File size: 13,246 Bytes
db12d23
 
c8d1052
 
 
f782dc8
c8d1052
 
84395d7
 
db12d23
 
84395d7
db12d23
84395d7
c8d1052
 
f782dc8
c8d1052
84395d7
 
 
 
f782dc8
 
 
 
84395d7
f782dc8
 
 
 
c8d1052
84395d7
 
c8d1052
 
 
 
1009e84
c8d1052
 
 
 
db12d23
 
c8d1052
84395d7
c8d1052
84395d7
db12d23
c8d1052
f782dc8
 
 
 
 
 
 
 
 
 
 
 
db12d23
 
c8d1052
84395d7
c8d1052
 
 
f782dc8
c8d1052
 
84395d7
f782dc8
 
c8d1052
f782dc8
 
c8d1052
 
84395d7
 
 
c8d1052
f782dc8
c8d1052
f782dc8
c8d1052
f782dc8
84395d7
f782dc8
c8d1052
f782dc8
 
c8d1052
 
 
 
 
84395d7
c8d1052
 
 
 
 
 
 
 
 
 
 
 
84395d7
c8d1052
f782dc8
 
c8d1052
 
 
8eb3166
 
c8d1052
84395d7
 
8eb3166
 
 
 
 
 
c8d1052
f782dc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8eb3166
f782dc8
 
 
 
 
8eb3166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f782dc8
 
 
 
 
 
 
 
 
c8d1052
 
 
 
84395d7
c8d1052
 
 
f782dc8
 
 
 
 
 
 
 
 
 
 
 
f8a9f51
db12d23
 
 
c8d1052
 
 
8eb3166
c8d1052
 
 
f782dc8
 
c8d1052
f782dc8
c8d1052
f782dc8
c8d1052
f782dc8
 
 
c8d1052
84395d7
c8d1052
7622e4a
2313bae
 
c8d1052
84395d7
c8d1052
 
f782dc8
c8d1052
 
 
f782dc8
 
 
c8d1052
2313bae
 
c8d1052
84395d7
c8d1052
 
 
 
f782dc8
c8d1052
 
f782dc8
 
 
c8d1052
2313bae
 
c8d1052
f782dc8
8eb3166
f782dc8
84395d7
 
 
 
 
 
f782dc8
84395d7
 
 
c8d1052
f782dc8
84395d7
 
 
f782dc8
84395d7
 
f782dc8
84395d7
f782dc8
84395d7
 
 
 
 
 
 
f782dc8
 
 
 
 
 
 
 
 
84395d7
f782dc8
8eb3166
84395d7
 
 
f782dc8
84395d7
 
f782dc8
84395d7
 
f782dc8
 
 
 
 
 
84395d7
 
 
 
 
 
c8d1052
f782dc8
 
c8d1052
f782dc8
f8a9f51
ecee7e2
db12d23
f782dc8
 
 
 
84395d7
c8d1052
 
f782dc8
c8d1052
f782dc8
c8d1052
f782dc8
84395d7
 
c8d1052
84395d7
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import os
import io
import base64
import threading
import traceback
import gc
from typing import Optional

from flask import Flask, request, jsonify, send_from_directory
from PIL import Image
import numpy as np
import requests
import torch

# Set environment variables for CPU-only operation
os.environ.setdefault("MPLCONFIGDIR", "/tmp/.matplotlib")
os.environ.setdefault("FONTCONFIG_PATH", "/tmp/.fontconfig")
os.environ.setdefault("FONTCONFIG_FILE", "/etc/fonts/fonts.conf")
os.environ.setdefault("CUDA_VISIBLE_DEVICES", "")
os.environ.setdefault("OMP_NUM_THREADS", "4")
os.environ.setdefault("MKL_NUM_THREADS", "4")
os.environ.setdefault("OPENBLAS_NUM_THREADS", "4")

# Create writable fontconfig cache
os.makedirs("/tmp/.fontconfig", exist_ok=True)
os.makedirs("/tmp/.matplotlib", exist_ok=True)

