Spaces:
Running
Running
Update backend.py
Browse files- backend.py +40 -81
backend.py
CHANGED
|
@@ -5,201 +5,160 @@ import logging
|
|
| 5 |
from fastapi import FastAPI, UploadFile, File, HTTPException
|
| 6 |
from pydantic import BaseModel
|
| 7 |
import torch
|
| 8 |
-
from dotenv import load_dotenv
|
| 9 |
|
| 10 |
-
# ---------------- Groq API ----------------
|
| 11 |
from groq import Groq, APIError
|
| 12 |
|
| 13 |
-
# ---------------- LangChain ----------------
|
| 14 |
from langchain_community.document_loaders import PyPDFLoader
|
| 15 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 16 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 17 |
from langchain_community.vectorstores import Chroma
|
| 18 |
|
| 19 |
-
#
|
| 20 |
logging.basicConfig(level=logging.INFO)
|
| 21 |
-
|
| 22 |
-
# 1. Load environment variables from .env file
|
| 23 |
load_dotenv()
|
| 24 |
|
| 25 |
-
|
| 26 |
-
GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
|
| 27 |
GROQ_MODEL = "llama-3.1-8b-instant"
|
| 28 |
|
| 29 |
-
# 3. Initialize Groq Client
|
| 30 |
client = None
|
| 31 |
-
if
|
| 32 |
-
logging.error(
|
| 33 |
-
"β GROQ_API_KEY is not set in the environment or the .env file. The service will run but cannot answer questions.")
|
| 34 |
-
else:
|
| 35 |
try:
|
| 36 |
client = Groq(api_key=GROQ_API_KEY)
|
| 37 |
-
logging.info("β
Groq client initialized
|
| 38 |
except Exception as e:
|
| 39 |
-
logging.error(f"
|
| 40 |
-
client = None
|
| 41 |
|
| 42 |
app = FastAPI()
|
| 43 |
|
| 44 |
-
# Global state for RAG components
|
| 45 |
retriever = None
|
| 46 |
vectorstore = None
|
| 47 |
|
| 48 |
|
| 49 |
-
# ---------------- Input Schema ----------------
|
| 50 |
class Query(BaseModel):
|
| 51 |
question: str
|
| 52 |
|
| 53 |
|
| 54 |
# ==================================================
|
| 55 |
-
# PDF Upload
|
| 56 |
# ==================================================
|
| 57 |
-
@app.post("/upload")
|
| 58 |
async def upload_pdf(file: UploadFile = File(...)):
|
| 59 |
-
"""Handles PDF upload, processing, chunking, embedding, and vectorstore creation."""
|
| 60 |
global retriever, vectorstore
|
| 61 |
|
| 62 |
if not file.filename.endswith(".pdf"):
|
| 63 |
raise HTTPException(400, "Only PDF files allowed")
|
| 64 |
|
| 65 |
if not client:
|
| 66 |
-
raise HTTPException(500, "
|
| 67 |
|
| 68 |
path = None
|
| 69 |
try:
|
| 70 |
-
# 1. Save file temporarily
|
| 71 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
|
| 72 |
tmp.write(await file.read())
|
| 73 |
path = tmp.name
|
| 74 |
|
| 75 |
-
logging.info(f"Processing PDF: {path}")
|
| 76 |
-
|
| 77 |
-
# 2. Load
|
| 78 |
loader = PyPDFLoader(path)
|
| 79 |
docs = loader.load()
|
| 80 |
|
| 81 |
-
# 3. Split
|
| 82 |
splitter = RecursiveCharacterTextSplitter(
|
| 83 |
chunk_size=800,
|
| 84 |
chunk_overlap=50
|
| 85 |
)
|
| 86 |
chunks = splitter.split_documents(docs)
|
| 87 |
|
| 88 |
-
# 4. Embeddings (Using CPU-friendly model)
|
| 89 |
embeddings = HuggingFaceEmbeddings(
