Spaces:
Running
Running
OliverPerrin
commited on
Commit
·
7977c7d
1
Parent(s):
18fc263
Clean up demo_gradio.py with consistent commenting style
Browse files- scripts/demo_gradio.py +76 -32
scripts/demo_gradio.py
CHANGED
|
@@ -1,4 +1,14 @@
|
|
| 1 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
from __future__ import annotations
|
| 4 |
|
|
@@ -8,8 +18,12 @@ from pathlib import Path
|
|
| 8 |
|
| 9 |
import gradio as gr
|
| 10 |
|
|
|
|
|
|
|
|
|
|
| 11 |
SCRIPT_DIR = Path(__file__).resolve().parent
|
| 12 |
PROJECT_ROOT = SCRIPT_DIR.parent
|
|
|
|
| 13 |
if str(PROJECT_ROOT) not in sys.path:
|
| 14 |
sys.path.insert(0, str(PROJECT_ROOT))
|
| 15 |
|
|
@@ -21,45 +35,71 @@ from src.utils.logging import configure_logging, get_logger
|
|
| 21 |
configure_logging()
|
| 22 |
logger = get_logger(__name__)
|
| 23 |
|
|
|
|
|
|
|
| 24 |
OUTPUTS_DIR = PROJECT_ROOT / "outputs"
|
| 25 |
EVAL_REPORT_PATH = OUTPUTS_DIR / "evaluation_report.json"
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
_pipeline = None
|
| 28 |
|
| 29 |
|
| 30 |
def get_pipeline():
|
|
|
|
| 31 |
global _pipeline
|
| 32 |
-
if _pipeline is None:
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
labels_path="artifacts/labels.json",
|
| 46 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
return _pipeline
|
| 48 |
|
| 49 |
|
|
|
|
|
|
|
|
|
|
| 50 |
def analyze(text: str) -> str:
|
| 51 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
if not text or not text.strip():
|
| 53 |
return "Please enter some text to analyze."
|
| 54 |
|
| 55 |
try:
|
| 56 |
pipe = get_pipeline()
|
| 57 |
|
| 58 |
-
#
|
| 59 |
summary = pipe.summarize([text], max_length=128)[0].strip() or "(empty)"
|
| 60 |
-
|
| 61 |
-
# Emotion detection
|
| 62 |
emotions = pipe.predict_emotions([text], threshold=0.5)[0]
|
|
|
|
|
|
|
|
|
|
| 63 |
if emotions.labels:
|
| 64 |
emotion_str = ", ".join(
|
| 65 |
f"{lbl} ({score:.1%})"
|
|
@@ -68,10 +108,6 @@ def analyze(text: str) -> str:
|
|
| 68 |
else:
|
| 69 |
emotion_str = "No strong emotions detected"
|
| 70 |
|
| 71 |
-
# Topic classification
|
| 72 |
-
topic = pipe.predict_topics([text])[0]
|
| 73 |
-
topic_str = f"{topic.label} ({topic.confidence:.1%})"
|
| 74 |
-
|
| 75 |
return f"""## Summary
|
| 76 |
{summary}
|
| 77 |
|
|
@@ -79,7 +115,7 @@ def analyze(text: str) -> str:
|
|
| 79 |
{emotion_str}
|
| 80 |
|
| 81 |
## Topic
|
| 82 |
-
{
|
| 83 |
"""
|
| 84 |
except Exception as e:
|
| 85 |
logger.error("Analysis failed: %s", e, exc_info=True)
|
|
@@ -87,7 +123,7 @@ def analyze(text: str) -> str:
|
|
| 87 |
|
| 88 |
|
| 89 |
def get_metrics() -> str:
|
| 90 |
-
"""Load evaluation metrics as markdown."""
|
| 91 |
if not EVAL_REPORT_PATH.exists():
|
| 92 |
return "No evaluation report found. Run `scripts/evaluate.py` first."