# Limit torch threads
try:
    torch.set_num_threads(4)
except Exception:
    pass

import supervision as sv
from rfdetr import RFDETRSegPreview

app = Flask(__name__, static_folder="static", static_url_path="/")

# Checkpoint URL & local path
CHECKPOINT_URL = "https://huggingface.co/Subh775/Seg-Basil-rfdetr/resolve/main/checkpoint_best_total.pth"
CHECKPOINT_PATH = os.path.join("/tmp", "checkpoint_best_total.pth")

MODEL_LOCK = threading.Lock()
MODEL = None


def download_file(url: str, dst: str, chunk_size: int = 8192):
    """Download file if not exists"""
    if os.path.exists(dst) and os.path.getsize(dst) > 0:
        print(f"[INFO] Checkpoint already exists at {dst}")
        return dst
    print(f"[INFO] Downloading weights from {url} -> {dst}")
    try:
        r = requests.get(url, stream=True, timeout=180)
        r.raise_for_status()
        with open(dst, "wb") as fh:
            for chunk in r.iter_content(chunk_size=chunk_size):
                if chunk:
                    fh.write(chunk)
        print("[INFO] Download complete.")
        return dst
    except Exception as e:
        print(f"[ERROR] Download failed: {e}")
        raise


def init_model():
    """Lazily initialize the RF-DETR model and cache it in global MODEL."""
    global MODEL
    with MODEL_LOCK:
        if MODEL is not None:
            print("[INFO] Model already loaded, returning cached instance")
            return MODEL
        try:
            # Ensure checkpoint present
            if not os.path.exists(CHECKPOINT_PATH):
                print("[INFO] Checkpoint not found, downloading...")
                download_file(CHECKPOINT_URL, CHECKPOINT_PATH)
            else:
                print(f"[INFO] Using existing checkpoint at {CHECKPOINT_PATH}")

            print("[INFO] Loading RF-DETR model (CPU mode)...")
            MODEL = RFDETRSegPreview(pretrain_weights=CHECKPOINT_PATH)
            
            # Try to optimize for inference
            try:
                print("[INFO] Optimizing model for inference...")
                MODEL.optimize_for_inference()
                print("[INFO] Model optimization complete")
            except Exception as e:
                print(f"[WARN] optimize_for_inference() skipped/failed: {e}")
            
            print("[INFO] Model ready for inference")
            return MODEL
        except Exception as e:
            print(f"[ERROR] Model initialization failed: {e}")
            traceback.print_exc()
            raise


def decode_data_url(data_url: str) -> Image.Image:
    """Decode data URL to PIL Image"""
    if data_url.startswith("data:"):
        _, b64 = data_url.split(",", 1)
        data = base64.b64decode(b64)
    else:
        try:
            data = base64.b64decode(data_url)
        except Exception:
            raise ValueError("Invalid image data")
    return Image.open(io.BytesIO(data)).convert("RGB")


def encode_pil_to_dataurl(pil_img: Image.Image, fmt="PNG") -> str:
    """Encode PIL Image to data URL"""
    buf = io.BytesIO()
    pil_img.save(buf, format=fmt, optimize=False)
    buf.seek(0)
    return "data:image/{};base64,".format(fmt.lower()) + base64.b64encode(buf.getvalue()).decode("ascii")


def annotate_segmentation(image: Image.Image, detections: sv.Detections, 
                         show_labels: bool = True, show_confidence: bool = True) -> Image.Image:
    """
    Annotate image with segmentation masks using supervision library.
    This matches the visualization from rfdetr_seg_infer.py script.
    
