""" HRHUB V2.1 - Company View Dynamic company-to-candidate matching interface """ import streamlit as st import sys from pathlib import Path import re # Add parent directory to path for imports parent_dir = Path(__file__).parent.parent sys.path.append(str(parent_dir)) from config import * from data.data_loader import ( load_embeddings, # find_top_matches_company # Function doesn't exist yet - using embedded version below ) from utils.display import ( display_company_profile_basic, display_candidate_card_basic, display_match_table_candidates, display_stats_overview_company ) from utils.visualization import create_network_graph from utils.viz_heatmap import render_skills_heatmap_section from utils.viz_bilateral import render_bilateral_fairness_section # NEW IMPORT import streamlit.components.v1 as components import numpy as np def configure_page(): """Configure Streamlit page settings and custom CSS.""" st.set_page_config( page_title="HRHUB - Company View", page_icon="🏒", layout="wide", initial_sidebar_state="expanded" ) # Custom CSS st.markdown(""" """, unsafe_allow_html=True) def validate_company_input(input_str): """ Validate company input (ID or search term). Returns: (is_valid, company_id, error_message) """ if not input_str: return False, None, "Please enter a company ID or name" input_clean = input_str.strip() # Check if it's a numeric ID if input_clean.isdigit(): company_id = int(input_clean) return True, company_id, None # Otherwise treat as search term (we'll search by name) return True, input_clean, None def find_company_by_name(companies_df, search_term): """ Find company by name (case-insensitive partial match). Returns: (found, company_id, company_name) """ search_lower = search_term.lower() # Search in company names if 'name' in companies_df.columns: matches = companies_df[companies_df['name'].str.lower().str.contains(search_lower, na=False)] if len(matches) > 0: # Return first match company_id = matches.index[0] company_name = matches.iloc[0]['name'] return True, company_id, company_name return False, None, None def find_top_candidate_matches(company_id, company_embeddings, candidate_embeddings, candidates_df, top_k=10): """ Find top candidate matches for a company (reverse of candidate matching). """ # Get company embedding company_emb = company_embeddings[company_id].reshape(1, -1) # Calculate cosine similarity with all candidates # Normalize embeddings company_norm = company_emb / np.linalg.norm(company_emb) candidate_norms = candidate_embeddings / np.linalg.norm(candidate_embeddings, axis=1, keepdims=True) # Compute similarities similarities = np.dot(candidate_norms, company_norm.T).flatten() # Get top K indices top_indices = np.argsort(similarities)[::-1][:top_k] # Format results matches = [] for idx in top_indices: matches.append({ 'candidate_id': int(idx), 'score': float(similarities[idx]) }) return matches def render_sidebar(): """Render sidebar with controls and information.""" with st.sidebar: # Logo/Title st.markdown("### 🏒 Company Matching") st.markdown("---") # Settings section st.markdown("### βš™οΈ Settings") # Number of matches top_k = st.slider( "Number of Matches", min_value=5, max_value=20, value=DEFAULT_TOP_K, step=5, help="Select how many top candidates to display" ) # Minimum score threshold min_score = st.slider( "Minimum Match Score", min_value=0.0, max_value=1.0, value=MIN_SIMILARITY_SCORE, step=0.05, help="Filter candidates below this similarity score" ) st.markdown("---") # View mode selection st.markdown("### πŸ‘€ View Mode") view_mode = st.radio( "Select view:", ["πŸ“Š Overview", "πŸ” Detailed Cards", "πŸ“ˆ Table View"], help="Choose how to display candidate matches" ) st.markdown("---") # Information section with st.expander("ℹ️ About", expanded=False): st.markdown(""" **Company View** helps you discover top talent based on: - πŸ€– **NLP Embeddings**: 384-dimensional semantic space - πŸ“Š **Cosine Similarity**: Scale-invariant matching - πŸŒ‰ **Job Postings Bridge**: Vocabulary alignment **How it works:** 1. Enter company ID or search by name 2. System finds top candidate matches 3. Explore candidates with scores and skills 4. Visualize talent network via graph """) with st.expander("πŸ“š Input Format", expanded=False): st.markdown(""" **Valid