File size: 19,717 Bytes
96a706d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
"""
HRHUB V2.1 - Company View
Dynamic company-to-candidate matching interface
"""

import streamlit as st
import sys
from pathlib import Path
import re

# Add parent directory to path for imports
parent_dir = Path(__file__).parent.parent
sys.path.append(str(parent_dir))

from config import *
from data.data_loader import (
    load_embeddings,
    # find_top_matches_company  # Function doesn't exist yet - using embedded version below
)
from utils.display import (
    display_company_profile_basic,
    display_candidate_card_basic,
    display_match_table_candidates,
    display_stats_overview_company
)
from utils.visualization import create_network_graph
from utils.viz_heatmap import render_skills_heatmap_section
from utils.viz_bilateral import render_bilateral_fairness_section  # NEW IMPORT
import streamlit.components.v1 as components
import numpy as np


def configure_page():
    """Configure Streamlit page settings and custom CSS."""
    
    st.set_page_config(
        page_title="HRHUB - Company View",
        page_icon="🏒",
        layout="wide",
        initial_sidebar_state="expanded"
    )
    
    # Custom CSS
    st.markdown("""
        <style>
        /* Main title styling */
        .main-title {
            font-size: 2.5rem;
            font-weight: bold;
            text-align: center;
            color: #667eea;
            margin-bottom: 0;
        }
        
        .sub-title {
            font-size: 1rem;
            text-align: center;
            color: #666;
            margin-top: 0;
            margin-bottom: 1.5rem;
        }
        
        /* Section headers */
        .section-header {
            background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
            color: white;
            padding: 12px;
            border-radius: 8px;
            margin: 15px 0;
            font-size: 1.3rem;
            font-weight: bold;
        }
        
        /* Info boxes */
        .info-box {
            background-color: #FFF4E6;
            border-left: 5px solid #FF9800;
            padding: 12px;
            border-radius: 5px;
            margin: 10px 0;
        }
        
        /* Success box */
        .success-box {
            background-color: #D4EDDA;
            border-left: 5px solid #28A745;
            padding: 12px;
            border-radius: 5px;
            margin: 10px 0;
            color: #155724;
        }
        
        /* Warning box */
        .warning-box {
            background-color: #FFF3CD;
            border-left: 5px solid #FFC107;
            padding: 12px;
            border-radius: 5px;
            margin: 10px 0;
            color: #856404;
        }
        
        /* Metric cards */
        div[data-testid="metric-container"] {
            background-color: #F8F9FA;
            border: 2px solid #E0E0E0;
            padding: 12px;
            border-radius: 8px;
        }
        
        /* Expander styling */
        .streamlit-expanderHeader {
            background-color: #F0F2F6;
            border-radius: 5px;
        }
        
        /* Hide Streamlit branding */
        #MainMenu {visibility: hidden;}
        footer {visibility: hidden;}
        
        /* Input field styling */
        .stTextInput > div > div > input {
            font-size: 1.1rem;
            font-weight: 600;
        }
        </style>
    """, unsafe_allow_html=True)


def validate_company_input(input_str):
    """
    Validate company input (ID or search term).
    Returns: (is_valid, company_id, error_message)
    """
    if not input_str:
        return False, None, "Please enter a company ID or name"
    
    input_clean = input_str.strip()
    
    # Check if it's a numeric ID
    if input_clean.isdigit():
        company_id = int(input_clean)
        return True, company_id, None
    
    # Otherwise treat as search term (we'll search by name)
    return True, input_clean, None


def find_company_by_name(companies_df, search_term):
    """
    Find company by name (case-insensitive partial match).
    Returns: (found, company_id, company_name)
    """
    search_lower = search_term.lower()
    
    # Search in company names
    if 'name' in companies_df.columns:
        matches = companies_df[companies_df['name'].str.lower().str.contains(search_lower, na=False)]
        
        if len(matches) > 0:
            # Return first match
            company_id = matches.index[0]
            company_name = matches.iloc[0]['name']
            return True, company_id, company_name
    
    return False, None, None


def find_top_candidate_matches(company_id, company_embeddings, candidate_embeddings, candidates_df, top_k=10):
    """
    Find top candidate matches for a company (reverse of candidate matching).
    """
    # Get company embedding
    company_emb = company_embeddings[company_id].reshape(1, -1)
    
