File size: 8,642 Bytes
bf8b348
cc598bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58e21db
cc598bb
58e21db
 
cc598bb
58e21db
 
bf8b348
0b7eeb1
bf8b348
 
 
 
 
58e21db
0b7eeb1
58e21db
0b7eeb1
bf8b348
 
58e21db
bf8b348
58e21db
 
0b7eeb1
58e21db
bf8b348
 
 
 
0b7eeb1
58e21db
bf8b348
58e21db
 
 
bf8b348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58e21db
 
 
 
bf8b348
58e21db
 
bf8b348
cc598bb
 
 
 
 
 
bf8b348
 
 
58e21db
 
 
 
bf8b348
110d1c8
58e21db
bf8b348
cc598bb
 
 
 
 
 
 
 
 
 
 
0b7eeb1
cc598bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b7eeb1
cc598bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf8b348
cc598bb
 
 
 
58e21db
bf8b348
 
 
cc598bb
bf8b348
 
 
 
 
58e21db
cc598bb
58e21db
bf8b348
58e21db
0b7eeb1
58e21db
 
bf8b348
0b7eeb1
 
cc598bb
bf8b348
cc598bb
 
 
 
 
 
 
bf8b348
cc598bb
58e21db
 
cc598bb
 
58e21db
bf8b348
 
 
58e21db
 
bf8b348
cc598bb
58e21db
cc598bb
 
bf8b348
cc598bb
 
 
 
 
 
 
 
58e21db
 
cc598bb
bf8b348
58e21db
 
 
 
 
bf8b348
cc598bb
bf8b348
 
 
 
 
0b7eeb1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import os
import tempfile
import gc
import logging
import streamlit as st
from groq import Groq, APIError
from langchain_community.document_loaders import PyPDFLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
import torch

# ---------------- CONFIGURATION ----------------
logging.basicConfig(level=logging.INFO)

# Load API key from Hugging Face secrets
GROQ_API_KEY = st.secrets.get("GROQ_API_KEY", os.environ.get("GROQ_API_KEY"))
GROQ_MODEL = "llama-3.1-8b-instant"

# Initialize Groq client
client = None
if GROQ_API_KEY:
    try:
        client = Groq(api_key=GROQ_API_KEY)
        st.success("βœ… Groq client initialized successfully.")
    except Exception as e:
        st.error(f"❌ Failed to initialize Groq client: {e}")
        client = None
else:
    st.warning("⚠️ GROQ_API_KEY not found. Please add it to Hugging Face secrets.")

# ---------------- STREAMLIT UI SETUP ----------------
st.set_page_config(page_title="PDF Assistant", page_icon="πŸ“˜", layout="wide")

# ---------------- CSS (Your exact UI) ----------------
st.markdown("""
<style>
:root {
    --primary-color: #1e3a8a;
    --background-color: #0e1117;
    --secondary-background-color: #1a1d29;
    --text-color: #f0f2f6;
}

.chat-user {
    background: #2d3748;
    padding: 12px;
    border-radius: 10px 10px 2px 10px;
    margin: 6px 0 6px auto;
    max-width: 85%;
    text-align: right;
    color: var(--text-color);
}
.chat-bot {
    background: var(--primary-color);
    padding: 12px;
    border-radius: 10px 10px 10px 2px;
    margin: 6px auto 6px 0;
    max-width: 85%;
    text-align: left;
    color: #ffffff;
}

.sources {
    font-size: 0.8em;
    opacity: 0.7;
    margin-top: 10px;
    border-top: 1px solid rgba(255, 255, 255, 0.1);
    padding-top: 5px;
}

.footer {
    position: fixed;
    left: 0;
    bottom: 0;
    width: 100%;
    background-color: var(--secondary-background-color);
    color: var(--text-color);
    text-align: center;
    padding: 10px;
    font-size: 0.85em;
    border-top: 1px solid rgba(255, 255, 255, 0.1);
}
.footer a {
    color: var(--primary-color);
    text-decoration: none;
    font-weight: bold;
}
.footer a:hover {
    text-decoration: underline;
}
</style>
""", unsafe_allow_html=True)

# ---------------- SESSION STATE ----------------
if "chat" not in st.session_state:
    st.session_state.chat = []

if "vectorstore" not in st.session_state:
    st.session_state.vectorstore = None

if "retriever" not in st.session_state:
    st.session_state.retriever = None

if "uploaded_file_name" not in st.session_state:
    st.session_state.uploaded_file_name = None

if "uploader_key" not in st.session_state:
    st.session_state.uploader_key = 0

# ---------------- FUNCTIONS ----------------
def clear_chat_history():
    st.session_state.chat = []

def clear_memory():
    st.session_state.vectorstore = None
    st.session_state.retriever = None
    st.session_state.uploaded_file_name = None
    st.session_state.uploader_key += 1
    gc.collect()
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    st.success("Memory cleared. Please upload a new PDF.")

def process_pdf(uploaded_file):
    """Process uploaded PDF and create vectorstore."""
    try:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
            tmp.write(uploaded_file.getvalue())
            path = tmp.name
        