formats:** - `9418` β†’ Company ID 9418 - `30989` β†’ Company ID 30989 - `Anblicks` β†’ Search by name - `iO Associates` β†’ Partial name search **Search tips:** - Case-insensitive - Partial matches work - Returns first match found """) with st.expander("πŸ“Š Coverage Info", expanded=False): st.markdown(""" **Company Coverage:** - 🟒 **30,000 companies** with job postings - 🟑 **120,000 companies** via collaborative filtering - πŸ“ˆ **5x coverage expansion** through skill inference Companies without job postings inherit skills from similar companies. """) st.markdown("---") # Back to home button if st.button("🏠 Back to Home", use_container_width=True): st.switch_page("app.py") # Version info st.caption(f"Version: {VERSION}") st.caption("Β© 2024 HRHUB Team") return top_k, min_score, view_mode def get_network_graph_data_company(company_id, matches, companies_df): """Generate network graph data from matches (company perspective).""" nodes = [] edges = [] # Add company node (red/orange) company_name = companies_df.iloc[company_id].get('name', f'Company {company_id}') if len(company_name) > 30: company_name = company_name[:27] + '...' nodes.append({ 'id': f'COMP{company_id}', 'label': company_name, 'color': '#ff6b6b', 'shape': 'box', 'size': 30 }) # Add candidate nodes (green) and edges for cand_id, score, cand_data in matches: nodes.append({ 'id': f'C{cand_id}', 'label': f'Candidate #{cand_id}', 'color': '#4ade80', 'shape': 'dot', 'size': 20 }) edges.append({ 'from': f'COMP{company_id}', 'to': f'C{cand_id}', 'value': float(score) * 10, 'title': f'Match Score: {score:.3f}' }) return {'nodes': nodes, 'edges': edges} def render_network_section(company_id: int, matches, companies_df): """Render interactive network visualization section.""" st.markdown('
πŸ•ΈοΈ Talent Network
', unsafe_allow_html=True) # Explanation box st.markdown("""
πŸ’‘ What this shows: Talent network reveals skill alignment and candidate clustering. Thicker edges indicate stronger semantic match between company requirements and candidate skills.
""", unsafe_allow_html=True) with st.spinner("Generating interactive network graph..."): # Get graph data graph_data = get_network_graph_data_company(company_id, matches, companies_df) # Create HTML graph html_content = create_network_graph( nodes=graph_data['nodes'], edges=graph_data['edges'], height="600px" ) # Display in Streamlit components.html(html_content, height=620, scrolling=False) # Graph instructions with st.expander("πŸ“– Graph Controls", expanded=False): st.markdown(""" **How to interact:** - πŸ–±οΈ **Drag nodes**: Click and drag to reposition - πŸ” **Zoom**: Scroll to zoom in/out - πŸ‘† **Pan**: Click background and drag to pan - 🎯 **Hover**: Hover over nodes/edges for details **Legend:** - πŸ”΄ **Red square**: Your company - 🟒 **Green circles**: Matched candidates - **Line thickness**: Match strength (thicker = better) """) def render_matches_section(matches, view_mode: str): """Render candidate matches section with different view modes.""" st.markdown('
🎯 Candidate Matches
', unsafe_allow_html=True) if view_mode == "πŸ“Š Overview" or view_mode == "πŸ“ˆ Table View": # Table view - use display function display_match_table_candidates(matches) elif view_mode == "πŸ” Detailed Cards": # Card view - use display function for rank, (cand_id, score, cand_data) in enumerate(matches, 1): display_candidate_card_basic(cand_data, cand_id, score, rank) def main(): """Main application entry point.""" # Configure page configure_page() # Render header st.markdown('

🏒 Company View

', unsafe_allow_html=True) st.markdown('

Discover top talent for your company

', unsafe_allow_html=True) # Render sidebar and get settings top_k, min_score, view_mode = render_sidebar() st.markdown("---") # Load embeddings (cache in session state) if 'embeddings_loaded' not in st.session_state: with st.spinner("πŸ“„ Loading embeddings and data..."): try: cand_emb, comp_emb, cand_df, comp_df = load_embeddings() st.session_state.embeddings_loaded = True st.session_state.candidate_embeddings = cand_emb st.session_state.company_embeddings = comp_emb st.session_state.candidates_df = cand_df st.session_state.companies_df = comp_df st.markdown("""
βœ… Data loaded successfully! Ready to find talent.
