Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,15 +1,60 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
# Check if the API key was loaded successfully (provides feedback in Gradio UI)
|
| 5 |
-
api_key_loaded = True
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
def run_generation(prompt: str, model: str, num_samples: int) -> str:
|
| 8 |
"""
|
| 9 |
-
Wrapper function for Gradio interface to generate multiple samples.
|
|
|
|
| 10 |
"""
|
| 11 |
-
if not api_key_loaded:
|
| 12 |
-
return "Error: OPENROUTER_API_KEY not configured in Space secrets."
|
| 13 |
if not prompt:
|
| 14 |
return "Error: Please enter a prompt."
|
| 15 |
if num_samples <= 0:
|
|
@@ -18,39 +63,360 @@ def run_generation(prompt: str, model: str, num_samples: int) -> str:
|
|
| 18 |
output = f"Generating {num_samples} samples using model '{model}'...\n"
|
| 19 |
output += "="*20 + "\n\n"
|
| 20 |
|
|
|
|
| 21 |
for i in range(num_samples):
|
|
|
|
| 22 |
generated_text = generate_synthetic_text(prompt, model)
|
| 23 |
output += f"--- Sample {i+1} ---\n"
|
| 24 |
-
output += generated_text + "\n\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
return output
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
# --- Gradio Interface Definition ---
|
| 30 |
with gr.Blocks() as demo:
|
| 31 |
-
gr.Markdown("# Synthetic
|
| 32 |
gr.Markdown(
|
| 33 |
-
"Generate
|
| 34 |
-
"Ensure you have added your `OPENROUTER_API_KEY` to the Space secrets."
|
| 35 |
-
)
|
| 36 |
-
if not api_key_loaded:
|
| 37 |
-
gr.Markdown("**Warning:** `OPENROUTER_API_KEY` not found. Please add it to the Space secrets.")
|
| 38 |
-
|
| 39 |
-
with gr.Row():
|
| 40 |
-
prompt_input = gr.Textbox(label="Prompt", placeholder="Enter your prompt here (e.g., Generate a short product description for a sci-fi gadget)")
|
| 41 |
-
with gr.Row():
|
| 42 |
-
model_input = gr.Textbox(label="OpenRouter Model ID", value="deepseek/deepseek-chat-v3-0324:free", placeholder="e.g., openai/gpt-3.5-turbo, google/gemini-flash-1.5")
|
| 43 |
-
num_samples_input = gr.Number(label="Number of Samples", value=3, minimum=1, step=1)
|
| 44 |
-
|
| 45 |
-
generate_button = gr.Button("Generate Text")
|
| 46 |
-
output_text = gr.Textbox(label="Generated Samples", lines=15)
|
| 47 |
-
|
| 48 |
-
generate_button.click(
|
| 49 |
-
fn=run_generation,
|
| 50 |
-
inputs=[prompt_input, model_input, num_samples_input],
|
| 51 |
-
outputs=output_text
|
| 52 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
# Launch the Gradio app
|
| 55 |
if __name__ == "__main__":
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import json
|
| 3 |
+
import tempfile
|
| 4 |
+
import os
|
| 5 |
+
import re # For parsing conversation
|
| 6 |
+
from typing import Union, Optional # Add Optional
|
| 7 |
+
# Import the actual functions from synthgen
|
| 8 |
+
from synthgen import (
|
| 9 |
+
generate_synthetic_text,
|
| 10 |
+
generate_prompts,
|
| 11 |
+
generate_synthetic_conversation
|
| 12 |
+
)
|
| 13 |
+
# We no longer need to import api_key here or check it directly in app.py
|
| 14 |
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
# --- Helper Functions for JSON Generation ---
|
| 17 |
+
|
| 18 |
+
# Use Union for Python < 3.10 compatibility
|
| 19 |
+
def create_json_file(data: object, base_filename: str) -> Union[str, None]:
|
| 20 |
+
"""Creates a temporary JSON file and returns its path."""
