Spaces:
Running
Running
File size: 8,642 Bytes
bf8b348 cc598bb 58e21db cc598bb 58e21db cc598bb 58e21db bf8b348 0b7eeb1 bf8b348 58e21db 0b7eeb1 58e21db 0b7eeb1 bf8b348 58e21db bf8b348 58e21db 0b7eeb1 58e21db bf8b348 0b7eeb1 58e21db bf8b348 58e21db bf8b348 58e21db bf8b348 58e21db bf8b348 cc598bb bf8b348 58e21db bf8b348 110d1c8 58e21db bf8b348 cc598bb 0b7eeb1 cc598bb 0b7eeb1 cc598bb bf8b348 cc598bb 58e21db bf8b348 cc598bb bf8b348 58e21db cc598bb 58e21db bf8b348 58e21db 0b7eeb1 58e21db bf8b348 0b7eeb1 cc598bb bf8b348 cc598bb bf8b348 cc598bb 58e21db cc598bb 58e21db bf8b348 58e21db bf8b348 cc598bb 58e21db cc598bb bf8b348 cc598bb 58e21db cc598bb bf8b348 58e21db bf8b348 cc598bb bf8b348 0b7eeb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
import os
import tempfile
import gc
import logging
import streamlit as st
from groq import Groq, APIError
from langchain_community.document_loaders import PyPDFLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
import torch
# ---------------- CONFIGURATION ----------------
logging.basicConfig(level=logging.INFO)
# Load API key from Hugging Face secrets
GROQ_API_KEY = st.secrets.get("GROQ_API_KEY", os.environ.get("GROQ_API_KEY"))
GROQ_MODEL = "llama-3.1-8b-instant"
# Initialize Groq client
client = None
if GROQ_API_KEY:
try:
client = Groq(api_key=GROQ_API_KEY)
st.success("β
Groq client initialized successfully.")
except Exception as e:
st.error(f"β Failed to initialize Groq client: {e}")
client = None
else:
st.warning("β οΈ GROQ_API_KEY not found. Please add it to Hugging Face secrets.")
# ---------------- STREAMLIT UI SETUP ----------------
st.set_page_config(page_title="PDF Assistant", page_icon="π", layout="wide")
# ---------------- CSS (Your exact UI) ----------------
st.markdown("""
<style>
:root {
--primary-color: #1e3a8a;
--background-color: #0e1117;
--secondary-background-color: #1a1d29;
--text-color: #f0f2f6;
}
.chat-user {
background: #2d3748;
padding: 12px;
border-radius: 10px 10px 2px 10px;
margin: 6px 0 6px auto;
max-width: 85%;
text-align: right;
color: var(--text-color);
}
.chat-bot {
background: var(--primary-color);
padding: 12px;
border-radius: 10px 10px 10px 2px;
margin: 6px auto 6px 0;
max-width: 85%;
text-align: left;
color: #ffffff;
}
.sources {
font-size: 0.8em;
opacity: 0.7;
margin-top: 10px;
border-top: 1px solid rgba(255, 255, 255, 0.1);
padding-top: 5px;
}
.footer {
position: fixed;
left: 0;
bottom: 0;
width: 100%;
background-color: var(--secondary-background-color);
color: var(--text-color);
text-align: center;
padding: 10px;
font-size: 0.85em;
border-top: 1px solid rgba(255, 255, 255, 0.1);
}
.footer a {
color: var(--primary-color);
text-decoration: none;
font-weight: bold;
}
.footer a:hover {
text-decoration: underline;
}
</style>
""", unsafe_allow_html=True)
# ---------------- SESSION STATE ----------------
if "chat" not in st.session_state:
st.session_state.chat = []
if "vectorstore" not in st.session_state:
st.session_state.vectorstore = None
if "retriever" not in st.session_state:
st.session_state.retriever = None
if "uploaded_file_name" not in st.session_state:
st.session_state.uploaded_file_name = None
if "uploader_key" not in st.session_state:
st.session_state.uploader_key = 0
# ---------------- FUNCTIONS ----------------
def clear_chat_history():
st.session_state.chat = []
def clear_memory():
st.session_state.vectorstore = None
st.session_state.retriever = None
st.session_state.uploaded_file_name = None
st.session_state.uploader_key += 1
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
st.success("Memory cleared. Please upload a new PDF.")
def process_pdf(uploaded_file):
"""Process uploaded PDF and create vectorstore."""