|
| 93 |
|
|
@@ -95,6 +131,7 @@ def get_metrics() -> str:
|
|
| 95 |
with open(EVAL_REPORT_PATH) as f:
|
| 96 |
r = json.load(f)
|
| 97 |
|
|
|
|
| 98 |
lines = [
|
| 99 |
"## Model Performance\n",
|
| 100 |
"| Task | Metric | Score |",
|
|
@@ -108,10 +145,13 @@ def get_metrics() -> str:
|
|
| 108 |
"| Label | Precision | Recall | F1 |",
|
| 109 |
"|-------|-----------|--------|-----|",
|
| 110 |
]
|
| 111 |
-
|
| 112 |
-
|
|
|
|
|
|
|
| 113 |
lines.append(
|
| 114 |
-
f"| {
|
|
|
|
| 115 |
)
|
| 116 |
|
| 117 |
return "\n".join(lines)
|
|
@@ -119,15 +159,16 @@ def get_metrics() -> str:
|
|
| 119 |
return f"Error loading metrics: {e}"
|
| 120 |
|
| 121 |
|
| 122 |
-
|
| 123 |
|
| 124 |
with gr.Blocks(title="LexiMind Demo") as demo:
|
| 125 |
gr.Markdown(
|
| 126 |
-
"# LexiMind NLP Demo\
|
|
|
|
| 127 |
)
|
| 128 |
|
| 129 |
with gr.Tab("Analyze"):
|
| 130 |
-
text_input = gr.Textbox(label="Input Text", lines=6, value=
|
| 131 |
analyze_btn = gr.Button("Analyze", variant="primary")
|
| 132 |
output = gr.Markdown(label="Results")
|
| 133 |
analyze_btn.click(fn=analyze, inputs=text_input, outputs=output)
|
|
@@ -135,6 +176,9 @@ with gr.Blocks(title="LexiMind Demo") as demo:
|
|
| 135 |
with gr.Tab("Metrics"):
|
| 136 |
gr.Markdown(get_metrics())
|
| 137 |
|
|
|
|
|
|
|
|
|
|
| 138 |
if __name__ == "__main__":
|
| 139 |
-
get_pipeline() # Pre-load
|
| 140 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Gradio demo for LexiMind multi-task NLP model.
|
| 3 |
+
|
| 4 |
+
Provides a simple web interface for the three core tasks:
|
| 5 |
+
- Summarization: Generates concise summaries of input text
|
| 6 |
+
- Emotion Detection: Identifies emotional content with confidence scores
|
| 7 |
+
- Topic Classification: Categorizes text into predefined topics
|
| 8 |
+
|
| 9 |
+
Author: Oliver Perrin
|
| 10 |
+
Date: 2025-12-04
|
| 11 |
+
"""
|
| 12 |
|
| 13 |
from __future__ import annotations
|
| 14 |
|
|
|
|
| 18 |
|
| 19 |
import gradio as gr
|
| 20 |
|
| 21 |
+
# --------------- Path Setup ---------------
|
| 22 |
+
# Ensure local src package is importable when running script directly
|
| 23 |
+
|
| 24 |
SCRIPT_DIR = Path(__file__).resolve().parent
|
| 25 |
PROJECT_ROOT = SCRIPT_DIR.parent
|
| 26 |
+
|
| 27 |
if str(PROJECT_ROOT) not in sys.path:
|
| 28 |
sys.path.insert(0, str(PROJECT_ROOT))
|
| 29 |
|
|
|
|
| 35 |
configure_logging()
|
| 36 |
logger = get_logger(__name__)
|
| 37 |
|
| 38 |
+
# --------------- Constants ---------------
|
| 39 |
+
|
| 40 |
OUTPUTS_DIR = PROJECT_ROOT / "outputs"
|
| 41 |
EVAL_REPORT_PATH = OUTPUTS_DIR / "evaluation_report.json"
|
| 42 |
|
| 43 |
+
SAMPLE_TEXT = (
|
| 44 |
+
"Artificial intelligence is rapidly transforming technology. "
|
| 45 |
+
"Machine learning algorithms process vast amounts of data, identifying "
|
| 46 |
+
"patterns with unprecedented accuracy. From healthcare to finance, AI is "
|
| 47 |
+
"revolutionizing industries worldwide. However, ethical considerations "
|
| 48 |
+
"around privacy and bias remain critical challenges."
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
# --------------- Pipeline Management ---------------
|
| 52 |
+
|
| 53 |
_pipeline = None
|
| 54 |
|
| 55 |
|
| 56 |
def get_pipeline():
|
| 57 |
+
"""Lazy-load the inference pipeline, downloading checkpoint if needed."""
|
| 58 |
global _pipeline
|
| 59 |
+
if _pipeline is not None:
|
| 60 |
+
return _pipeline
|
| 61 |
+
|
| 62 |
+
checkpoint_path = Path("checkpoints/best.pt")
|
| 63 |
+
|
| 64 |
+
# Download from HuggingFace Hub if checkpoint doesn't exist locally
|
| 65 |
+
if not checkpoint_path.exists():
|
| 66 |
+
checkpoint_path.parent.mkdir(parents=True, exist_ok=True)
|
| 67 |
+
hf_hub_download(
|
| 68 |
+
repo_id="OliverPerrin/LexiMind-Model",
|
| 69 |
+
filename="best.pt",
|
| 70 |
+
local_dir="checkpoints",
|
| 71 |
+
local_dir_use_symlinks=False,
|
|
|
|
| 72 |
)
|
| 73 |
+
|
| 74 |
+
_pipeline, _ = create_inference_pipeline(
|
| 75 |
+
tokenizer_dir="artifacts/hf_tokenizer/",
|
| 76 |
+
checkpoint_path="checkpoints/best.pt",
|
| 77 |
+
labels_path="artifacts/labels.json",
|
| 78 |
+
)
|
| 79 |
return _pipeline
|
| 80 |
|
| 81 |
|
| 82 |
+
# --------------- Core Functions ---------------
|
| 83 |
+
|
| 84 |
+
|
| 85 |
def analyze(text: str) -> str:
|
| 86 |
+
"""
|
| 87 |
+
Run all three tasks on input text.