|
| 21 |
+
try:
|
| 22 |
+
# Create a temporary file with a .json extension
|
| 23 |
+
with tempfile.NamedTemporaryFile(mode='w', suffix=".json", delete=False, encoding='utf-8') as temp_file:
|
| 24 |
+
json.dump(data, temp_file, indent=4, ensure_ascii=False)
|
| 25 |
+
return temp_file.name # Return the path to the temporary file
|
| 26 |
+
except Exception as e:
|
| 27 |
+
print(f"Error creating JSON file {base_filename}: {e}")
|
| 28 |
+
return None
|
| 29 |
+
|
| 30 |
+
def parse_conversation_string(text: str) -> list[dict]:
|
| 31 |
+
"""Parses a multi-line conversation string into a list of message dictionaries."""
|
| 32 |
+
messages = []
|
| 33 |
+
# Regex to capture "User:" or "Assistant:" at the start of a line, followed by content
|
| 34 |
+
pattern = re.compile(r"^(User|Assistant):\s*(.*)$", re.IGNORECASE | re.MULTILINE)
|
| 35 |
+
matches = pattern.finditer(text)
|
| 36 |
+
for match in matches:
|
| 37 |
+
role = match.group(1).lower()
|
| 38 |
+
content = match.group(2).strip()
|
| 39 |
+
messages.append({"role": role, "content": content})
|
| 40 |
+
# If parsing fails or format is unexpected, return raw text in a single message?
|
| 41 |
+
# Or return empty list? Let's return what we found.
|
| 42 |
+
if not messages and text: # If regex found nothing but text exists
|
| 43 |
+
print(f"Warning: Could not parse conversation structure for: '{text[:100]}...'")
|
| 44 |
+
# Fallback: return the whole text as a single assistant message? Or user?
|
| 45 |
+
# Let's return a generic system message indicating the raw content
|
| 46 |
+
# return [{"role": "system", "content": f"Unparsed conversation text: {text}"}]
|
| 47 |
+
# Or maybe just return empty, TBD based on preference
|
| 48 |
+
pass # Return empty list if parsing fails for now
|
| 49 |
+
return messages
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
# Wrapper for text generation (remains largely the same, but error handling is improved in synthgen)
|
| 53 |
def run_generation(prompt: str, model: str, num_samples: int) -> str:
|
| 54 |
"""
|
| 55 |
+
Wrapper function for Gradio interface to generate multiple text samples.
|
| 56 |
+
Relies on generate_synthetic_text for API calls and error handling.
|
| 57 |
"""
|
|
|
|
|
|
|
| 58 |
if not prompt:
|
| 59 |
return "Error: Please enter a prompt."
|
| 60 |
if num_samples <= 0:
|
|
|
|
| 63 |
output = f"Generating {num_samples} samples using model '{model}'...\n"
|
| 64 |
output += "="*20 + "\n\n"
|
| 65 |
|
| 66 |
+
# generate_synthetic_text now handles API errors internally
|
| 67 |
for i in range(num_samples):
|
| 68 |
+
# The function returns the text or an error string starting with "Error:"
|
| 69 |
generated_text = generate_synthetic_text(prompt, model)
|
| 70 |
output += f"--- Sample {i+1} ---\n"
|
| 71 |
+
output += generated_text + "\n\n" # Append result directly
|
| 72 |
+
|
| 73 |
+
output += "="*20 + "\nGeneration complete (check results above for errors)."
|
| 74 |
+
return output
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
# Removed the placeholder backend functions (generate_prompts_backend, generate_single_conversation)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
# Modified function to handle multiple conversation prompts using the real backend
|
| 81 |
+
def run_conversation_generation(system_prompts_text: str, model: str, num_turns: int) -> str:
|
| 82 |
+
"""
|
| 83 |
+
Wrapper function for Gradio interface to generate multiple conversations
|
| 84 |
+
based on a list of prompts, calling generate_synthetic_conversation.
|
| 85 |
+
"""
|
| 86 |
+
if not system_prompts_text:
|
| 87 |
+
return "Error: Please enter or generate at least one system prompt/topic."
|
| 88 |
+
if num_turns <= 0:
|
| 89 |
+
return "Error: Number of turns must be positive."
|
| 90 |
+
|
| 91 |
+
prompts = [p.strip() for p in system_prompts_text.strip().split('\n') if p.strip()]
|
| 92 |
+
if not prompts:
|
| 93 |
+
return "Error: No valid prompts found in the input."
