Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -16,6 +16,7 @@ from gradio.utils import get_cache_folder
|
|
| 16 |
from infer import lotus, lotus_video
|
| 17 |
import transformers
|
| 18 |
from huggingface_hub import login
|
|
|
|
| 19 |
|
| 20 |
transformers.utils.move_cache()
|
| 21 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
@@ -27,18 +28,206 @@ def apply_gaussian_blur(image, radius=1.0):
|
|
| 27 |
"""Apply Gaussian blur to PIL Image with specified radius"""
|
| 28 |
return image.filter(ImageFilter.GaussianBlur(radius=radius))
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
def infer(path_input, seed=None):
|
| 31 |
name_base, name_ext = os.path.splitext(os.path.basename(path_input))
|
| 32 |
_, output_d = lotus(path_input, 'depth', seed, device)
|
| 33 |
-
|
| 34 |
# Apply Gaussian blur with 0.75 radius
|
| 35 |
output_d = apply_gaussian_blur(output_d, radius=0.75)
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
if not os.path.exists("files/output"):
|
| 38 |
os.makedirs("files/output")
|
| 39 |
d_save_path = os.path.join("files/output", f"{name_base}_d{name_ext}")
|
|
|
|
|
|
|
| 40 |
output_d.save(d_save_path)
|
| 41 |
-
|
|
|
|
|
|
|
| 42 |
|
| 43 |
def infer_video(path_input, seed=None):
|
| 44 |
_, frames_d, fps = lotus_video(path_input, 'depth', seed, device)
|
|
@@ -70,7 +259,7 @@ def run_demo_server():
|
|
| 70 |
|
| 71 |
with gr.Blocks(
|
| 72 |
theme=gradio_theme,
|
| 73 |
-
title="LOTUS (Depth - Discriminative)",
|
| 74 |
css="""
|
| 75 |
#download {
|
| 76 |
height: 118px;
|
|
@@ -133,6 +322,11 @@ def run_demo_server():
|
|
| 133 |
elem_classes="slider",
|
| 134 |
position=0.25,
|
| 135 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
gr.Examples(
|
| 138 |
fn=infer_gpu,
|
|
@@ -141,7 +335,7 @@ def run_demo_server():
|
|
| 141 |
for name in os.listdir(os.path.join("files", "images"))
|
| 142 |
]),
|
| 143 |
inputs=[image_input],
|
| 144 |
-
outputs=[image_output_d],
|
| 145 |
cache_examples=False,
|
| 146 |
)
|
| 147 |
|
|
@@ -182,13 +376,13 @@ def run_demo_server():
|
|
| 182 |
image_submit_btn.click(
|
| 183 |
fn=infer_gpu,
|
| 184 |
inputs=[image_input],
|
| 185 |
-
outputs=[image_output_d],
|
| 186 |
concurrency_limit=1,
|
| 187 |
)
|
| 188 |
image_reset_btn.click(
|
| 189 |
-
fn=lambda: None,
|
| 190 |
inputs=[],
|
| 191 |
-
outputs=[image_output_d],
|
| 192 |
queue=False,
|
| 193 |
)
|
| 194 |
|
|
|
|
| 16 |
from infer import lotus, lotus_video
|
| 17 |
import transformers
|
| 18 |
from huggingface_hub import login
|
| 19 |
+
import cv2
|
| 20 |
|
| 21 |
transformers.utils.move_cache()
|
| 22 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
| 28 |
"""Apply Gaussian blur to PIL Image with specified radius"""
|
| 29 |
return image.filter(ImageFilter.GaussianBlur(radius=radius))
|
| 30 |
|
| 31 |
+
class NormalMapSimple:
|
| 32 |
+
@classmethod
|
| 33 |
+
def INPUT_TYPES(s):
|
| 34 |
+
return {
|
| 35 |
+
"required": {
|
| 36 |
+
"images": ("IMAGE",),
|
| 37 |
+
"scale_XY": ("FLOAT",{"default": 1, "min": 0, "max": 100, "step": 0.001}),
|
| 38 |
+
