Spaces:
Sleeping
Sleeping
File size: 16,193 Bytes
bac3a59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
import gradio as gr
import json
from PIL import Image
import os
from collections import defaultdict
css = """
#custom-gallery{--row-height:180px;display:grid;grid-auto-rows:min-content;gap:10px}#custom-gallery .thumbnail-item{height:var(--row-height);width:100%;position:relative;overflow:hidden;border-radius:8px;box-shadow:0 2px 5px rgb(0 0 0 / .1);transition:transform 0.2s ease,box-shadow 0.2s ease}#custom-gallery .thumbnail-item:hover{transform:translateY(-3px);box-shadow:0 4px 12px rgb(0 0 0 / .15)}#custom-gallery .thumbnail-item img{width:auto;height:100%;max-width:100%;max-height:var(--row-height);object-fit:contain;margin:0 auto;display:block}#custom-gallery .thumbnail-item img.portrait{max-width:100%}#custom-gallery .thumbnail-item img.landscape{max-height:100%}.gallery-container{max-height:500px;overflow-y:auto;padding-right:0;--size-80:500px}.thumbnails{display:flex;position:absolute;bottom:0;width:120px;overflow-x:scroll;padding-top:320px;padding-bottom:280px;padding-left:4px;flex-wrap:wrap}
"""
EMPTY_RESULT = ("Not Available",) * 15
# ---------- EXTRACTION FUNCTIONS ----------
def read_metadata(file_path):
try:
with Image.open(file_path) as img:
return img.info
except Exception as e:
return {"error": f"Error reading file: {str(e)}"}
def extract_workflow_data(file_path):
metadata = read_metadata(file_path)
if "error" in metadata:
return {"error": metadata["error"]}
if 'prompt' in metadata:
try:
return json.loads(metadata['prompt'])
except json.JSONDecodeError:
pass
for key, value in metadata.items():
if isinstance(value, str) and value.strip().startswith('{'):
try:
return json.loads(value)
except json.JSONDecodeError:
continue
return {"error": "No workflow data found"}
def extract_ksampler_params(workflow_data):
seed = steps = cfg = sampler = scheduler = denoise = "Not found"
if not isinstance(workflow_data, dict):
return seed, steps, cfg, sampler, scheduler, denoise
for node in workflow_data.values():
if isinstance(node, dict) and node.get("class_type", "") in ["KSampler", "KSampler (Efficient)"]:
inputs = node.get("inputs", {})
seed = inputs.get("seed", "Not found")
steps = inputs.get("steps", "Not found")
cfg = inputs.get("cfg", "Not found")
sampler = inputs.get("sampler_name", "Not found")
scheduler = inputs.get("scheduler", "Not found")
denoise = inputs.get("denoise", "Not found")
break
return str(seed), str(steps), str(cfg), str(sampler), str(scheduler), str(denoise)
def extract_prompts(workflow_data):
positive = negative = "Not found"
if not isinstance(workflow_data, dict):
return positive, negative
for node in workflow_data.values():
if isinstance(node, dict):
class_type = node.get("class_type", "")
inputs = node.get("inputs", {})
title = node.get("_meta", {}).get("title", "") if node.get("_meta") else ""
if "Text to Conditioning" in class_type:
if "POSITIVE" in title:
positive = inputs.get("text", "Not found")
elif "NEGATIVE" in title:
negative = inputs.get("text", "Not found")
if "ShowText|pysssss" in class_type:
if "text_1" in inputs:
positive = inputs["text_1"]
if "text_2" in inputs:
negative = inputs["text_2"]
if "DPRandomGenerator" in class_type:
if "POSITIVE" in title:
positive = inputs.get("text", "Not found")
elif "NEGATIVE" in title:
negative = inputs.get("text", "Not found")
return str(positive), str(negative)
def extract_loras(workflow_data):
loras = []
if not isinstance(workflow_data, dict):
return "None found"
for node in workflow_data.values():
if isinstance(node, dict):
inputs = node.get("inputs", {})
if "LoraLoader" in node.get("class_type", ""):
name = inputs.get("lora_name", "Unknown")
strength = inputs.get("strength_model", "Unknown")
loras.append(f"{name} (Strength: {strength})")
for val in inputs.values():
if isinstance(val, str) and "lora:" in val.lower():
loras.append(val)
return "\n".join(loras) if loras else "None found"
def extract_model_info(workflow_data):
models = []
if not isinstance(workflow_data, dict):
return "Not found"
for node in workflow_data.values():
if isinstance(node, dict):
inputs = node.get("inputs", {})
class_type = node.get("class_type", "")
if "CheckpointLoader" in class_type:
models.append(inputs.get("ckpt_name", "Unknown"))
if "Model Mecha Recipe" in class_type:
models.append(inputs.get("model_path", "Unknown"))
return "\n".join(models) if models else "Not found"