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
tmp.write(uploaded_file.getvalue())
path = tmp.name
# Load PDF
loader = PyPDFLoader(path)
docs = loader.load()
# Split into chunks
splitter = RecursiveCharacterTextSplitter(
chunk_size=800,
chunk_overlap=50
)
chunks = splitter.split_documents(docs)
# Create embeddings
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={"device": "cpu"},
encode_kwargs={"normalize_embeddings": True}
)
# Create vectorstore
vectorstore = Chroma.from_documents(chunks, embeddings)
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
# Store in session state
st.session_state.vectorstore = vectorstore
st.session_state.retriever = retriever
# Cleanup
if os.path.exists(path):
os.unlink(path)
return len(chunks)
except Exception as e:
st.error(f"Error processing PDF: {str(e)}")
return None
def ask_question(question):
"""Retrieve and generate answer for the question."""
if not client:
return None, 0, "Groq client is not initialized. Check API key setup."
if not st.session_state.retriever:
return None, 0, "Upload PDF first to initialize the knowledge base."
try:
# Retrieve relevant chunks
docs = st.session_state.retriever.invoke(question)
context = "\n\n".join(d.page_content for d in docs)
# Build prompt
prompt = f"""
You are a strict RAG Q&A assistant.
Use ONLY the context provided. If the answer is not found, reply:
"I cannot find this in the PDF."
---------------- CONTEXT ----------------
{context}
-----------------------------------------
QUESTION: {question}
FINAL ANSWER:
"""
# Call Groq API
response = client.chat.completions.create(
model=GROQ_MODEL,
messages=[
{"role": "system",
"content": "Use only the PDF content. If answer not found, say: 'I cannot find this in the PDF.'"},
{"role": "user", "content": prompt}
],
temperature=0.0
)
answer = response.choices[0].message.content.strip()
return answer, len(docs), None
except APIError as e:
return None, 0, f"Groq API Error: {str(e)}"
except Exception as e:
return None, 0, f"General error: {str(e)}"
# ---------------- UI COMPONENTS ----------------
st.title("π PDF Assistant")
# Sidebar Controls
with st.sidebar:
st.header("Controls")
st.button("ποΈ Clear Chat History", on_click=clear_chat_history, use_container_width=True)
st.button("π₯ Clear PDF Memory", on_click=clear_memory, use_container_width=True)
st.markdown("---")
if st.session_state.uploaded_file_name:
st.success(f"β
**Active PDF:**\n `{st.session_state.uploaded_file_name}`")
else:
st.warning("β¬οΈ Upload a PDF to start chatting!")
# File Upload
uploaded = st.file_uploader(
"Upload your PDF",
type=["pdf"],
key=st.session_state.uploader_key
)
if uploaded and uploaded.name != st.session_state.uploaded_file_name:
st.session_state.uploaded_file_name = None
st.session_state.chat = []
with st.spinner(f"Processing '{uploaded.name}'..."):
chunks_count = process_pdf(uploaded)
if chunks_count is not None:
st.success(f"β
PDF processed successfully! {chunks_count} chunks created.")
st.session_state.uploaded_file_name = uploaded.name
else:
st.error("β Failed to process PDF")
st.session_state.uploaded_file_name = None
st.rerun()
# Chat Input
disabled_input = st.session_state.uploaded_file_name is None or client is None
question = st.text_input(
"Ask a question about the loaded PDF:",
key="question_input",
disabled=disabled_input
)
if st.button("Send", disabled=disabled_input) and question:
# Add user query to chat history
st.session_state.chat.append(("user", question))
# Get answer
with st.spinner("Thinking..."):
answer, sources, error = ask_question(question)
if answer:
bot_message = f"{answer}<div class='sources'>Context Chunks Used: {sources}</div>"
st.session_state.chat.append(("bot", bot_message))
else:
st.session_state.chat.append(("bot", f"π΄ **Error:** {error}"))
st.rerun()
# Display Chat History
st.markdown("## Chat History")
for role, msg in st.session_state.chat:
if role == "user":
st.markdown(f"<div class='chat-user'>{msg}</div>", unsafe_allow_html=True)
else:
st.markdown(f"<div class='chat-bot'>{msg}</div>", unsafe_allow_html=True)
# Footer
footer_html = """
<div class="footer">
Created by <a href="https://www.linkedin.com/in/abhishek-iitr/" target="_blank">Abhishek Saxena</a>
</div>
"""
st.markdown(footer_html, unsafe_allow_html=True) |