|
| 88 |
+
|
| 89 |
+
Returns markdown-formatted results for display in Gradio.
|
| 90 |
+
"""
|
| 91 |
if not text or not text.strip():
|
| 92 |
return "Please enter some text to analyze."
|
| 93 |
|
| 94 |
try:
|
| 95 |
pipe = get_pipeline()
|
| 96 |
|
| 97 |
+
# Run each task
|
| 98 |
summary = pipe.summarize([text], max_length=128)[0].strip() or "(empty)"
|
|
|
|
|
|
|
| 99 |
emotions = pipe.predict_emotions([text], threshold=0.5)[0]
|
| 100 |
+
topic = pipe.predict_topics([text])[0]
|
| 101 |
+
|
| 102 |
+
# Format emotion results
|
| 103 |
if emotions.labels:
|
| 104 |
emotion_str = ", ".join(
|
| 105 |
f"{lbl} ({score:.1%})"
|
|
|
|
| 108 |
else:
|
| 109 |
emotion_str = "No strong emotions detected"
|
| 110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
return f"""## Summary
|
| 112 |
{summary}
|
| 113 |
|
|
|
|
| 115 |
{emotion_str}
|
| 116 |
|
| 117 |
## Topic
|
| 118 |
+
{topic.label} ({topic.confidence:.1%})
|
| 119 |
"""
|
| 120 |
except Exception as e:
|
| 121 |
logger.error("Analysis failed: %s", e, exc_info=True)
|
|
|
|
| 123 |
|
| 124 |
|
| 125 |
def get_metrics() -> str:
|
| 126 |
+
"""Load evaluation metrics from JSON and format as markdown tables."""
|
| 127 |
if not EVAL_REPORT_PATH.exists():
|
| 128 |
return "No evaluation report found. Run `scripts/evaluate.py` first."
|
| 129 |
|
|
|
|
| 131 |
with open(EVAL_REPORT_PATH) as f:
|
| 132 |
r = json.load(f)
|
| 133 |
|
| 134 |
+
# Build overall metrics table
|
| 135 |
lines = [
|
| 136 |
"## Model Performance\n",
|
| 137 |
"| Task | Metric | Score |",
|
|
|
|
| 145 |
"| Label | Precision | Recall | F1 |",
|
| 146 |
"|-------|-----------|--------|-----|",
|
| 147 |
]
|
| 148 |
+
|
| 149 |
+
# Add per-class metrics
|
| 150 |
+
for label, metrics in r["topic"]["classification_report"].items():
|
| 151 |
+
if isinstance(metrics, dict) and "precision" in metrics:
|
| 152 |
lines.append(
|
| 153 |
+
f"| {label} | {metrics['precision']:.3f} | "
|
| 154 |
+
f"{metrics['recall']:.3f} | {metrics['f1-score']:.3f} |"
|
| 155 |
)
|
| 156 |
|
| 157 |
return "\n".join(lines)
|
|
|
|
| 159 |
return f"Error loading metrics: {e}"
|
| 160 |
|
| 161 |
|
| 162 |
+
# --------------- Gradio Interface ---------------
|
| 163 |
|
| 164 |
with gr.Blocks(title="LexiMind Demo") as demo:
|
| 165 |
gr.Markdown(
|
| 166 |
+
"# LexiMind NLP Demo\n"
|
| 167 |
+
"Multi-task model: summarization, emotion detection, topic classification."
|
| 168 |
)
|
| 169 |
|
| 170 |
with gr.Tab("Analyze"):
|
| 171 |
+
text_input = gr.Textbox(label="Input Text", lines=6, value=SAMPLE_TEXT)
|
| 172 |
analyze_btn = gr.Button("Analyze", variant="primary")
|
| 173 |
output = gr.Markdown(label="Results")
|
| 174 |
analyze_btn.click(fn=analyze, inputs=text_input, outputs=output)
|
|
|
|
| 176 |
with gr.Tab("Metrics"):
|
| 177 |
gr.Markdown(get_metrics())
|
| 178 |
|
| 179 |
+
|
| 180 |
+
# --------------- Entry Point ---------------
|
| 181 |
+
|
| 182 |
if __name__ == "__main__":
|
| 183 |
+
get_pipeline() # Pre-load to fail fast if checkpoint missing
|
| 184 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|