def extract_image_info_from_file(image_path):
"""Extract actual image dimensions from the image file itself"""
try:
with Image.open(image_path) as img:
width, height = img.size
return str(width), str(height)
except Exception as e:
return "Not found", "Not found"
def extract_batch_size(workflow_data):
"""Extract batch size from workflow data"""
batch_size = "Not found"
if not isinstance(workflow_data, dict):
return batch_size
for node in workflow_data.values():
if isinstance(node, dict) and node.get("class_type", "") == "EmptyLatentImage":
inputs = node.get("inputs", {})
batch_size = inputs.get("batch_size", "Not found")
break
return str(batch_size)
def extract_nodes_info(workflow_data):
if not isinstance(workflow_data, dict):
return "Not found"
total_nodes = len(workflow_data)
node_types = defaultdict(int)
for node in workflow_data.values():
if isinstance(node, dict):
node_types[node.get("class_type", "Unknown")] += 1
summary = f"Total Nodes: {total_nodes}\n"
for t, c in sorted(node_types.items()):
summary += f"{t}: {c}\n"
return summary.strip()
def extract_workflow_as_json(workflow_data):
if isinstance(workflow_data, dict):
return json.dumps(workflow_data, ensure_ascii=False, indent=2)
return "{}"
# ---------- EXTRACTION FUNCTIONS ----------
#
# ---------- IMAGE PROCESSING ----------
def process_single_image(image_path):
"""Extract all workflow info from a single image path."""
if not image_path:
return EMPTY_RESULT
workflow_data = extract_workflow_data(image_path)
if isinstance(workflow_data, dict) and "error" not in workflow_data:
seed, steps, cfg, sampler, scheduler, denoise = extract_ksampler_params(workflow_data)
positive, negative = extract_prompts(workflow_data)
loras = extract_loras(workflow_data)
models = extract_model_info(workflow_data)
# Get actual image dimensions instead of workflow dimensions
width, height = extract_image_info_from_file(image_path)
batch = extract_batch_size(workflow_data)
nodes = extract_nodes_info(workflow_data)
full_json = extract_workflow_as_json(workflow_data)
else:
error = str(workflow_data.get("error", "Unknown error"))
seed = steps = cfg = sampler = scheduler = denoise = positive = negative = loras = models = width = height = batch = nodes = full_json = error
return seed, steps, cfg, sampler, scheduler, denoise, \
positive, negative, loras, models, width, height, batch, nodes, full_json
def append_gallery(gallery: list, image: str):
"""Add a single image to the gallery"""
if gallery is None:
gallery = []
if not image:
return gallery, None
gallery.append(image)
return gallery, None
def extend_gallery(gallery, images):
"""Extend gallery preserving uniqueness"""
if gallery is None:
gallery = []
if not images:
return gallery
# Normalize input - Gradio might pass various formats
incoming_paths = []
if isinstance(images, str): # Single image path
incoming_paths.append(images)
elif isinstance(images, list):
for img in images:
# Handle cases where elements could be tuples from Gallery
if isinstance(img, (tuple, list)):
incoming_paths.append(str(img[0]))
else:
incoming_paths.append(str(img))
unique_incoming = list(set(incoming_paths)) # Avoid duplicates
seen_paths = {item[0] if isinstance(item, (list, tuple)) else item for item in gallery}
new_entries = [path for path in unique_incoming if path not in seen_paths]
# Create entries matching expected gallery style
formatted_new = [(path, '') for path in new_entries]
updated_gallery = gallery + formatted_new
return updated_gallery
def process_gallery(gallery, results_state):
"""Process all images and populate metadata in session."""
if not gallery or len(gallery) == 0:
# Clear results if nothing left
results_state.clear()
return EMPTY_RESULT + (results_state,)
updated_state = {}
first_image_result = EMPTY_RESULT
try:
for item in gallery:
path = item if isinstance(item, str) else item[0]
if path not in results_state:
res = process_single_image(path)
results_state[path] = res
updated_state[path] = res
if first_image_result == EMPTY_RESULT:
first_image_result = res
else:
# Already cached
res = results_state[path]
updated_state[path] = res
if first_image_result == EMPTY_RESULT:
first_image_result = res
results_state.update(updated_state)
return first_image_result + (results_state,)
except Exception as e:
print("[ERROR]", str(e))
return EMPTY_RESULT + (results_state,)
def get_selection_from_gallery(gallery, results_state, evt: gr.SelectData):
"""Fetch result for selected image in gallery."""