|
| 90 |
model_name="sentence-transformers/all-MiniLM-L6-v2",
|
| 91 |
model_kwargs={"device": "cpu"},
|
| 92 |
encode_kwargs={"normalize_embeddings": True}
|
| 93 |
)
|
| 94 |
|
| 95 |
-
# 5. Clear previous vectorstore to free memory
|
| 96 |
if vectorstore:
|
| 97 |
del vectorstore
|
| 98 |
gc.collect()
|
| 99 |
|
| 100 |
-
# 6. Create Vectorstore and Retriever
|
| 101 |
vectorstore = Chroma.from_documents(chunks, embeddings)
|
| 102 |
-
# Search for 3 most relevant chunks
|
| 103 |
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
| 104 |
|
| 105 |
-
logging.info(f"PDF processed. Chunks created: {len(chunks)}")
|
| 106 |
-
|
| 107 |
return {"message": "PDF processed", "chunks": len(chunks)}
|
| 108 |
|
| 109 |
except Exception as e:
|
| 110 |
-
|
| 111 |
-
|
| 112 |
finally:
|
| 113 |
-
# 7. Cleanup temp file and memory
|
| 114 |
if path and os.path.exists(path):
|
| 115 |
os.unlink(path)
|
| 116 |
gc.collect()
|
| 117 |
|
| 118 |
|
| 119 |
# ==================================================
|
| 120 |
-
#
|
| 121 |
# ==================================================
|
| 122 |
-
@app.post("/ask")
|
| 123 |
async def ask(req: Query):
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
if client is None:
|
| 127 |
-
raise HTTPException(500, "Groq client is not initialized. Check API key setup.")
|
| 128 |
-
|
| 129 |
-
if retriever is None:
|
| 130 |
-
raise HTTPException(400, "Upload PDF first to initialize the knowledge base.")
|
| 131 |
|
| 132 |
try:
|
| 133 |
-
# 1. Retrieve relevant chunks (NEW LangChain API)
|
| 134 |
docs = retriever.invoke(req.question)
|
| 135 |
-
|
| 136 |
context = "\n\n".join(d.page_content for d in docs)
|
| 137 |
|
| 138 |
-
# 2. Build prompt
|
| 139 |
prompt = f"""
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
"I cannot find this in the PDF."
|
| 143 |
|
| 144 |
-
|
| 145 |
{context}
|
| 146 |
-
-----------------------------------------
|
| 147 |
|
| 148 |
QUESTION: {req.question}
|
| 149 |
|
| 150 |
-
|
| 151 |
"""
|
| 152 |
|
| 153 |
-
# 3. Call Groq
|
| 154 |
response = client.chat.completions.create(
|
| 155 |
model=GROQ_MODEL,
|
| 156 |
messages=[
|
| 157 |
-
{"role": "system",
|
| 158 |
-
"content": "Use only the PDF content. If answer not found, say: 'I cannot find this in the PDF.'"},
|
| 159 |
{"role": "user", "content": prompt}
|
| 160 |
],
|
| 161 |
temperature=0.0
|
| 162 |
)
|
| 163 |
|
| 164 |
-
|
| 165 |
-
|
|
|
|
|
|
|
| 166 |
|
| 167 |
except APIError as e:
|
| 168 |
-
|
| 169 |
-
raise HTTPException(500, f"Groq API Error: {str(e)}")
|
| 170 |
-
|
| 171 |
-
except Exception as e:
|
| 172 |
-
logging.error(f"General error in /ask: {e}")
|
| 173 |
-
raise HTTPException(500, f"General error: {str(e)}")
|
| 174 |
|
| 175 |
|
| 176 |
# ==================================================
|
| 177 |
-
#
|
| 178 |
# ==================================================
|
| 179 |
-
@app.
|
| 180 |
-
async def health():
|
| 181 |
-
"""Endpoint for checking service status."""
