File size: 6,881 Bytes
590a604
 
 
 
 
 
 
 
 
ee1a8a3
00d412c
 
 
 
a18e93d
00d412c
 
 
 
 
67c3a83
00d412c
 
 
 
a18e93d
00d412c
 
 
 
 
a18e93d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00d412c
 
 
a18e93d
 
 
 
00d412c
a18e93d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00d412c
 
 
a18e93d
 
 
 
 
 
 
00d412c
 
 
a18e93d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60f8a12
a18e93d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00d412c
 
 
a18e93d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
"""
ROUGE evaluation script for LexiMind.

Computes ROUGE-1, ROUGE-2, and ROUGE-L scores on summarization outputs
with support for batched inference and customizable metrics.

Author: Oliver Perrin
Date: December 2025
"""

from __future__ import annotations

import argparse
import json
import sys
from collections import defaultdict
from pathlib import Path
from statistics import fmean
from typing import Dict, Iterable, List, Sequence, Tuple

from rouge_score import rouge_scorer  # type: ignore[import-untyped]
from tqdm import tqdm

PROJECT_ROOT = Path(__file__).resolve().parent.parent
if str(PROJECT_ROOT) not in sys.path:
    sys.path.insert(0, str(PROJECT_ROOT))

from src.inference.factory import create_inference_pipeline


def parse_args() -> argparse.Namespace:
    parser = argparse.ArgumentParser(description="Evaluate LexiMind summaries with ROUGE metrics.")
    parser.add_argument(
        "data", type=Path, help="Path to JSONL file with source text and gold summaries."
    )
    parser.add_argument(
        "checkpoint", type=Path, help="Path to the trained checkpoint (e.g., checkpoints/best.pt)."
    )
    parser.add_argument(
        "labels", type=Path, help="Path to label metadata (e.g., artifacts/labels.json)."
    )
    parser.add_argument(
        "--tokenizer-dir",
        type=Path,
        default=Path("artifacts/hf_tokenizer"),
        help="Directory containing the saved tokenizer artifacts.",
    )
    parser.add_argument(
        "--model-config",
        type=Path,
        default=None,
        help="Optional YAML config describing the model architecture.",
    )
    parser.add_argument(
        "--device", type=str, default="cpu", help="Device to run inference on (cpu or cuda)."
    )
    parser.add_argument(
        "--batch-size", type=int, default=8, help="Number of samples per inference batch."
    )
    parser.add_argument(
        "--max-samples",
        type=int,
        default=None,
        help="If provided, limit evaluation to the first N samples for quick smoke tests.",
    )
    parser.add_argument(
        "--max-length",
        type=int,
        default=128,
        help="Maximum length to pass into the summarization head during generation.",
    )
    parser.add_argument(
        "--metrics",
        type=str,
        nargs="+",
        default=("rouge1", "rouge2", "rougeL"),
        help="ROUGE metrics to compute.",
    )
    parser.add_argument(
        "--source-field",
        type=str,
        default="source",
        help="Field name containing the input document in the JSONL examples.",
    )
    parser.add_argument(
        "--target-field",
        type=str,
        default="summary",
        help="Field name containing the reference summary in the JSONL examples.",
    )
    parser.add_argument(
        "--no-stemmer",
        action="store_true",
        help="Disable Porter stemming inside the ROUGE scorer (defaults to enabled).",
    )
    parser.add_argument(
        "--output",
        type=Path,
        default=None,
        help="Optional path to save a JSON report with aggregate metrics and sample counts.",
    )
    return parser.parse_args()


def load_examples(
    path: Path,
    source_field: str,
    target_field: str,
    max_samples: int | None,
) -> List[Tuple[str, str]]:
    examples: List[Tuple[str, str]] = []
    with path.open("r", encoding="utf-8") as handle:
        for line in handle:
            line = line.strip()
            if not line:
                continue
            record = json.loads(line)
            try:
                source = str(record[source_field])
                target = str(record[target_field])
            except KeyError as exc:  # pragma: no cover - invalid data surface at runtime
                raise KeyError(
                    f"Missing field in record: {exc} (available keys: {list(record)})"
                ) from exc
            examples.append((source, target))
            if max_samples is not None and len(examples) >= max_samples:
                break
    if not examples:
        raise ValueError(f"No examples loaded from {path}")
    return examples


def batched(
    items: Sequence[Tuple[str, str]], batch_size: int
) -> Iterable[Sequence[Tuple[str, str]]]:
    for start in range(0, len(items), batch_size):
        yield items[start : start + batch_size]


def aggregate_scores(raw_scores: Dict[str, Dict[str, List[float]]]) -> Dict[str, Dict[str, float]]:
    aggregated: Dict[str, Dict[str, float]] = {}
    for metric, components in raw_scores.items():
        aggregated[metric] = {
            component: (fmean(values) if values else 0.0)
            for component, values in components.items()
        }
    return aggregated


def main() -> None:
    args = parse_args()

    pipeline, _ = create_inference_pipeline(
        checkpoint_path=args.checkpoint,
        labels_path=args.labels,
        tokenizer_dir=args.tokenizer_dir,
        model_config_path=args.model_config,
        device=args.device,
        summary_max_length=args.max_length,
    )

    examples = load_examples(args.data, args.source_field, args.target_field, args.max_samples)
    scorer = rouge_scorer.RougeScorer(list(args.metrics), use_stemmer=not args.no_stemmer)

    score_store: Dict[str, Dict[str, List[float]]] = defaultdict(lambda: defaultdict(list))

    for batch in tqdm(
        list(batched(examples, args.batch_size)),
        desc="Evaluating",
        total=(len(examples) + args.batch_size - 1) // args.batch_size,
    ):
        documents = [item[0] for item in batch]
        references = [item[1] for item in batch]
        predictions = pipeline.summarize(documents, max_length=args.max_length)

        for reference, prediction in zip(references, predictions, strict=False):
            scores = scorer.score(reference, prediction)
            for metric_name, score in scores.items():
                score_store[metric_name]["precision"].append(score.precision)
                score_store[metric_name]["recall"].append(score.recall)
                score_store[metric_name]["fmeasure"].append(score.fmeasure)

    aggregated = aggregate_scores(score_store)
    report = {
        "num_examples": len(examples),
        "metrics": aggregated,
        "config": {
            "data": str(args.data),
            "checkpoint": str(args.checkpoint),
            "tokenizer_dir": str(args.tokenizer_dir),
            "metrics": list(args.metrics),
            "max_length": args.max_length,
            "batch_size": args.batch_size,
            "device": args.device,
        },
    }

    print(json.dumps(report, indent=2))
    if args.output:
        args.output.parent.mkdir(parents=True, exist_ok=True)
        with args.output.open("w", encoding="utf-8") as handle:
            json.dump(report, handle, ensure_ascii=False, indent=2)


if __name__ == "__main__":
    main()