if evt is None or evt.value is None:
# No selection: use first image
if gallery and len(gallery) > 0:
img_path = str(gallery[0][0] if isinstance(gallery[0], (list, tuple)) else gallery[0])
if img_path in results_state:
return list(results_state[img_path])
else:
# Handle selection event
try:
selected_value = evt.value
img_path = None
if isinstance(selected_value, dict) and 'image' in selected_value:
img_path = selected_value['image']['path']
elif isinstance(selected_value, (list, tuple)):
img_path = selected_value[0]
else:
img_path = str(selected_value)
if img_path in results_state:
return list(results_state[img_path])
except Exception as e:
print(f"Selection error: {e}")
# Return empty if no image found
return list(EMPTY_RESULT)
# ---------- IMAGE PROCESSING ----------
#
def create_multi_comfy():
with gr.Blocks(css=css, fill_width=True) as demo:
gr.Markdown("# 🛠️ ComfyUI Workflow Information Extractor")
gr.Markdown("Upload Multiple ComfyUI-generated images. Extract prompts, parameters, models, and full workflows.")
with gr.Row():
with gr.Column(scale=2):
upload_button = gr.UploadButton(
"📁 Upload Multiple Images",
file_types=["image"],
file_count="multiple",
size='lg'
)
gallery = gr.Gallery(
columns=3,
show_share_button=False,
interactive=True,
height='auto',
label='Grid of images',
preview=False,
elem_id='custom-gallery'
)
with gr.Column(scale=3):
with gr.Tabs():
with gr.Tab("Sampling Parameters"):
with gr.Row():
with gr.Column():
seed_out = gr.Textbox(label="Seed", interactive=False, show_copy_button=True)
steps_out = gr.Textbox(label="Steps", interactive=False, show_copy_button=True)
cfg_out = gr.Textbox(label="CFG Scale", interactive=False)
with gr.Column():
sampler_out = gr.Textbox(label="Sampler", interactive=False)
scheduler_out = gr.Textbox(label="Scheduler", interactive=False)
denoise_out = gr.Textbox(label="Denoise", interactive=False)
with gr.Tab("Prompts"):
pos_prompt = gr.Textbox(label="Positive Prompt", lines=4, interactive=False, show_copy_button=True)
neg_prompt = gr.Textbox(label="Negative Prompt", lines=4, interactive=False, show_copy_button=True)
with gr.Tab("Models & LoRAs"):
with gr.Row():
lora_out = gr.Textbox(label="LoRAs", lines=5, interactive=False, show_copy_button=True)
model_out = gr.Textbox(label="Base Models", lines=5, interactive=False, show_copy_button=True)
with gr.Tab("Image Info"):
with gr.Row():
with gr.Column():
width_out = gr.Textbox(label="Width", interactive=False)
height_out = gr.Textbox(label="Height", interactive=False)
batch_out = gr.Textbox(label="Batch Size", interactive=False)
with gr.Column():
nodes_out = gr.Textbox(label="Node Counts", lines=15, interactive=True, show_copy_button=True)
with gr.Tab("Full Workflow"):
json_out = gr.Textbox(label="Workflow JSON", lines=20, interactive=True, show_copy_button=True)
# State to store results per image
results_state = gr.State({})
# Event Connections
upload_event = upload_button.upload(
fn=extend_gallery,
inputs=[gallery, upload_button],
outputs=gallery,
queue=False
)
upload_event.then(
fn=process_gallery,
inputs=[gallery, results_state],
outputs=[
seed_out, steps_out, cfg_out, sampler_out, scheduler_out, denoise_out,
pos_prompt, neg_prompt, lora_out, model_out, width_out, height_out,
batch_out, nodes_out, json_out, results_state
]
)
gallery.change(
fn=process_gallery,
inputs=[gallery, results_state],
outputs=[
seed_out, steps_out, cfg_out, sampler_out, scheduler_out, denoise_out,
pos_prompt, neg_prompt, lora_out, model_out, width_out, height_out,
batch_out, nodes_out, json_out, results_state
],
queue=True
)
gallery.select(
get_selection_from_gallery,
inputs=[gallery, results_state],
outputs=[
seed_out, steps_out, cfg_out, sampler_out, scheduler_out, denoise_out,
pos_prompt, neg_prompt, lora_out, model_out, width_out, height_out,
batch_out, nodes_out, json_out
]
)
gr.Markdown("---\n💡 **Note:** It's under development.")
return demo |