Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.nn as nn | |
| import functools | |
| class UnetGenerator(nn.Module): | |
| """Create a Unet-based generator""" | |
| def __init__(self, input_nc, output_nc, num_downs, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False): | |
| """Construct a Unet generator | |
| Parameters: | |
| input_nc (int) -- the number of channels in input images | |
| output_nc (int) -- the number of channels in output images | |
| num_downs (int) -- the number of downsamplings in UNet. For example, # if |num_downs| == 7, | |
| image of size 128x128 will become of size 1x1 # at the bottleneck | |
| ngf (int) -- the number of filters in the last conv layer | |
| norm_layer -- normalization layer | |
| We construct the U-Net from the innermost layer to the outermost layer. | |
| It is a recursive process. | |
| """ | |
| super(UnetGenerator, self).__init__() | |
| # construct unet structure | |
| unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True) # add the innermost layer | |
| for _ in range(num_downs - 5): # add intermediate layers with ngf * 8 filters | |
| unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout) | |
| # gradually reduce the number of filters from ngf * 8 to ngf | |
| unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer) | |
| unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer) | |
| unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer) | |
| self.model = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer) # add the outermost layer | |
| def forward(self, input): | |
| """Standard forward""" | |
| return self.model(input) | |
| class UnetSkipConnectionBlock(nn.Module): | |
| """Defines the Unet submodule with skip connection. | |
| X -------------------identity---------------------- | |
| |-- downsampling -- |submodule| -- upsampling --| | |
| """ | |
| def __init__(self, outer_nc, inner_nc, input_nc=None, | |
| submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False): | |
| """Construct a Unet submodule with skip connections. | |
| Parameters: | |
| outer_nc (int) -- the number of filters in the outer conv layer | |
| inner_nc (int) -- the number of filters in the inner conv layer | |
| input_nc (int) -- the number of channels in input images/features | |
| submodule (UnetSkipConnectionBlock) -- previously defined submodules | |
| outermost (bool) -- if this module is the outermost module | |
| innermost (bool) -- if this module is the innermost module | |
| norm_layer -- normalization layer | |
| use_dropout (bool) -- if use dropout layers. | |
| """ | |
| super(UnetSkipConnectionBlock, self).__init__() | |
| self.outermost = outermost | |
| if type(norm_layer) == functools.partial: | |
| use_bias = norm_layer.func == nn.InstanceNorm2d | |
| else: | |
| use_bias = norm_layer == nn.InstanceNorm2d | |
| if input_nc is None: | |
| input_nc = outer_nc | |
| downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4, | |
| stride=2, padding=1, bias=use_bias) | |
| downrelu = nn.LeakyReLU(0.2, True) | |
| downnorm = norm_layer(inner_nc) | |
| uprelu = nn.ReLU(True) | |
| upnorm = norm_layer(outer_nc) | |
| if outermost: | |
| upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, | |
| kernel_size=4, stride=2, | |
| padding=1) | |
| down = [downconv] | |
| up = [uprelu, upconv, nn.Tanh()] | |
| model = down + [submodule] + up | |
| elif innermost: | |
| upconv = nn.ConvTranspose2d(inner_nc, outer_nc, | |
| kernel_size=4, stride=2, | |
| padding=1, bias=use_bias) | |
| down = [downrelu, downconv] | |
| up = [uprelu, upconv, upnorm] | |
| model = down + up | |
| else: | |
| upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, | |
| kernel_size=4, stride=2, | |
| padding=1, bias=use_bias) | |
| down = [downrelu, downconv, downnorm] | |
| up = [uprelu, upconv, upnorm] | |
| if use_dropout: | |
| model = down + [submodule] + up + [nn.Dropout(0.5)] | |
| else: | |
| model = down + [submodule] + up | |
| self.model = nn.Sequential(*model) | |
| def forward(self, x): | |
| if self.outermost: | |
| return self.model(x) | |
| else: # add skip connections | |
| return torch.cat([x, self.model(x)], 1) | |
| def create_model(gpu_ids=[]): | |
| """Create a model for anime2sketch | |
| hardcoding the options for simplicity | |
| """ | |
| norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False) | |
| net = UnetGenerator(3, 1, 8, 64, norm_layer=norm_layer, use_dropout=False) | |
| ckpt = torch.load('weights/netG.pth') | |
| for key in list(ckpt.keys()): | |
| if 'module.' in key: | |
| ckpt[key.replace('module.', '')] = ckpt[key] | |
| del ckpt[key] | |
| net.load_state_dict(ckpt) | |
| if len(gpu_ids) > 0: | |
| assert(torch.cuda.is_available()) | |
| net.to(gpu_ids[0]) | |
| net = torch.nn.DataParallel(net, gpu_ids) # multi-GPUs | |
| return net |