},
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
RETURN_TYPES = ("IMAGE",)
|
| 42 |
+
FUNCTION = "normal_map"
|
| 43 |
+
|
| 44 |
+
CATEGORY = "image/filters"
|
| 45 |
+
|
| 46 |
+
def normal_map(self, images, scale_XY):
|
| 47 |
+
t = images.detach().clone().cpu().numpy().astype(np.float32)
|
| 48 |
+
L = np.mean(t[:,:,:,:3], axis=3)
|
| 49 |
+
for i in range(t.shape[0]):
|
| 50 |
+
t[i,:,:,0] = cv2.Scharr(L[i], -1, 1, 0, cv2.BORDER_REFLECT) * -1
|
| 51 |
+
t[i,:,:,1] = cv2.Scharr(L[i], -1, 0, 1, cv2.BORDER_REFLECT)
|
| 52 |
+
t[:,:,:,2] = 1
|
| 53 |
+
t = torch.from_numpy(t)
|
| 54 |
+
t[:,:,:,:2] *= scale_XY
|
| 55 |
+
t[:,:,:,:3] = torch.nn.functional.normalize(t[:,:,:,:3], dim=3) / 2 + 0.5
|
| 56 |
+
return (t,)
|
| 57 |
+
|
| 58 |
+
class ConvertNormals:
|
| 59 |
+
@classmethod
|
| 60 |
+
def INPUT_TYPES(s):
|
| 61 |
+
return {
|
| 62 |
+
"required": {
|
| 63 |
+
"normals": ("IMAGE",),
|
| 64 |
+
"input_mode": (["BAE", "MiDaS", "Standard", "DirectX"],),
|
| 65 |
+
"output_mode": (["BAE", "MiDaS", "Standard", "DirectX"],),
|
| 66 |
+
"scale_XY": ("FLOAT",{"default": 1, "min": 0, "max": 100, "step": 0.001}),
|
| 67 |
+
"normalize": ("BOOLEAN", {"default": True}),
|
| 68 |
+
"fix_black": ("BOOLEAN", {"default": True}),
|
| 69 |
+
},
|
| 70 |
+
"optional": {
|
| 71 |
+
"optional_fill": ("IMAGE",),
|
| 72 |
+
},
|
| 73 |
+
}
|
| 74 |
+
|
| 75 |
+
RETURN_TYPES = ("IMAGE",)
|
| 76 |
+
FUNCTION = "convert_normals"
|
| 77 |
+
|
| 78 |
+
CATEGORY = "image/filters"
|
| 79 |
+
|
| 80 |
+
def convert_normals(self, normals, input_mode, output_mode, scale_XY, normalize, fix_black, optional_fill=None):
|
| 81 |
+
try:
|
| 82 |
+
t = normals.detach().clone()
|
| 83 |
+
|
| 84 |
+
if input_mode == "BAE":
|
| 85 |
+
t[:,:,:,0] = 1 - t[:,:,:,0] # invert R
|
| 86 |
+
elif input_mode == "MiDaS":
|
| 87 |
+
t[:,:,:,:3] = torch.stack([1 - t[:,:,:,2], t[:,:,:,1], t[:,:,:,0]], dim=3) # BGR -> RGB and invert R
|
| 88 |
+
elif input_mode == "DirectX":
|
| 89 |
+
t[:,:,:,1] = 1 - t[:,:,:,1] # invert G
|
| 90 |
+
|
| 91 |
+
if fix_black:
|
| 92 |
+
key = torch.clamp(1 - t[:,:,:,2] * 2, min=0, max=1)
|
| 93 |
+
if optional_fill is None:
|
| 94 |
+
t[:,:,:,0] += key * 0.5
|
| 95 |
+
t[:,:,:,1] += key * 0.5
|
| 96 |
+
t[:,:,:,2] += key
|
| 97 |
+
else:
|
| 98 |
+
fill = optional_fill.detach().clone()
|
| 99 |
+
if fill.shape[1:3] != t.shape[1:3]:
|
| 100 |
+
fill = torch.nn.functional.interpolate(fill.movedim(-1,1), size=(t.shape[1], t.shape[2]), mode='bilinear').movedim(1,-1)
|
| 101 |
+
if fill.shape[0] != t.shape[0]:
|
| 102 |
+
fill = fill[0].unsqueeze(0).expand(t.shape[0], -1, -1, -1)
|
| 103 |
+
t[:,:,:,:3] += fill[:,:,:,:3] * key.unsqueeze(3).expand(-1, -1, -1, 3)
|
| 104 |
+
|
| 105 |
+
t[:,:,:,:2] = (t[:,:,:,:2] - 0.5) * scale_XY + 0.5
|
| 106 |
+
|
| 107 |
+
if normalize:
|
| 108 |
+
# Transform to [-1, 1] range
|
| 109 |
+
t_norm = t[:,:,:,:3] * 2 - 1
|
| 110 |
+
|
| 111 |
+
# Calculate the length of each vector
|
| 112 |
+
lengths = torch.sqrt(torch.sum(t_norm**2, dim=3, keepdim=True))
|
| 113 |
+
|
| 114 |
+