|
| 94 |
+
|
| 95 |
+
output = f"Generating {len(prompts)} conversations ({num_turns} turns each) using model '{model}'...\n"
|
| 96 |
+
output += "="*40 + "\n\n"
|
| 97 |
+
|
| 98 |
+
for i, prompt in enumerate(prompts):
|
| 99 |
+
# Call the actual function from synthgen.py
|
| 100 |
+
# It handles API calls and returns the conversation or an error string.
|
| 101 |
+
conversation_text = generate_synthetic_conversation(prompt, model, num_turns)
|
| 102 |
|
| 103 |
+
# We don't need a try-except here because the function itself returns error strings
|
| 104 |
+
# The title is now included within the returned string from the function
|
| 105 |
+
output += f"--- Conversation {i+1}/{len(prompts)} ---\n"
|
| 106 |
+
output += conversation_text + "\n\n" # Append result directly
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
output += "="*40 + "\nGeneration complete (check results above for errors)."
|
| 110 |
return output
|
| 111 |
|
| 112 |
+
# Helper function for the Gradio UI to generate prompts using the real backend
|
| 113 |
+
def generate_prompts_ui(
|
| 114 |
+
num_prompts: int,
|
| 115 |
+
model: str,
|
| 116 |
+
temperature: float, # Add settings
|
| 117 |
+
top_p: float,
|
| 118 |
+
max_tokens: int
|
| 119 |
+
) -> str:
|
| 120 |
+
"""UI Wrapper to call the generate_prompts backend and format for Textbox."""
|
| 121 |
+
# Handle optional settings
|
| 122 |
+
temp_val = temperature if temperature > 0 else None
|
| 123 |
+
top_p_val = top_p if 0 < top_p <= 1 else None
|
| 124 |
+
# Use a specific max_tokens for prompt generation or pass from UI? Let's pass from UI
|
| 125 |
+
max_tokens_val = max_tokens if max_tokens > 0 else 200 # Set a default if UI value is 0
|
| 126 |
+
|
| 127 |
+
if not model:
|
| 128 |
+
return "Error: Please select a model for prompt generation."
|
| 129 |
+
if num_prompts <= 0:
|
| 130 |
+
return "Error: Number of prompts to generate must be positive."
|
| 131 |
+
if num_prompts > 50:
|
| 132 |
+
return "Error: Cannot generate more than 50 prompts at a time."
|
| 133 |
+
|
| 134 |
+
print(f"Generating prompts with settings: Temp={temp_val}, Top-P={top_p_val}, MaxTokens={max_tokens_val}") # Debug print
|
| 135 |
+
|
| 136 |
+
try:
|
| 137 |
+
# Call the actual function from synthgen.py, passing settings
|
| 138 |
+
prompts_list = generate_prompts(
|
| 139 |
+
num_prompts,
|
| 140 |
+
model,
|
| 141 |
+
temperature=temp_val,
|
| 142 |
+
top_p=top_p_val,
|
| 143 |
+
max_tokens=max_tokens_val
|
| 144 |
+
)
|
| 145 |
+
return "\n".join(prompts_list)
|
| 146 |
+
except ValueError as e:
|
| 147 |
+
# Catch errors raised by generate_prompts (e.g., API errors, parsing errors)
|
| 148 |
+
return f"Error generating prompts: {e}"
|
| 149 |
+
except Exception as e:
|
| 150 |
+
# Catch any other unexpected errors
|
| 151 |
+
print(f"Unexpected error in generate_prompts_ui: {e}")
|
| 152 |
+
return f"An unexpected error occurred: {e}"
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
# --- Modified Generation Wrappers ---
|
| 156 |
+
|
| 157 |
+
# Wrapper for text generation + JSON preparation
|
| 158 |
+
def run_generation_and_prepare_json(
|
| 159 |
+
prompt: str,
|
| 160 |
+
model: str,
|
| 161 |
+
num_samples: int,
|
| 162 |
+
temperature: float, # Add settings
|
| 163 |
+
top_p: float,
|
| 164 |
+
max_tokens: int
|
| 165 |
+
):
|
| 166 |
+
"""Generates text samples and prepares a JSON file for download."""