        # Load PDF
        loader = PyPDFLoader(path)
        docs = loader.load()
        
        # Split into chunks
        splitter = RecursiveCharacterTextSplitter(
            chunk_size=800,
            chunk_overlap=50
        )
        chunks = splitter.split_documents(docs)
        
        # Create embeddings
        embeddings = HuggingFaceEmbeddings(
            model_name="sentence-transformers/all-MiniLM-L6-v2",
            model_kwargs={"device": "cpu"},
            encode_kwargs={"normalize_embeddings": True}
        )
        
        # Create vectorstore
        vectorstore = Chroma.from_documents(chunks, embeddings)
        retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
        
        # Store in session state
        st.session_state.vectorstore = vectorstore
        st.session_state.retriever = retriever
        
        # Cleanup
        if os.path.exists(path):
            os.unlink(path)
        
        return len(chunks)
        
    except Exception as e:
        st.error(f"Error processing PDF: {str(e)}")
        return None

def ask_question(question):
    """Retrieve and generate answer for the question."""
    if not client:
        return None, 0, "Groq client is not initialized. Check API key setup."
    
    if not st.session_state.retriever:
        return None, 0, "Upload PDF first to initialize the knowledge base."
    
    try:
        # Retrieve relevant chunks
        docs = st.session_state.retriever.invoke(question)
        context = "\n\n".join(d.page_content for d in docs)
        
        # Build prompt
        prompt = f"""
You are a strict RAG Q&A assistant.
Use ONLY the context provided. If the answer is not found, reply:
"I cannot find this in the PDF."

---------------- CONTEXT ----------------
{context}
-----------------------------------------

QUESTION: {question}

FINAL ANSWER:
"""
        
        # Call Groq API
        response = client.chat.completions.create(
            model=GROQ_MODEL,
            messages=[
                {"role": "system",
                 "content": "Use only the PDF content. If answer not found, say: 'I cannot find this in the PDF.'"},
                {"role": "user", "content": prompt}
            ],
            temperature=0.0
        )
        
        answer = response.choices[0].message.content.strip()
        return answer, len(docs), None
        
    except APIError as e:
        return None, 0, f"Groq API Error: {str(e)}"
    except Exception as e:
        return None, 0, f"General error: {str(e)}"

# ---------------- UI COMPONENTS ----------------
st.title("πŸ“˜ PDF Assistant")

# Sidebar Controls
with st.sidebar:
    st.header("Controls")
    st.button("πŸ—‘οΈ Clear Chat History", on_click=clear_chat_history, use_container_width=True)
    st.button("πŸ”₯ Clear PDF Memory", on_click=clear_memory, use_container_width=True)
    
    st.markdown("---")
    if st.session_state.uploaded_file_name:
        st.success(f"βœ… **Active PDF:**\n `{st.session_state.uploaded_file_name}`")
    else:
        st.warning("⬆️ Upload a PDF to start chatting!")

# File Upload
uploaded = st.file_uploader(
    "Upload your PDF",
    type=["pdf"],
    key=st.session_state.uploader_key
)

if uploaded and uploaded.name != st.session_state.uploaded_file_name:
    st.session_state.uploaded_file_name = None
    st.session_state.chat = []
    
    with st.spinner(f"Processing '{uploaded.name}'..."):
        chunks_count = process_pdf(uploaded)
        
        if chunks_count is not None:
            st.success(f"βœ… PDF processed successfully! {chunks_count} chunks created.")
            st.session_state.uploaded_file_name = uploaded.name
        else:
            st.error("❌ Failed to process PDF")
            st.session_state.uploaded_file_name = None
    
    st.rerun()

# Chat Input
disabled_input = st.session_state.uploaded_file_name is None or client is None
question = st.text_input(
    "Ask a question about the loaded PDF:",
    key="question_input",
    disabled=disabled_input
)

if st.button("Send", disabled=disabled_input) and question:
    # Add user query to chat history
    st.session_state.chat.append(("user", question))
    
    # Get answer
    with st.spinner("Thinking..."):
        answer, sources, error = ask_question(question)
        
        if answer:
            bot_message = f"{answer}<div class='sources'>Context Chunks Used: {sources}</div>"
            st.session_state.chat.append(("bot", bot_message))
        else:
            st.session_state.chat.append(("bot", f"πŸ”΄ **Error:** {error}"))
    
    st.rerun()

# Display Chat History
st.markdown("## Chat History")
for role, msg in st.session_state.chat:
    if role == "user":
        st.markdown(f"<div class='chat-user'>{msg}</div>", unsafe_allow_html=True)
    else:
        st.markdown(f"<div class='chat-bot'>{msg}</div>", unsafe_allow_html=True)

# Footer
footer_html = """
<div class="footer">
    Created by <a href="https://www.linkedin.com/in/abhishek-iitr/" target="_blank">Abhishek Saxena</a>
</div>
"""
st.markdown(footer_html, unsafe_allow_html=True)