    Args:
        image: Input PIL Image
        detections: Supervision Detections object
        show_labels: Whether to show "Tulsi" label text
        show_confidence: Whether to show confidence scores
    """
    try:
        # Define color palette
        palette = sv.ColorPalette.from_hex([
            "#ffff00", "#ff9b00", "#ff8080", "#ff66b2", "#ff66ff", "#b266ff",
            "#9999ff", "#3399ff", "#66ffff", "#33ff99", "#66ff66", "#99ff00",
        ])

        # Calculate optimal text scale based on image resolution
        text_scale = sv.calculate_optimal_text_scale(resolution_wh=image.size)
        
        print(f"[INFO] Creating annotators with text_scale={text_scale}")
        
        # Create annotators
        mask_annotator = sv.MaskAnnotator(color=palette)
        polygon_annotator = sv.PolygonAnnotator(color=sv.Color.WHITE)

        # Apply base annotations (masks and polygons always shown)
        out = image.copy()
        print("[INFO] Applying mask annotation...")
        out = mask_annotator.annotate(out, detections)
        print("[INFO] Applying polygon annotation...")
        out = polygon_annotator.annotate(out, detections)
        
        # Only add labels if at least one option is enabled
        if show_labels or show_confidence:
            label_annotator = sv.LabelAnnotator(
                color=palette,
                text_color=sv.Color.BLACK,
                text_scale=text_scale,
                text_position=sv.Position.CENTER_OF_MASS
            )
            
            # Create labels based on options
            labels = []
            for conf in detections.confidence:
                label_parts = []
                if show_labels:
                    label_parts.append("Tulsi")
                if show_confidence:
                    label_parts.append(f"{float(conf):.2f}")
                labels.append(" ".join(label_parts))
            
            print(f"[INFO] Applying label annotation with {len(labels)} labels...")
            out = label_annotator.annotate(out, detections, labels)
        else:
            print("[INFO] Skipping label annotation (both labels and confidence disabled)")
        
        print("[INFO] Annotation complete")
        return out
        
    except Exception as e:
        print(f"[ERROR] Annotation failed: {e}")
        traceback.print_exc()
        # Return original image if annotation fails
        return image


@app.route("/", methods=["GET"])
def index():
    """Serve the static UI"""
    index_path = os.path.join(app.static_folder or "static", "index.html")
    if os.path.exists(index_path):
        return send_from_directory(app.static_folder, "index.html")
    return jsonify({"message": "RF-DETR Segmentation API is running.", "status": "ready"})


@app.route("/health", methods=["GET"])
def health():
    """Health check endpoint"""
    model_loaded = MODEL is not None
    return jsonify({
        "status": "healthy",
        "model_loaded": model_loaded,
        "checkpoint_exists": os.path.exists(CHECKPOINT_PATH)
    })


@app.route("/predict", methods=["POST"])
def predict():
    """
    Accepts:
      - multipart/form-data with file field "file"
      - or JSON {"image": "<data:url...>", "conf": 0.05, "show_labels": true, "show_confidence": true}
    Returns JSON:
      {"annotated": "<data:image/png;base64,...>", "confidences": [..], "count": N}
    """
    print("\n[INFO] ========== New prediction request ==========")
    
    try:
        print("[INFO] Initializing model...")
        model = init_model()
        print("[INFO] Model ready")
    except Exception as e:
        error_msg = f"Model initialization failed: {e}"
        print(f"[ERROR] {error_msg}")
        return jsonify({"error": error_msg}), 500

    # Parse input
    img: Optional[Image.Image] = None
    conf_threshold = 0.05
    show_labels = True
    show_confidence = True

    # Check if file uploaded
    if "file" in request.files:
        file = request.files["file"]
        print(f"[INFO] Processing uploaded file: {file.filename}")
        try:
            img = Image.open(file.stream).convert("RGB")
        except Exception as e:
            error_msg = f"Invalid uploaded image: {e}"
            print(f"[ERROR] {error_msg}")
            return jsonify({"error": error_msg}), 400
        conf_threshold = float(request.form.get("conf", conf_threshold))
        show_labels = request.form.get("show_labels", "true").lower() == "true"
        show_confidence = request.form.get("show_confidence", "true").lower() == "true"
    else:
        # Try JSON payload
        payload = request.get_json(silent=True)
        if not payload or "image" not in payload:
            return jsonify({"error": "No image provided. Upload 'file' or JSON with 'image' data-url."}), 400
        try:
            print("[INFO] Decoding image from data URL...")
            img = decode_data_url(payload["image"])
        except Exception as e:
            error_msg = f"Invalid image data: {e}"
            print(f"[ERROR] {error_msg}")
            return jsonify({"error": error_msg}), 400
        conf_threshold = float(payload.get("conf", conf_threshold))
        show_labels = payload.get("show_labels", True)
        show_confidence = payload.get("show_confidence", True)