|
| 167 |
+
# Handle optional settings (Gradio might pass default if not interacted with)
|
| 168 |
+
temp_val = temperature if temperature > 0 else None # Allow 0 but treat as None if needed? OpenRouter usually uses >0. Let's map 0 to None.
|
| 169 |
+
top_p_val = top_p if 0 < top_p <= 1 else None # top_p must be > 0 and <= 1
|
| 170 |
+
max_tokens_val = max_tokens if max_tokens > 0 else None # Max tokens should be positive
|
| 171 |
+
|
| 172 |
+
if not prompt:
|
| 173 |
+
return "Error: Please enter a prompt.", None
|
| 174 |
+
if num_samples <= 0:
|
| 175 |
+
return "Error: Number of samples must be positive.", None
|
| 176 |
+
|
| 177 |
+
output_str = f"Generating {num_samples} samples using model '{model}'...\n"
|
| 178 |
+
output_str += f"(Settings: Temp={temp_val}, Top-P={top_p_val}, MaxTokens={max_tokens_val})\n"
|
| 179 |
+
output_str += "="*20 + "\n\n"
|
| 180 |
+
results_list = []
|
| 181 |
+
|
| 182 |
+
for i in range(num_samples):
|
| 183 |
+
# Pass settings to the backend function
|
| 184 |
+
generated_text = generate_synthetic_text(
|
| 185 |
+
prompt,
|
| 186 |
+
model,
|
| 187 |
+
temperature=temp_val,
|
| 188 |
+
top_p=top_p_val,
|
| 189 |
+
max_tokens=max_tokens_val
|
| 190 |
+
)
|
| 191 |
+
output_str += f"--- Sample {i+1} ---\n"
|
| 192 |
+
output_str += generated_text + "\n\n"
|
| 193 |
+
if not generated_text.startswith("Error:"):
|
| 194 |
+
results_list.append(generated_text)
|
| 195 |
+
else:
|
| 196 |
+
pass
|
| 197 |
+
|
| 198 |
+
output_str += "="*20 + "\nGeneration complete (check results above for errors)."
|
| 199 |
+
json_filepath = create_json_file(results_list, "text_samples.json")
|
| 200 |
+
return output_str, json_filepath
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
# Wrapper for conversation generation + JSON preparation
|
| 204 |
+
def run_conversation_generation_and_prepare_json(
|
| 205 |
+
system_prompts_text: str,
|
| 206 |
+
model: str,
|
| 207 |
+
num_turns: int,
|
| 208 |
+
temperature: float, # Add settings
|
| 209 |
+
top_p: float,
|
| 210 |
+
max_tokens: int
|
| 211 |
+
):
|
| 212 |
+
"""Generates conversations and prepares a JSON file for download."""
|
| 213 |
+
temp_val = temperature if temperature > 0 else None
|
| 214 |
+
top_p_val = top_p if 0 < top_p <= 1 else None
|
| 215 |
+
max_tokens_val = max_tokens if max_tokens > 0 else None
|
| 216 |
+
|
| 217 |
+
if not system_prompts_text:
|
| 218 |
+
return "Error: Please enter or generate at least one system prompt/topic.", None
|
| 219 |
+
if num_turns <= 0:
|
| 220 |
+
return "Error: Number of turns must be positive.", None
|
| 221 |
+
|
| 222 |
+
prompts = [p.strip() for p in system_prompts_text.strip().split('\n') if p.strip()]
|
| 223 |
+
if not prompts:
|
| 224 |
+
return "Error: No valid prompts found in the input.", None
|
| 225 |
+
|
| 226 |
+
output_str = f"Generating {len(prompts)} conversations ({num_turns} turns each) using model '{model}'...\n"
|
| 227 |
+
output_str += f"(Settings: Temp={temp_val}, Top-P={top_p_val}, MaxTokens={max_tokens_val})\n"
|
| 228 |
+
output_str += "="*40 + "\n\n"
|
| 229 |
+
results_list_structured = []
|
| 230 |
+
|
| 231 |
+
for i, prompt in enumerate(prompts):
|
| 232 |
+
# Pass settings to the backend function
|
| 233 |
+
conversation_text = generate_synthetic_conversation(
|
| 234 |
+
prompt,
|
| 235 |
+
model,
|
| 236 |
+
num_turns,
|
| 237 |
+
temperature=temp_val,
|
| 238 |
+
top_p=top_p_val,
|
| 239 |
+
max_tokens=max_tokens_val
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
output_str += f"--- Conversation {i+1}/{len(prompts)} ---\n"
|
| 243 |
+
output_str += conversation_text + "\n\n"