    # Calculate cosine similarity with all candidates
    # Normalize embeddings
    company_norm = company_emb / np.linalg.norm(company_emb)
    candidate_norms = candidate_embeddings / np.linalg.norm(candidate_embeddings, axis=1, keepdims=True)
    
    # Compute similarities
    similarities = np.dot(candidate_norms, company_norm.T).flatten()
    
    # Get top K indices
    top_indices = np.argsort(similarities)[::-1][:top_k]
    
    # Format results
    matches = []
    for idx in top_indices:
        matches.append({
            'candidate_id': int(idx),
            'score': float(similarities[idx])
        })
    
    return matches


def render_sidebar():
    """Render sidebar with controls and information."""
    
    with st.sidebar:
        # Logo/Title
        st.markdown("### 🏒 Company Matching")
        st.markdown("---")
        
        # Settings section
        st.markdown("### βš™οΈ Settings")
        
        # Number of matches
        top_k = st.slider(
            "Number of Matches",
            min_value=5,
            max_value=20,
            value=DEFAULT_TOP_K,
            step=5,
            help="Select how many top candidates to display"
        )
        
        # Minimum score threshold
        min_score = st.slider(
            "Minimum Match Score",
            min_value=0.0,
            max_value=1.0,
            value=MIN_SIMILARITY_SCORE,
            step=0.05,
            help="Filter candidates below this similarity score"
        )
        
        st.markdown("---")
        
        # View mode selection
        st.markdown("### πŸ‘€ View Mode")
        view_mode = st.radio(
            "Select view:",
            ["πŸ“Š Overview", "πŸ” Detailed Cards", "πŸ“ˆ Table View"],
            help="Choose how to display candidate matches"
        )
        
        st.markdown("---")
        
        # Information section
        with st.expander("ℹ️ About", expanded=False):
            st.markdown("""
                **Company View** helps you discover top talent based on:
                
                - πŸ€– **NLP Embeddings**: 384-dimensional semantic space
                - πŸ“Š **Cosine Similarity**: Scale-invariant matching
                - πŸŒ‰ **Job Postings Bridge**: Vocabulary alignment
                
                **How it works:**
                1. Enter company ID or search by name
                2. System finds top candidate matches
                3. Explore candidates with scores and skills
                4. Visualize talent network via graph
            """)
        
        with st.expander("πŸ“š Input Format", expanded=False):
            st.markdown("""
                **Valid formats:**
                - `9418` β†’ Company ID 9418
                - `30989` β†’ Company ID 30989
                - `Anblicks` β†’ Search by name
                - `iO Associates` β†’ Partial name search
                
                **Search tips:**
                - Case-insensitive
                - Partial matches work
                - Returns first match found
            """)
        
        with st.expander("πŸ“Š Coverage Info", expanded=False):
            st.markdown("""
                **Company Coverage:**
                - 🟒 **30,000 companies** with job postings
                - 🟑 **120,000 companies** via collaborative filtering
                - πŸ“ˆ **5x coverage expansion** through skill inference
                
                Companies without job postings inherit skills from similar companies.
            """)
        
        st.markdown("---")
        
        # Back to home button
        if st.button("🏠 Back to Home", use_container_width=True):
            st.switch_page("app.py")
        
        # Version info
        st.caption(f"Version: {VERSION}")
        st.caption("Β© 2024 HRHUB Team")
        
        return top_k, min_score, view_mode


def get_network_graph_data_company(company_id, matches, companies_df):
    """Generate network graph data from matches (company perspective)."""
    nodes = []
    edges = []
    
    # Add company node (red/orange)
    company_name = companies_df.iloc[company_id].get('name', f'Company {company_id}')
    if len(company_name) > 30:
        company_name = company_name[:27] + '...'
    
    nodes.append({
        'id': f'COMP{company_id}',
        'label': company_name,
        'color': '#ff6b6b',
        'shape': 'box',
        'size': 30
    })
    
    # Add candidate nodes (green) and edges
    for cand_id, score, cand_data in matches:
        nodes.append({
            'id': f'C{cand_id}',
            'label': f'Candidate #{cand_id}',
            'color': '#4ade80',
            'shape': 'dot',
            'size': 20
        })
        
        edges.append({
            'from': f'COMP{company_id}',
            'to': f'C{cand_id}',
            'value': float(score) * 10,
            'title': f'Match Score: {score:.3f}'
        })
    
    return {'nodes': nodes, 'edges': edges}


def render_network_section(company_id: int, matches, companies_df):
    """Render interactive network visualization section."""
    