""", unsafe_allow_html=True) except Exception as e: st.error(f"❌ Error loading data: {str(e)}") st.stop() # Company input section st.markdown("### πŸ” Enter Company ID or Name") col1, col2 = st.columns([3, 1]) with col1: company_input = st.text_input( "Company ID or Name", value="9418", max_chars=100, help="Enter company ID (e.g., 9418) or search by name (e.g., Anblicks)", label_visibility="collapsed" ) with col2: search_button = st.button("πŸš€ Find Candidates", use_container_width=True, type="primary") # Validate input is_valid, company_id_or_search, error_msg = validate_company_input(company_input) if not is_valid: st.warning(f"⚠️ {error_msg}") st.stop() # Determine if it's ID or search if isinstance(company_id_or_search, int): # Direct ID company_id = company_id_or_search # Check if company exists if company_id >= len(st.session_state.companies_df): st.error(f"❌ Company ID {company_id} not found. Maximum ID: {len(st.session_state.companies_df) - 1}") st.stop() company = st.session_state.companies_df.iloc[company_id] company_name = company.get('name', f'Company {company_id}') else: # Search by name found, company_id, company_name = find_company_by_name(st.session_state.companies_df, company_id_or_search) if not found: st.error(f"❌ No company found matching: '{company_id_or_search}'") st.info("πŸ’‘ **Tip:** Try searching with partial name or use company ID directly") st.stop() company = st.session_state.companies_df.iloc[company_id] st.success(f"βœ… Found: **{company_name}** (ID: {company_id})") # Show company info st.markdown(f"""
Selected: {company_name} (ID: {company_id}) | Total companies in system: {len(st.session_state.companies_df):,}
""", unsafe_allow_html=True) # Check if company has job postings has_postings = company.get('has_job_postings', False) if 'has_job_postings' in company else True if not has_postings: st.markdown("""
ℹ️ Note: This company uses collaborative filtering (skills inherited from similar companies). Matching still works but may be less precise than companies with direct job postings.
""", unsafe_allow_html=True) # Find matches with st.spinner("πŸ”„ Finding top candidate matches..."): matches_list = find_top_candidate_matches( company_id, st.session_state.company_embeddings, st.session_state.candidate_embeddings, st.session_state.candidates_df, top_k ) # Format matches for display matches = [ (m['candidate_id'], m['score'], st.session_state.candidates_df.iloc[m['candidate_id']]) for m in matches_list ] # Filter by minimum score matches = [(cid, score, cdata) for cid, score, cdata in matches if score >= min_score] if not matches: st.warning(f"⚠️ No candidates found above {min_score:.0%} threshold. Try lowering the minimum score in the sidebar.") st.stop() st.markdown("---") # Display statistics using display function display_stats_overview_company(company, matches) st.markdown("---") # Create two columns for layout col1, col2 = st.columns([1, 2]) with col1: # Company profile section st.markdown('
🏒 Company Profile
', unsafe_allow_html=True) # Use basic display function display_company_profile_basic(company, company_id) with col2: # Matches section render_matches_section(matches, view_mode) st.markdown("---") # Skills Heatmap (show for top candidate match) if len(matches) > 0: top_cand_id, top_cand_score, top_cand_data = matches[0] st.markdown("### πŸ”₯ Skills Analysis - Top Candidate") render_skills_heatmap_section( top_cand_data, company, st.session_state.candidate_embeddings[top_cand_id], st.session_state.company_embeddings[company_id], top_cand_score ) st.markdown("---") # Network visualization (full width) render_network_section(company_id, matches, st.session_state.companies_df) st.markdown("---") # BILATERAL FAIRNESS PROOF SECTION - NEW render_bilateral_fairness_section( st.session_state.candidate_embeddings, st.session_state.company_embeddings ) st.markdown("---") # Technical info expander with st.expander("πŸ”§ Technical Details", expanded=False): st.markdown(f""" **Current Configuration:** - Company ID: {company_id} - Company Name: {company_name} - Embedding Dimension: {EMBEDDING_DIMENSION} - Similarity Metric: Cosine Similarity - Top K Matches: {top_k} - Minimum Score: {min_score:.0%} - Candidates Available: {len(st.session_state.candidates_df):,} - Companies in System: {len(st.session_state.companies_df):,} **Algorithm:** 1. Load pre-computed company embedding 2. Calculate cosine similarity with all candidate embeddings 3. Rank candidates by similarity score 4. Return top-K matches above threshold **Coverage Strategy:** - Companies WITH job postings: Direct semantic matching - Companies WITHOUT postings: Collaborative filtering (inherit from similar companies) - Total coverage: 150K companies (5x expansion from 30K base) """) if __name__ == "__main__": main()