|
| 244 |
+
|
| 245 |
+
# Parse the generated text block for JSON structure
|
| 246 |
+
# Note: generate_synthetic_conversation includes a title like "Generated conversation for..."
|
| 247 |
+
# We might want to remove that before parsing or adjust the parser.
|
| 248 |
+
# Let's assume the core conversation starts after the first line break if a title exists.
|
| 249 |
+
core_conversation_text = conversation_text
|
| 250 |
+
if "\n\n" in conversation_text:
|
| 251 |
+
# Split only if the separator is present and the text doesn't start with Error:
|
| 252 |
+
if not conversation_text.startswith("Error:"):
|
| 253 |
+
parts = conversation_text.split("\n\n", 1)
|
| 254 |
+
if len(parts) > 1:
|
| 255 |
+
core_conversation_text = parts[1]
|
| 256 |
+
else: # Handle case where title might not have double newline
|
| 257 |
+
core_conversation_text = conversation_text # Fallback to full text
|
| 258 |
+
else:
|
| 259 |
+
core_conversation_text = None # Don't try to parse errors
|
| 260 |
+
elif conversation_text.startswith("Error:"):
|
| 261 |
+
core_conversation_text = None # Don't try to parse errors
|
| 262 |
+
# Else: No double newline, assume the whole text is the conversation (or error)
|
| 263 |
+
|
| 264 |
+
if core_conversation_text:
|
| 265 |
+
messages = parse_conversation_string(core_conversation_text)
|
| 266 |
+
if messages: # Add only if parsing was successful
|
| 267 |
+
results_list_structured.append({
|
| 268 |
+
"prompt": prompt,
|
| 269 |
+
"messages": messages
|
| 270 |
+
})
|
| 271 |
+
else: # Parsing failed, optionally add raw text or error placeholder
|
| 272 |
+
results_list_structured.append({
|
| 273 |
+
"prompt": prompt,
|
| 274 |
+
"error": "Failed to parse conversation structure.",
|
| 275 |
+
"raw_text": core_conversation_text # Include raw text if parsing failed
|
| 276 |
+
})
|
| 277 |
+
elif conversation_text.startswith("Error:"):
|
| 278 |
+
results_list_structured.append({
|
| 279 |
+
"prompt": prompt,
|
| 280 |
+
"error": conversation_text # Include the error message from generation
|
| 281 |
+
})
|
| 282 |
+
else: # Handle case where core_conversation_text became None unexpectedly or original text was just a title
|
| 283 |
+
results_list_structured.append({
|
| 284 |
+
"prompt": prompt,
|
| 285 |
+
"error": "Could not extract conversation content for parsing.",
|
| 286 |
+
"raw_text": conversation_text
|
| 287 |
+
})
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
output_str += "="*40 + "\nGeneration complete (check results above for errors)."