# Avoid division by zero
|
| 115 |
+
lengths = torch.clamp(lengths, min=1e-6)
|
| 116 |
+
|
| 117 |
+
# Normalize each vector to unit length
|
| 118 |
+
t_norm = t_norm / lengths
|
| 119 |
+
|
| 120 |
+
# Transform back to [0, 1] range
|
| 121 |
+
t[:,:,:,:3] = (t_norm + 1) / 2
|
| 122 |
+
|
| 123 |
+
if output_mode == "BAE":
|
| 124 |
+
t[:,:,:,0] = 1 - t[:,:,:,0] # invert R
|
| 125 |
+
elif output_mode == "MiDaS":
|
| 126 |
+
t[:,:,:,:3] = torch.stack([t[:,:,:,2], t[:,:,:,1], 1 - t[:,:,:,0]], dim=3) # invert R and BGR -> RGB
|
| 127 |
+
elif output_mode == "DirectX":
|
| 128 |
+
t[:,:,:,1] = 1 - t[:,:,:,1] # invert G
|
| 129 |
+
|
| 130 |
+
return (t,)
|
| 131 |
+
except Exception as e:
|
| 132 |
+
print(f"Error in convert_normals: {str(e)}")
|
| 133 |
+
return (normals,)
|
| 134 |
+
|
| 135 |
+
def get_image_intensity(img, gamma_correction=1.0):
|
| 136 |
+
"""
|
| 137 |
+
Extract intensity map from an image using HSV color space
|
| 138 |
+
"""
|
| 139 |
+
# Convert to HSV color space
|
| 140 |
+
result = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
|
| 141 |
+
# Extract Value channel (intensity)
|
| 142 |
+
result = result[:, :, 2].astype(np.float32) / 255.0
|
| 143 |
+
# Apply gamma correction
|
| 144 |
+
result = result ** gamma_correction
|
| 145 |
+
# Convert back to 0-255 range
|
| 146 |
+
result = (result * 255.0).clip(0, 255).astype(np.uint8)
|
| 147 |
+
# Convert to RGB (still grayscale but in RGB format)
|
| 148 |
+
result = cv2.cvtColor(result, cv2.COLOR_GRAY2RGB)
|
| 149 |
+
return result
|
| 150 |
+
|
| 151 |
+
def blend_numpy_images(image1, image2, blend_factor=0.25, mode="normal"):
|
| 152 |
+
"""
|
| 153 |
+
Blend two numpy images using normal mode
|
| 154 |
+
"""
|
| 155 |
+
# Convert to float32 and normalize to 0-1
|
| 156 |
+
img1 = image1.astype(np.float32) / 255.0
|
| 157 |
+
img2 = image2.astype(np.float32) / 255.0
|
| 158 |
+
|
| 159 |
+
# Normal blend mode
|
| 160 |
+
blended = img1 * (1 - blend_factor) + img2 * blend_factor
|
| 161 |
+
|
| 162 |
+
# Convert back to uint8
|
| 163 |
+
blended = (blended * 255.0).clip(0, 255).astype(np.uint8)
|
| 164 |
+
return blended
|
| 165 |
+
|
| 166 |
+
def process_normal_map(image):
|
| 167 |
+
"""
|
| 168 |
+
Process image through NormalMapSimple and ConvertNormals
|
| 169 |
+
"""
|
| 170 |
+
# Convert numpy image to torch tensor with batch dimension
|
| 171 |
+
image_tensor = torch.from_numpy(image).unsqueeze(0).float() / 255.0
|
| 172 |
+
|
| 173 |
+
# Create instances of the classes
|
| 174 |
+
normal_map_generator = NormalMapSimple()
|
| 175 |
+
normal_converter = ConvertNormals()
|
| 176 |
+
|
| 177 |
+
# Generate initial normal map
|
| 178 |
+
normal_map = normal_map_generator.normal_map(image_tensor, scale_XY=1.0)[0]
|
| 179 |
+
|
| 180 |
+
# Convert normal map from Standard to DirectX
|
| 181 |
+
converted_normal = normal_converter.convert_normals(
|
| 182 |
+
normal_map,
|
| 183 |
+
input_mode="Standard",
|
| 184 |
+
output_mode="DirectX",
|
| 185 |
+
scale_XY=1.0,
|
| 186 |
+
normalize=True,
|
| 187 |
+
fix_black=True
|
| 188 |
