Create streamlit_app.py
Browse files- streamlit_app.py +132 -0
streamlit_app.py
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# streamlit_app.py
|
| 2 |
+
# A minimal Streamlit app rebuilt with the LangChain framework.
|
| 3 |
+
|
| 4 |
+
import streamlit as st
|
| 5 |
+
import torch
|
| 6 |
+
from transformers import pipeline
|
| 7 |
+
|
| 8 |
+
# Updated LangChain imports for modern versions
|
| 9 |
+
from langchain_community.llms import HuggingFacePipeline
|
| 10 |
+
from langchain.prompts import PromptTemplate
|
| 11 |
+
from langchain.chains import LLMChain
|
| 12 |
+
from langchain.memory import ConversationBufferMemory
|
| 13 |
+
|
| 14 |
+
# -----------------------------------------------------------------------------
|
| 15 |
+
# CORE MODEL LOGIC (Rebuilt with LangChain)
|
| 16 |
+
# -----------------------------------------------------------------------------
|
| 17 |
+
class LangChainBot:
|
| 18 |
+
def __init__(self):
|
| 19 |
+
"""
|
| 20 |
+
Loads the models and wraps them in LangChain components.
|
| 21 |
+
"""
|
| 22 |
+
try:
|
| 23 |
+
# 1. Load the base Hugging Face pipelines
|
| 24 |
+
generator_pipeline = pipeline(
|
| 25 |
+
"text2text-generation",
|
| 26 |
+
model="ai4bharat/IndicBARTSS",
|
| 27 |
+
device=0 if torch.cuda.is_available() else -1,
|
| 28 |
+
torch_dtype=(torch.float16 if torch.cuda.is_available() else torch.float32),
|
| 29 |
+
max_new_tokens=150,
|
| 30 |
+
repetition_penalty=1.2
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
# Added `trust_remote_code=True` to allow the special translator model to load.
|
| 34 |
+
self.translator = pipeline(
|
| 35 |
+
"translation",
|
| 36 |
+
model="ai4bharat/indictrans2-indic-indic-1B",
|
| 37 |
+
device=0 if torch.cuda.is_available() else -1,
|
| 38 |
+
trust_remote_code=True
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
# 2. Wrap the generator in a LangChain LLM object
|
| 42 |
+
llm = HuggingFacePipeline(pipeline=generator_pipeline)
|
| 43 |
+
|
| 44 |
+
# 3. Create a Prompt Template
|
| 45 |
+
template = """
|
| 46 |
+
You are a helpful conversational AI. Respond to the user's message.
|
| 47 |
+
|
| 48 |
+
{history}
|
| 49 |
+
मनुष्य: {input}
|
| 50 |
+
सहायक:
|
| 51 |
+
"""
|
| 52 |
+
prompt_template = PromptTemplate(input_variables=["history", "input"], template=template)
|
| 53 |
+
|
| 54 |
+
# 4. Set up conversational memory
|
| 55 |
+
self.memory = ConversationBufferMemory(memory_key="history")
|
| 56 |
+
|
| 57 |
+
# 5. Create the final LLMChain
|
| 58 |
+
self.chain = LLMChain(
|
| 59 |
+
llm=llm,
|
| 60 |
+
prompt=prompt_template,
|
| 61 |
+
verbose=True,
|
| 62 |
+
memory=self.memory
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
except Exception as e:
|
| 66 |
+
st.error(f"Fatal: Could not load models. Error: {e}")
|
| 67 |
+
self.chain = None
|
| 68 |
+
self.translator = None
|
| 69 |
+
|
| 70 |
+
def _translate(self, text, source_lang, target_lang):
|
| 71 |
+
"""Translation logic remains the same."""
|
| 72 |
+
if not self.translator or source_lang == target_lang:
|
| 73 |
+
return text
|
| 74 |
+
try:
|
| 75 |
+
codes = {'english': 'eng_Latn', 'hindi': 'hin_Deva', 'tamil': 'tam_Taml', 'telugu': 'tel_Telu'}
|
| 76 |
+
result = self.translator(text, src_lang=codes[source_lang], tgt_lang=codes[target_lang])
|
| 77 |
+
return result[0]['translation_text']
|
| 78 |
+
except Exception as e:
|
| 79 |
+
st.warning(f"Translation failed. Error: {e}")
|
| 80 |
+
return text
|
| 81 |
+
|
| 82 |
+
def get_response(self, user_message, input_lang, output_lang):
|
| 83 |
+
"""The main function to get a response."""
|
| 84 |
+
if not self.chain:
|
| 85 |
+
return "Error: The LangChain chain is not initialized."
|
| 86 |
+
|
| 87 |
+
hindi_message = self._translate(user_message, input_lang, 'hindi')
|
| 88 |
+
hindi_response = self.chain.run(hindi_message)
|
| 89 |
+
final_response = self._translate(hindi_response, 'hindi', output_lang)
|
| 90 |
+
|
| 91 |
+
return final_response
|
| 92 |
+
|
| 93 |
+
# -----------------------------------------------------------------------------
|
| 94 |
+
# MINIMAL STREAMLIT UI (This part remains mostly the same)
|
| 95 |
+
# -----------------------------------------------------------------------------
|
| 96 |
+
|
| 97 |
+
st.set_page_config(layout="centered")
|
| 98 |
+
st.title("LangChain Model Interface")
|
| 99 |
+
|
| 100 |
+
@st.cache_resource
|
| 101 |
+
def load_bot():
|
| 102 |
+
return LangChainBot()
|
| 103 |
+
|
| 104 |
+
bot = load_bot()
|
| 105 |
+
|
| 106 |
+
if bot and bot.chain: # Only show the UI if the bot loaded successfully
|
| 107 |
+
st.markdown("---")
|
| 108 |
+
language_options = ["english", "hindi", "tamil", "telugu"]
|
| 109 |
+
col1, col2 = st.columns(2)
|
| 110 |
+
with col1:
|
| 111 |
+
input_lang = st.selectbox("Input Language", options=language_options, index=0)
|
| 112 |
+
with col2:
|
| 113 |
+
output_lang = st.selectbox("Output Language", options=language_options, index=1)
|
| 114 |
+
|
| 115 |
+
user_input = st.text_area("Your Message:", height=100)
|
| 116 |
+
|
| 117 |
+
if st.button("Get Response"):
|
| 118 |
+
if user_input:
|
| 119 |
+
with st.spinner("LangChain is processing your request..."):
|
| 120 |
+
response = bot.get_response(user_input, input_lang, output_lang)
|
| 121 |
+
st.markdown("### Model Response:")
|
| 122 |
+
st.info(response)
|
| 123 |
+
else:
|
| 124 |
+
st.warning("Please enter a message.")
|
| 125 |
+
|
| 126 |
+
# Add a button to clear LangChain's memory
|
| 127 |
+
if st.button("Clear Conversation Memory"):
|
| 128 |
+
if hasattr(bot, 'memory'):
|
| 129 |
+
bot.memory.clear()
|
| 130 |
+
st.success("Conversation memory has been cleared.")
|
| 131 |
+
else:
|
| 132 |
+
st.error("Application could not start. Please check the logs.")
|