|
| 182 |
-
return {
|
| 183 |
-
"status": "running",
|
| 184 |
-
"pdf_loaded": retriever is not None,
|
| 185 |
-
"groq_client_ok": client is not None
|
| 186 |
-
}
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
@app.post("/clear")
|
| 190 |
async def clear():
|
| 191 |
-
"""Clears the current RAG components from memory."""
|
| 192 |
global retriever, vectorstore
|
| 193 |
|
| 194 |
-
# Explicitly clear objects
|
| 195 |
if vectorstore:
|
| 196 |
del vectorstore
|
| 197 |
retriever = None
|
| 198 |
vectorstore = None
|
| 199 |
|
| 200 |
gc.collect()
|
| 201 |
-
# Clear CUDA cache if running on a machine with a GPU (good practice)
|
| 202 |
if torch.cuda.is_available():
|
| 203 |
torch.cuda.empty_cache()
|
| 204 |
|
| 205 |
-
return {"message": "Memory cleared
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
from fastapi import FastAPI, UploadFile, File, HTTPException
|
| 6 |
from pydantic import BaseModel
|
| 7 |
import torch
|
| 8 |
+
from dotenv import load_dotenv
|
| 9 |
|
|
|
|
| 10 |
from groq import Groq, APIError
|
| 11 |
|
|
|
|
| 12 |
from langchain_community.document_loaders import PyPDFLoader
|
| 13 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 14 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 15 |
from langchain_community.vectorstores import Chroma
|
| 16 |
|
| 17 |
+
# ---------------- Setup ----------------
|
| 18 |
logging.basicConfig(level=logging.INFO)
|
|
|
|
|
|
|
| 19 |
load_dotenv()
|
| 20 |
|
| 21 |
+
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
|
|
|
| 22 |
GROQ_MODEL = "llama-3.1-8b-instant"
|
| 23 |
|
|
|
|
| 24 |
client = None
|
| 25 |
+
if GROQ_API_KEY:
|
|
|
|
|
|
|
|
|
|
| 26 |
try:
|
| 27 |
client = Groq(api_key=GROQ_API_KEY)
|
| 28 |
+
logging.info("β
Groq client initialized")
|
| 29 |
except Exception as e:
|
| 30 |
+
logging.error(f"Groq init failed: {e}")
|
|
|
|
| 31 |
|
| 32 |
app = FastAPI()
|
| 33 |
|
|
|
|
| 34 |
retriever = None
|
| 35 |
vectorstore = None
|
| 36 |
|
| 37 |
|
|
|
|
| 38 |
class Query(BaseModel):
|
| 39 |
question: str
|
| 40 |
|
| 41 |
|
| 42 |
# ==================================================
|
| 43 |
+
# PDF Upload
|
| 44 |
# ==================================================
|
| 45 |
+
@app.post("/api/upload")
|
| 46 |
async def upload_pdf(file: UploadFile = File(...)):
|
|
|
|
| 47 |
global retriever, vectorstore
|
| 48 |
|
| 49 |
if not file.filename.endswith(".pdf"):
|
| 50 |
raise HTTPException(400, "Only PDF files allowed")
|
| 51 |
|
| 52 |
if not client:
|
| 53 |
+
raise HTTPException(500, "Groq API key missing")
|
| 54 |
|
| 55 |
path = None
|
| 56 |
try:
|
|
|
|
| 57 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
|
| 58 |
tmp.write(await file.read())
|
| 59 |
path = tmp.name
|
| 60 |
|
|
|
|
|
|
|
|
|
|
| 61 |
loader = PyPDFLoader(path)
|
| 62 |
docs = loader.load()
|
| 63 |
|
|
|
|
| 64 |
splitter = RecursiveCharacterTextSplitter(
|
| 65 |
chunk_size=800,
|
| 66 |
chunk_overlap=50
|
| 67 |
)
|
| 68 |
chunks = splitter.split_documents(docs)
|
| 69 |
|
|
|
|
| 70 |
embeddings = HuggingFaceEmbeddings(
|
| 71 |