|
| 291 |
+
|
| 292 |
+
# Create JSON file from the structured list
|
| 293 |
+
json_filepath = create_json_file(results_list_structured, "conversations.json")
|
| 294 |
+
|
| 295 |
+
return output_str, json_filepath
|
| 296 |
+
|
| 297 |
+
|
| 298 |
# --- Gradio Interface Definition ---
|
| 299 |
with gr.Blocks() as demo:
|
| 300 |
+
gr.Markdown("# Synthetic Data Generator using OpenRouter")
|
| 301 |
gr.Markdown(
|
| 302 |
+
"Generate synthetic text samples or conversations using various models"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 303 |
)
|
| 304 |
+
# Removed the api_key_loaded check and warning Markdown
|
| 305 |
+
|
| 306 |
+
# Define model choices (can be shared or specific per tab)
|
| 307 |
+
# Consider fetching these dynamically from OpenRouter if possible in the future
|
| 308 |
+
model_choices = [
|
| 309 |
+
"deepseek/deepseek-chat-v3-0324:free", # Example free model
|
| 310 |
+
"meta-llama/llama-3.3-70b-instruct:free",
|
| 311 |
+
"deepseek/deepseek-r1:free",
|
| 312 |
+
"google/gemini-2.5-pro-exp-03-25:free",
|
| 313 |
+
"qwen/qwen-2.5-72b-instruct:free",
|
| 314 |
+
"featherless/qwerky-72b:free",
|
| 315 |
+
"google/gemma-3-27b-it:free",
|
| 316 |
+
"mistralai/mistral-small-24b-instruct-2501:free",
|
| 317 |
+
"deepseek/deepseek-r1-distill-llama-70b:free",
|
| 318 |
+
"sophosympatheia/rogue-rose-103b-v0.2:free",
|
| 319 |
+
"nvidia/llama-3.1-nemotron-70b-instruct:free",
|
| 320 |
+
"microsoft/phi-3-medium-128k-instruct:free",
|
| 321 |
+
"undi95/toppy-m-7b:free",
|
| 322 |
+
"huggingfaceh4/zephyr-7b-beta:free",
|
| 323 |
+
"openrouter/quasar-alpha"
|
| 324 |
+
# Add more model IDs as needed
|
| 325 |
+
]
|
| 326 |
+
default_model = model_choices[0] if model_choices else None
|
| 327 |
+
|
| 328 |
+
# --- Shared Model Settings ---
|
| 329 |
+
# Use an Accordion for less clutter
|
| 330 |
+
with gr.Accordion("Model Settings (Optional)", open=False):
|
| 331 |
+
# Set reasonable ranges and defaults. Use 0 for Max Tokens/Top-P to signify 'None'/API default.
|
| 332 |
+
temperature_slider = gr.Slider(minimum=0.0, maximum=2.0, value=0.7, step=0.1, label="Temperature", info="Controls randomness. Higher values are more creative, lower are more deterministic. 0 means use API default.")
|
| 333 |
+
top_p_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.05, label="Top-P (Nucleus Sampling)", info="Considers only tokens with cumulative probability mass >= top_p. 0 means use API default.")
|
| 334 |
+
max_tokens_slider = gr.Number(value=0, minimum=0, maximum=8192, step=64, label="Max Tokens", info="Maximum number of tokens to generate in the completion. 0 means use API default.")
|
| 335 |
+
|
| 336 |
+
|
| 337 |
+
with gr.Tabs():
|
| 338 |
+
with gr.TabItem("Text Generation"):
|
| 339 |
+
with gr.Row():
|
| 340 |
+
prompt_input_text = gr.Textbox(label="Prompt", placeholder="Enter your prompt here (e.g., Generate a short product description for a sci-fi gadget)", lines=3)
|
| 341 |
+
with gr.Row():
|
| 342 |
+
model_input_text = gr.Dropdown(
|
| 343 |
+
label="OpenRouter Model ID",
|
| 344 |
+
choices=model_choices,
|
| 345 |
+
value=default_model
|
| 346 |
+
)
|
| 347 |
+
num_samples_input_text = gr.Number(label="Number of Samples", value=3, minimum=1, maximum=20, step=1)
|
| 348 |
+
|
| 349 |
+
generate_button_text = gr.Button("Generate Text Samples")
|
| 350 |
+
output_text = gr.Textbox(label="Generated Samples", lines=15, show_copy_button=True)
|
| 351 |
+
# Add File component for download
|
| 352 |
+
download_file_text = gr.File(label="Download Samples as JSON")
|
| 353 |
+
|
| 354 |
+
generate_button_text.click(
|
| 355 |
+
fn=run_generation_and_prepare_json,
|
| 356 |
+
inputs=[
|
| 357 |
+
prompt_input_text, model_input_text, num_samples_input_text,
|
| 358 |
+
temperature_slider, top_p_slider, max_tokens_slider # Add settings inputs
|
| 359 |
+
],
|
| 360 |
+
outputs=[output_text, download_file_text]
|
| 361 |
+
)
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
with gr.TabItem("Conversation Generation"):
|
| 365 |
+
gr.Markdown("Enter one system prompt/topic per line below, or use the 'Generate Prompts' button.")