    print(f"[INFO] Image size: {img.size}, Confidence threshold: {conf_threshold}")
    print(f"[INFO] Display options - Labels: {show_labels}, Confidence: {show_confidence}")

    # Optionally downscale large images to reduce memory usage
    MAX_SIZE = 1024
    if max(img.size) > MAX_SIZE:
        w, h = img.size
        scale = MAX_SIZE / float(max(w, h))
        new_w, new_h = int(round(w * scale)), int(round(h * scale))
        print(f"[INFO] Resizing image from {w}x{h} to {new_w}x{new_h}")
        img = img.resize((new_w, new_h), Image.Resampling.LANCZOS)

    # Run inference with no_grad for memory efficiency
    try:
        print("[INFO] Running inference...")
        with torch.no_grad():
            detections = model.predict(img, threshold=conf_threshold)
        
        print(f"[INFO] Raw detections: {len(detections)} objects")
        
        # Check if detections exist
        if len(detections) == 0 or not hasattr(detections, 'confidence') or len(detections.confidence) == 0:
            print("[INFO] No detections above threshold")
            # Return original image
            data_url = encode_pil_to_dataurl(img, fmt="PNG")
            return jsonify({
                "annotated": data_url,
                "confidences": [],
                "count": 0
            })
        
        print(f"[INFO] Detections have {len(detections.confidence)} confidence scores")
        print(f"[INFO] Confidence range: {min(detections.confidence):.3f} - {max(detections.confidence):.3f}")
        
        # Check if masks exist
        if hasattr(detections, 'masks') and detections.masks is not None:
            print(f"[INFO] Masks present: shape={np.array(detections.masks).shape if hasattr(detections.masks, '__len__') else 'unknown'}")
        else:
            print("[WARN] No masks found in detections!")
        
        # Annotate image using supervision library
        print("[INFO] Starting annotation...")
        annotated_pil = annotate_segmentation(img, detections, show_labels, show_confidence)
        
        # Extract confidence scores
        confidences = [float(conf) for conf in detections.confidence]
        print(f"[INFO] Final confidences: {confidences}")
        
        # Encode to data URL
        print("[INFO] Encoding annotated image...")
        data_url = encode_pil_to_dataurl(annotated_pil, fmt="PNG")
        
        # Clean up
        del detections
        gc.collect()
        
        print(f"[INFO] ========== Prediction complete: {len(confidences)} leaves detected ==========\n")
        
        return jsonify({
            "annotated": data_url,
            "confidences": confidences,
            "count": len(confidences)
        })
        
    except Exception as e:
        error_msg = f"Inference failed: {e}"
        print(f"[ERROR] {error_msg}")
        traceback.print_exc()
        return jsonify({"error": error_msg}), 500


if __name__ == "__main__":
    print("\n" + "="*60)
    print("Starting Tulsi Leaf Segmentation Server")
    print("="*60 + "\n")
    
    # Warm model in background thread
    def warm():
        try:
            print("[INFO] Starting model warmup in background...")
            init_model()
            print("[INFO] βœ“ Model warmup complete - ready for predictions")
        except Exception as e:
            print(f"[ERROR] βœ— Model warmup failed: {e}")
            traceback.print_exc()
    
    threading.Thread(target=warm, daemon=True).start()
    
    # Run Flask app
    app.run(
        host="0.0.0.0",
        port=int(os.environ.get("PORT", 7860)),
        debug=False
    )