model_name="sentence-transformers/all-MiniLM-L6-v2",
|
| 72 |
model_kwargs={"device": "cpu"},
|
| 73 |
encode_kwargs={"normalize_embeddings": True}
|
| 74 |
)
|
| 75 |
|
|
|
|
| 76 |
if vectorstore:
|
| 77 |
del vectorstore
|
| 78 |
gc.collect()
|
| 79 |
|
|
|
|
| 80 |
vectorstore = Chroma.from_documents(chunks, embeddings)
|
|
|
|
| 81 |
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
| 82 |
|
|
|
|
|
|
|
| 83 |
return {"message": "PDF processed", "chunks": len(chunks)}
|
| 84 |
|
| 85 |
except Exception as e:
|
| 86 |
+
raise HTTPException(500, str(e))
|
| 87 |
+
|
| 88 |
finally:
|
|
|
|
| 89 |
if path and os.path.exists(path):
|
| 90 |
os.unlink(path)
|
| 91 |
gc.collect()
|
| 92 |
|
| 93 |
|
| 94 |
# ==================================================
|
| 95 |
+
# Ask Question
|
| 96 |
# ==================================================
|
| 97 |
+
@app.post("/api/ask")
|
| 98 |
async def ask(req: Query):
|
| 99 |
+
if not retriever:
|
| 100 |
+
raise HTTPException(400, "Upload PDF first")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
try:
|
|
|
|
| 103 |
docs = retriever.invoke(req.question)
|
|
|
|
| 104 |
context = "\n\n".join(d.page_content for d in docs)
|
| 105 |
|
|
|
|
| 106 |
prompt = f"""
|
| 107 |
+
Use ONLY the context below.
|
| 108 |
+
If answer not found, say: "I cannot find this in the PDF."
|
|
|
|
| 109 |
|
| 110 |
+
CONTEXT:
|
| 111 |
{context}
|
|
|
|
| 112 |
|
| 113 |
QUESTION: {req.question}
|
| 114 |
|
| 115 |
+
ANSWER:
|
| 116 |
"""
|
| 117 |
|
|
|
|
| 118 |
response = client.chat.completions.create(
|
| 119 |
model=GROQ_MODEL,
|
| 120 |
messages=[
|
| 121 |
+
{"role": "system", "content": "Answer strictly from PDF context"},
|
|
|
|
| 122 |
{"role": "user", "content": prompt}
|
| 123 |
],
|
| 124 |
temperature=0.0
|
| 125 |
)
|
| 126 |
|
| 127 |
+
return {
|
| 128 |
+
"answer": response.choices[0].message.content.strip(),
|
| 129 |
+
"sources": len(docs)
|
| 130 |
+
}
|
| 131 |
|
| 132 |
except APIError as e:
|
| 133 |
+
raise HTTPException(500, str(e))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
|
| 136 |
# ==================================================
|
| 137 |
+
# Clear Memory
|
| 138 |
# ==================================================
|
| 139 |
+
@app.post("/api/clear")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
async def clear():
|
|
|
|
| 141 |
global retriever, vectorstore
|
| 142 |
|
|
|
|
| 143 |
if vectorstore:
|
| 144 |
del vectorstore
|
| 145 |
retriever = None
|
| 146 |
vectorstore = None
|
| 147 |
|
| 148 |
gc.collect()
|
|
|
|
| 149 |
if torch.cuda.is_available():
|
| 150 |
torch.cuda.empty_cache()
|
| 151 |
|
| 152 |
+
return {"message": "Memory cleared"}
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
# ==================================================
|
| 156 |
+
# Health
|
| 157 |
+
# ==================================================
|
| 158 |
+
@app.get("/api/health")
|
| 159 |
+
async def health():
|
| 160 |
+
return {
|
| 161 |
+
"status": "running",
|
| 162 |
+
"pdf_loaded": retriever is not None,
|
| 163 |
+
"groq_client_ok": client is not None
|
| 164 |
+
}
|