|
| 366 |
+
with gr.Row():
|
| 367 |
+
# Textbox for multiple prompts
|
| 368 |
+
prompt_input_conv = gr.Textbox(
|
| 369 |
+
label="Prompts (one per line)",
|
| 370 |
+
lines=5, # Make it multi-line
|
| 371 |
+
placeholder="Enter prompts here, one per line...\ne.g., Act as a pirate discussing treasure maps.\nDiscuss the future of space travel."
|
| 372 |
+
)
|
| 373 |
+
with gr.Row():
|
| 374 |
+
# Input for number of prompts to generate
|
| 375 |
+
num_prompts_input_conv = gr.Number(label="Number of Prompts to Generate", value=5, minimum=1, maximum=20, step=1) # Keep max reasonable
|
| 376 |
+
# Button to trigger AI prompt generation
|
| 377 |
+
generate_prompts_button = gr.Button("Generate Prompts using AI")
|
| 378 |
+
with gr.Row():
|
| 379 |
+
# Model selection for conversation generation AND prompt generation
|
| 380 |
+
model_input_conv = gr.Dropdown(
|
| 381 |
+
label="OpenRouter Model ID (for generation)",
|
| 382 |
+
choices=model_choices,
|
| 383 |
+
value=default_model
|
| 384 |
+
)
|
| 385 |
+
|
| 386 |
+
with gr.Row():
|
| 387 |
+
# Input for number of turns per conversation
|
| 388 |
+
num_turns_input_conv = gr.Number(label="Number of Turns per Conversation (approx)", value=5, minimum=1, maximum=20, step=1) # Keep max reasonable
|
| 389 |
+
|
| 390 |
+
# Button to generate the conversations based on the prompts in the Textbox
|
| 391 |
+
generate_conversations_button = gr.Button("Generate Conversations")
|
| 392 |
+
output_conv = gr.Textbox(label="Generated Conversations", lines=15, show_copy_button=True)
|
| 393 |
+
# Add File component for download
|
| 394 |
+
download_file_conv = gr.File(label="Download Conversations as JSON")
|
| 395 |
+
|
| 396 |
+
# Connect the "Generate Prompts" button to the UI wrapper
|
| 397 |
+
generate_prompts_button.click(
|
| 398 |
+
fn=generate_prompts_ui, # Use the wrapper that calls the real function
|
| 399 |
+
inputs=[
|
| 400 |
+
num_prompts_input_conv, model_input_conv,
|
| 401 |
+
temperature_slider, top_p_slider, max_tokens_slider # Add settings inputs
|
| 402 |
+
],
|
| 403 |
+
outputs=prompt_input_conv
|
| 404 |
+
)
|
| 405 |
+
|
| 406 |
+
# Connect the "Generate Conversations" button to the real function wrapper
|
| 407 |
+
generate_conversations_button.click(
|
| 408 |
+
fn=run_conversation_generation_and_prepare_json, # Use the wrapper that calls the real function
|
| 409 |
+
inputs=[
|
| 410 |
+
prompt_input_conv, model_input_conv, num_turns_input_conv,
|
| 411 |
+
temperature_slider, top_p_slider, max_tokens_slider # Add settings inputs
|
| 412 |
+
],
|
| 413 |
+
outputs=[output_conv, download_file_conv] # Output to both Textbox and File
|
| 414 |
+
)
|
| 415 |
+
|
| 416 |
|
| 417 |
# Launch the Gradio app
|
| 418 |
if __name__ == "__main__":
|
| 419 |
+
print("Launching Gradio App...")
|
| 420 |
+
print("Make sure the OPENROUTER_API_KEY environment variable is set.")
|
| 421 |
+
# Use share=True for temporary public link if running locally and need to test
|
| 422 |
+
demo.launch(share=True) # share=True
|