File size: 6,961 Bytes
782c177 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
---
title: HRHUB
emoji: πΌ
colorFrom: green
colorTo: blue
sdk: streamlit
sdk_version: "1.34.0"
app_file: app.py
pinned: true
---
# π’ HRHUB - HR Matching System
**Bilateral Matching Engine for Candidates & Companies**
A professional HR matching system using NLP embeddings and cosine similarity to connect job candidates with relevant companies based on skills, experience, and requirements.
---
HRHUB solves a fundamental inefficiency in hiring: candidates and companies use different vocabularies when describing skills and requirements. Our system bridges this gap using **job postings** as a translator, enriching company profiles to speak the same "skills language" as candidates.
### Key Innovation
- **Candidates** describe: "Python, Machine Learning, Data Science"
- **Companies** describe: "Tech company, innovation, growth"
- **Job Postings** translate: "We need Python, AWS, TensorFlow"
- **Result**: Accurate matching in the same embedding space βΒ³βΈβ΄
---
## π Features
- β
**Bilateral Matching**: Both candidates and companies get matched recommendations
- β
**NLP-Powered**: Uses sentence transformers for semantic understanding
- β
**Interactive Visualization**: Network graphs showing match connections
- β
**Scalable**: Handles 9,544 candidates Γ 180,000 companies
- β
**Real-time**: Fast similarity computation using cosine similarity
- β
**Professional UI**: Clean Streamlit interface
---
## π Project Structure
```
hrhub/
βββ app.py # Main Streamlit application
βββ config.py # Configuration settings
βββ requirements.txt # Python dependencies
βββ README.md # This file
βββ data/
β βββ mock_data.py # Demo data (MVP)
β βββ data_loader.py # Real data loader (future)
β βββ embeddings/ # Saved embeddings (future)
βββ utils/
β βββ matching.py # Cosine similarity algorithms
β βββ visualization.py # Network graph generation
β βββ display.py # UI components
βββ assets/
βββ style.css # Custom CSS (optional)
```
---
## π οΈ Installation & Setup
### Prerequisites
- Python 3.8+
- pip package manager
- Git
### Local Development
1. **Clone the repository**
```bash
git clone https://github.com/your-username/hrhub.git
cd hrhub
```
2. **Create virtual environment** (recommended)
```bash
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
```
3. **Install dependencies**
```bash
pip install -r requirements.txt
```
4. **Run the app**
```bash
streamlit run app.py
```
5. **Open browser**
Navigate to `http://localhost:8501`
---
## π Deployment (Streamlit Cloud)
### Step 1: Push to GitHub
```bash
git add .
git commit -m "Initial commit"
git push origin main
```
### Step 2: Deploy on Streamlit Cloud
1. Go to [share.streamlit.io](https://share.streamlit.io)
2. Sign in with GitHub
3. Click "New app"
4. Select your repository: `hrhub`
5. Main file path: `app.py`
6. Click "Deploy"
**That's it!** Your app will be live at `https://your-app.streamlit.app`
---
## π Data Pipeline
### Current (MVP - Hardcoded)
```
mock_data.py β app.py β Display
```
### Future (Production)
```
CSV Files β Data Processing β Embeddings β Saved Files
β
app.py loads embeddings β Real-time matching
```
### Files to Generate (Next Phase)
```python
# After running your main code, save these:
1. candidate_embeddings.npy # 9,544 Γ 384 array
2. company_embeddings.npy # 180,000 Γ 384 array
3. candidates_processed.pkl # Full candidate data
4. companies_processed.pkl # Full company data
```
---
## π Switching from Mock to Real Data
### Current Code (MVP)
```python
# app.py
from data.mock_data import get_candidate_data, get_company_matches
```
### After Generating Embeddings
```python
# app.py
from data.data_loader import get_candidate_data, get_company_matches
```
**That's it!** No other code changes needed. The UI stays the same.
---
## π¨ Configuration
Edit `config.py` to customize:
```python
# Matching Settings
DEFAULT_TOP_K = 10 # Number of matches to show
MIN_SIMILARITY_SCORE = 0.5 # Minimum score threshold
EMBEDDING_DIMENSION = 384 # Vector dimension
# UI Settings
NETWORK_GRAPH_HEIGHT = 600 # Graph height in pixels
# Demo Mode
DEMO_MODE = True # Set False for production
```
---
## π Technical Details
### Algorithm
1. **Text Representation**: Convert candidate/company data to structured text
2. **Embedding**: Use sentence transformers (`all-MiniLM-L6-v2`)
3. **Similarity**: Compute cosine similarity between vectors
4. **Ranking**: Sort by similarity score, return top K
### Why Cosine Similarity?
- β
**Scale-invariant**: Focuses on direction, not magnitude
- β
**Profile shape matching**: Captures proportional skill distributions
- β
**Fast computation**: Optimized for large-scale matching
- β
**Proven in NLP**: Standard metric for semantic similarity
### Performance
- **Loading time**: < 5 seconds (with pre-computed embeddings)
- **Matching speed**: < 1 second for 180K companies
- **Memory usage**: ~500MB (embeddings loaded)
---
## π§ͺ Testing
### Test Mock Data
```bash
cd hrhub
python data/mock_data.py
```
Expected output:
```
β
Candidate: Demo Candidate #0
β
Top 5 matches loaded
β
Graph data: 6 nodes, 5 edges
```
### Test Streamlit App
```bash
streamlit run app.py
```
---
## π― Roadmap
### β
Phase 1: MVP (Current)
- [x] Basic matching logic
- [x] Streamlit UI
- [x] Network visualization
- [x] Hardcoded demo data
### π Phase 2: Production (Next)
- [ ] Generate real embeddings
- [ ] Load embeddings from files
- [ ] Dynamic candidate selection
- [ ] Search functionality
### π Phase 3: Advanced (Future)
- [ ] User authentication
- [ ] Company login view
- [ ] Weighted matching (different dimensions)
- [ ] RAG-powered recommendations
- [ ] Email notifications
- [ ] Analytics dashboard
---
## π₯ Team
**Master's in Business Data Science - Aalborg University**
- Roger - Project Lead & Deployment
- Eskil - [Role]
- [Team Member 3] - [Role]
- [Team Member 4] - [Role]
---
## π License
This project is part of an academic course at Aalborg University.
---
## π€ Contributing
This is an academic project. Contributions are welcome after project submission (December 14, 2024).
---
## π§ Contact
For questions or feedback:
- Create an issue on GitHub
- Contact via Moodle course forum
---
## π Acknowledgments
- **Sentence Transformers**: Hugging Face team
- **Streamlit**: Amazing framework for data apps
- **PyVis**: Interactive network visualization
- **Course Instructors**: For guidance and support
---
**Last Updated**: December 2024
**Status**: π’ Active Development
|