    st.markdown('<div class="section-header">πŸ•ΈοΈ Talent Network</div>', unsafe_allow_html=True)
    
    # Explanation box
    st.markdown("""
        <div class="info-box">
            <strong>πŸ’‘ What this shows:</strong> Talent network reveals skill alignment and candidate clustering. 
            Thicker edges indicate stronger semantic match between company requirements and candidate skills.
        </div>
    """, unsafe_allow_html=True)
    
    with st.spinner("Generating interactive network graph..."):
        # Get graph data
        graph_data = get_network_graph_data_company(company_id, matches, companies_df)
        
        # Create HTML graph
        html_content = create_network_graph(
            nodes=graph_data['nodes'],
            edges=graph_data['edges'],
            height="600px"
        )
        
        # Display in Streamlit
        components.html(html_content, height=620, scrolling=False)
    
    # Graph instructions
    with st.expander("πŸ“– Graph Controls", expanded=False):
        st.markdown("""
            **How to interact:**
            
            - πŸ–±οΈ **Drag nodes**: Click and drag to reposition
            - πŸ” **Zoom**: Scroll to zoom in/out
            - πŸ‘† **Pan**: Click background and drag to pan
            - 🎯 **Hover**: Hover over nodes/edges for details
            
            **Legend:**
            - πŸ”΄ **Red square**: Your company
            - 🟒 **Green circles**: Matched candidates
            - **Line thickness**: Match strength (thicker = better)
        """)


def render_matches_section(matches, view_mode: str):
    """Render candidate matches section with different view modes."""
    
    st.markdown('<div class="section-header">🎯 Candidate Matches</div>', unsafe_allow_html=True)
    
    if view_mode == "πŸ“Š Overview" or view_mode == "πŸ“ˆ Table View":
        # Table view - use display function
        display_match_table_candidates(matches)
        
    elif view_mode == "πŸ” Detailed Cards":
        # Card view - use display function
        for rank, (cand_id, score, cand_data) in enumerate(matches, 1):
            display_candidate_card_basic(cand_data, cand_id, score, rank)


def main():
    """Main application entry point."""
    
    # Configure page
    configure_page()
    
    # Render header
    st.markdown('<h1 class="main-title">🏒 Company View</h1>', unsafe_allow_html=True)
    st.markdown('<p class="sub-title">Discover top talent for your company</p>', unsafe_allow_html=True)
    
    # Render sidebar and get settings
    top_k, min_score, view_mode = render_sidebar()
    
    st.markdown("---")
    
    # Load embeddings (cache in session state)
    if 'embeddings_loaded' not in st.session_state:
        with st.spinner("πŸ“„ Loading embeddings and data..."):
            try:
                cand_emb, comp_emb, cand_df, comp_df = load_embeddings()
                st.session_state.embeddings_loaded = True
                st.session_state.candidate_embeddings = cand_emb
                st.session_state.company_embeddings = comp_emb
                st.session_state.candidates_df = cand_df
                st.session_state.companies_df = comp_df
                
                st.markdown("""
                    <div class="success-box">
                        βœ… Data loaded successfully! Ready to find talent.
                    </div>
                """, unsafe_allow_html=True)
            except Exception as e:
                st.error(f"❌ Error loading data: {str(e)}")
                st.stop()
    
    # Company input section
    st.markdown("### πŸ” Enter Company ID or Name")
    
    col1, col2 = st.columns([3, 1])
    
    with col1:
        company_input = st.text_input(
            "Company ID or Name",
            value="9418",
            max_chars=100,
            help="Enter company ID (e.g., 9418) or search by name (e.g., Anblicks)",
            label_visibility="collapsed"
        )
    
    with col2:
        search_button = st.button("πŸš€ Find Candidates", use_container_width=True, type="primary")
    
    # Validate input
    is_valid, company_id_or_search, error_msg = validate_company_input(company_input)
    
    if not is_valid:
        st.warning(f"⚠️ {error_msg}")
        st.stop()
    
    # Determine if it's ID or search
    if isinstance(company_id_or_search, int):
        # Direct ID
        company_id = company_id_or_search
        
