range(secs, 0, -1):
dots = "•" * (secs - t + 1)
yield f"**Cycle {c}/{int(n)}** \n**{label}** — {t}s \n{dots}"
time.sleep(1)
yield "✅ Done. Notice how your body feels."
start_btn.click(run_breathing, inputs=[pattern, cycles], outputs=[breathe_out])
# ---- Journal (simple) ----
with gr.Tab("Journal"):
gr.Markdown("#### 📝 Journal — write, save, export all")
with gr.Row():
j_title = gr.Textbox(label="Title (optional)")
j_emotion = gr.Dropdown(
choices=["neutral","sadness","fear","anger","nervousness","boredom","grief","love","joy","curiosity","gratitude"],
value="neutral", label="Emotion"
)
j_text = gr.Textbox(lines=10, label="Your entry", placeholder="Write whatever you want to remember...")
with gr.Row():
j_save = gr.Button("Save entry", variant="primary")
j_clear = gr.Button("Clear")
j_status = gr.Markdown()
gr.Markdown("##### Your entries")
with gr.Row():
j_search = gr.Textbox(label="Search", placeholder="keyword, emotion, title")
j_refresh = gr.Button("Refresh")
j_entries = gr.Dropdown(label="Entries (newest first)", choices=[], value=None)
j_table = gr.Dataframe(headers=["UTC time","Emotion","Title","Preview"], value=[], interactive=False)
j_view = gr.Markdown()
# export all
j_export_all_btn = gr.Button("⬇️ Export ALL entries (zip)")
j_export_all_file = gr.File(label="Download zip", visible=True)
def _refresh_entries(search):
options, table = journal_list(search or "", 50)
return gr.Dropdown(choices=options, value=None), table
def _save_entry(title, text, emo, search):
ok, msg = journal_save(title, text, emo)
drop, table = _refresh_entries(search)
clear_text = "" if ok else text
clear_title = "" if ok else title
return msg, drop, table, clear_text, clear_title
def _load_entry(entry_id):
if entry_id is None:
return "Select an entry to view it here."
data = journal_get(entry_id)
if not data:
return "Entry not found."
title_line = f"### {data['title']}" if data['title'] else "### (Untitled)"
emo_line = f"**Emotion:** {data['emotion'] or '—'} \n**Saved (UTC):** {data['ts']}"
return f"{title_line}\n\n{emo_line}\n\n---\n\n{data['content']}"
def _export_all():
path, msg = journal_export_all_zip()
return path, msg
j_save.click(_save_entry, inputs=[j_title, j_text, j_emotion, j_search],
outputs=[j_status, j_entries, j_table, j_text, j_title])
j_clear.click(lambda: ("",), outputs=[j_text])
j_refresh.click(_refresh_entries, inputs=[j_search], outputs=[j_entries, j_table])
j_search.submit(_refresh_entries, inputs=[j_search], outputs=[j_entries, j_table])
j_entries.change(_load_entry, inputs=[j_entries], outputs=[j_view])
j_export_all_btn.click(_export_all, outputs=[j_export_all_file, j_status])
if __name__ == "__main__":
demo.queue()
demo.launch()
|