+
)[0]
|
| 189 |
+
|
| 190 |
+
# Convert back to numpy array
|
| 191 |
+
result = (converted_normal.squeeze(0).numpy() * 255).astype(np.uint8)
|
| 192 |
+
return result
|
| 193 |
+
|
| 194 |
def infer(path_input, seed=None):
|
| 195 |
name_base, name_ext = os.path.splitext(os.path.basename(path_input))
|
| 196 |
_, output_d = lotus(path_input, 'depth', seed, device)
|
| 197 |
+
|
| 198 |
# Apply Gaussian blur with 0.75 radius
|
| 199 |
output_d = apply_gaussian_blur(output_d, radius=0.75)
|
| 200 |
+
|
| 201 |
+
# Convert depth to numpy for normal map processing
|
| 202 |
+
depth_array = np.array(output_d)
|
| 203 |
+
|
| 204 |
+
# Load original image for intensity blending
|
| 205 |
+
input_image = Image.open(path_input)
|
| 206 |
+
input_array = np.array(input_image)
|
| 207 |
+
|
| 208 |
+
# Get intensity map from original image
|
| 209 |
+
intensity_map = get_image_intensity(input_array, gamma_correction=1.0)
|
| 210 |
+
|
| 211 |
+
# Blend depth with intensity map
|
| 212 |
+
blended_result = blend_numpy_images(
|
| 213 |
+
cv2.cvtColor(depth_array, cv2.COLOR_RGB2BGR if len(depth_array.shape) == 3 else cv2.COLOR_GRAY2BGR),
|
| 214 |
+
intensity_map,
|
| 215 |
+
blend_factor=0.25,
|
| 216 |
+
mode="normal"
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
# Generate normal map from blended result
|
| 220 |
+
normal_map = process_normal_map(blended_result)
|
| 221 |
+
|
| 222 |
if not os.path.exists("files/output"):
|
| 223 |
os.makedirs("files/output")
|
| 224 |
d_save_path = os.path.join("files/output", f"{name_base}_d{name_ext}")
|
| 225 |
+
n_save_path = os.path.join("files/output", f"{name_base}_n{name_ext}")
|
| 226 |
+
|
| 227 |
output_d.save(d_save_path)
|
| 228 |
+
Image.fromarray(normal_map).save(n_save_path)
|
| 229 |
+
|
| 230 |
+
return [path_input, d_save_path, n_save_path]
|
| 231 |
|
| 232 |
def infer_video(path_input, seed=None):
|
| 233 |
_, frames_d, fps = lotus_video(path_input, 'depth', seed, device)
|
|
|
|
| 259 |
|
| 260 |
with gr.Blocks(
|
| 261 |
theme=gradio_theme,
|
| 262 |
+
title="LOTUS (Depth & Normal Maps - Discriminative)",
|
| 263 |
css="""
|
| 264 |
#download {
|
| 265 |
height: 118px;
|
|
|
|
| 322 |
elem_classes="slider",
|
| 323 |
position=0.25,
|
| 324 |
)
|
| 325 |
+
image_output_n = gr.Image(
|
| 326 |
+
label="Normal Map Output",
|
| 327 |
+
type="filepath",
|
| 328 |
+
interactive=False,
|
| 329 |
+
)
|
| 330 |
|
| 331 |
gr.Examples(
|
| 332 |
fn=infer_gpu,
|
|
|
|
| 335 |
for name in os.listdir(os.path.join("files", "images"))
|
| 336 |
]),
|
| 337 |
inputs=[image_input],
|
| 338 |
+
outputs=[image_output_d, image_output_n],
|
| 339 |
cache_examples=False,
|
| 340 |
)
|
| 341 |
|
|
|
|
| 376 |
image_submit_btn.click(
|
| 377 |
fn=infer_gpu,
|
| 378 |
inputs=[image_input],
|
| 379 |
+
outputs=[image_output_d, image_output_n],
|
| 380 |
concurrency_limit=1,
|
| 381 |
)
|
| 382 |
image_reset_btn.click(
|
| 383 |
+
fn=lambda: [None, None],
|
| 384 |
inputs=[],
|
| 385 |
+
outputs=[image_output_d, image_output_n],
|
| 386 |
queue=False,
|
| 387 |
)
|
| 388 |
|