        # Check if company exists
        if company_id >= len(st.session_state.companies_df):
            st.error(f"❌ Company ID {company_id} not found. Maximum ID: {len(st.session_state.companies_df) - 1}")
            st.stop()
        
        company = st.session_state.companies_df.iloc[company_id]
        company_name = company.get('name', f'Company {company_id}')
        
    else:
        # Search by name
        found, company_id, company_name = find_company_by_name(st.session_state.companies_df, company_id_or_search)
        
        if not found:
            st.error(f"❌ No company found matching: '{company_id_or_search}'")
            st.info("πŸ’‘ **Tip:** Try searching with partial name or use company ID directly")
            st.stop()
        
        company = st.session_state.companies_df.iloc[company_id]
        st.success(f"βœ… Found: **{company_name}** (ID: {company_id})")
    
    # Show company info
    st.markdown(f"""
        <div class="info-box">
            <strong>Selected:</strong> {company_name} (ID: {company_id}) | 
            <strong>Total companies in system:</strong> {len(st.session_state.companies_df):,}
        </div>
    """, unsafe_allow_html=True)
    
    # Check if company has job postings
    has_postings = company.get('has_job_postings', False) if 'has_job_postings' in company else True
    
    if not has_postings:
        st.markdown("""
            <div class="warning-box">
                ℹ️ <strong>Note:</strong> This company uses <strong>collaborative filtering</strong> 
                (skills inherited from similar companies). Matching still works but may be less precise than companies with direct job postings.
            </div>
        """, unsafe_allow_html=True)
    
    # Find matches
    with st.spinner("πŸ”„ Finding top candidate matches..."):
        matches_list = find_top_candidate_matches(
            company_id,
            st.session_state.company_embeddings,
            st.session_state.candidate_embeddings,
            st.session_state.candidates_df,
            top_k
        )
    
    # Format matches for display
    matches = [
        (m['candidate_id'], m['score'], st.session_state.candidates_df.iloc[m['candidate_id']])
        for m in matches_list
    ]
    
    # Filter by minimum score
    matches = [(cid, score, cdata) for cid, score, cdata in matches if score >= min_score]
    
    if not matches:
        st.warning(f"⚠️ No candidates found above {min_score:.0%} threshold. Try lowering the minimum score in the sidebar.")
        st.stop()
    
    st.markdown("---")
    
    # Display statistics using display function
    display_stats_overview_company(company, matches)
    
    st.markdown("---")
    
    # Create two columns for layout
    col1, col2 = st.columns([1, 2])
    
    with col1:
        # Company profile section
        st.markdown('<div class="section-header">🏒 Company Profile</div>', unsafe_allow_html=True)
        
        # Use basic display function
        display_company_profile_basic(company, company_id)
    
    with col2:
        # Matches section
        render_matches_section(matches, view_mode)
    
    st.markdown("---")
    
    # Skills Heatmap (show for top candidate match)
    if len(matches) > 0:
        top_cand_id, top_cand_score, top_cand_data = matches[0]
        
        st.markdown("### πŸ”₯ Skills Analysis - Top Candidate")
        render_skills_heatmap_section(
            top_cand_data,
            company,
            st.session_state.candidate_embeddings[top_cand_id],
            st.session_state.company_embeddings[company_id],
            top_cand_score
        )
    
    st.markdown("---")
    
    # Network visualization (full width)
    render_network_section(company_id, matches, st.session_state.companies_df)
    
    st.markdown("---")
    
    # BILATERAL FAIRNESS PROOF SECTION - NEW
    render_bilateral_fairness_section(
        st.session_state.candidate_embeddings,
        st.session_state.company_embeddings
    )
    
    st.markdown("---")
    
    # Technical info expander
    with st.expander("πŸ”§ Technical Details", expanded=False):
        st.markdown(f"""
            **Current Configuration:**
            - Company ID: {company_id}
            - Company Name: {company_name}
            - Embedding Dimension: {EMBEDDING_DIMENSION}
            - Similarity Metric: Cosine Similarity
            - Top K Matches: {top_k}
            - Minimum Score: {min_score:.0%}
            - Candidates Available: {len(st.session_state.candidates_df):,}
            - Companies in System: {len(st.session_state.companies_df):,}
            
            **Algorithm:**
            1. Load pre-computed company embedding
            2. Calculate cosine similarity with all candidate embeddings
            3. Rank candidates by similarity score
            4. Return top-K matches above threshold
            
            **Coverage Strategy:**
            - Companies WITH job postings: Direct semantic matching
            - Companies WITHOUT postings: Collaborative filtering (inherit from similar companies)
            - Total coverage: 150K companies (5x expansion from 30K base)
        """)


if __name__ == "__main__":
    main()