File size: 15,397 Bytes
8f4d405 79ea999 8f4d405 b3aba24 8f4d405 79ea999 8f4d405 b3aba24 8f4d405 b3aba24 8f4d405 b3aba24 8f4d405 b3aba24 8f4d405 b3aba24 8f4d405 b3aba24 8f4d405 b3aba24 8f4d405 b3aba24 8f4d405 b3aba24 8f4d405 b3aba24 8f4d405 b3aba24 8f4d405 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
# local_model_loader.py
# Local GPU-based model loading for NVIDIA T4 Medium (16GB VRAM)
# Optimized with 4-bit quantization to fit larger models
import logging
import torch
from typing import Optional, Dict, Any
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel
from sentence_transformers import SentenceTransformer
# Import GatedRepoError for handling gated repositories
try:
from huggingface_hub.exceptions import GatedRepoError
except ImportError:
# Fallback if huggingface_hub is not available
GatedRepoError = Exception
logger = logging.getLogger(__name__)
class LocalModelLoader:
"""
Loads and manages models locally on GPU for faster inference.
Optimized for NVIDIA T4 Medium with 16GB VRAM using 4-bit quantization.
"""
def __init__(self, device: Optional[str] = None):
"""Initialize the model loader with GPU device detection."""
# Detect device
if device is None:
if torch.cuda.is_available():
self.device = "cuda"
self.device_name = torch.cuda.get_device_name(0)
logger.info(f"GPU detected: {self.device_name}")
logger.info(f"GPU Memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.2f} GB")
else:
self.device = "cpu"
self.device_name = "CPU"
logger.warning("No GPU detected, using CPU")
else:
self.device = device
self.device_name = device
# Model cache
self.loaded_models: Dict[str, Any] = {}
self.loaded_tokenizers: Dict[str, Any] = {}
self.loaded_embedding_models: Dict[str, Any] = {}
def load_chat_model(self, model_id: str, load_in_8bit: bool = False, load_in_4bit: bool = False) -> tuple:
"""
Load a chat model and tokenizer on GPU.
Args:
model_id: HuggingFace model identifier
load_in_8bit: Use 8-bit quantization (saves memory)
load_in_4bit: Use 4-bit quantization (saves more memory)
Returns:
Tuple of (model, tokenizer)
"""
if model_id in self.loaded_models:
logger.info(f"Model {model_id} already loaded, reusing")
return self.loaded_models[model_id], self.loaded_tokenizers[model_id]
try:
logger.info(f"Loading model {model_id} on {self.device}...")
# Strip API-specific suffixes (e.g., :cerebras, :novita) for local loading
# These suffixes are typically used for API endpoints, not local model identifiers
base_model_id = model_id.split(':')[0] if ':' in model_id else model_id
if base_model_id != model_id:
logger.info(f"Stripping API suffix from {model_id}, using base model: {base_model_id}")
# Load tokenizer
try:
tokenizer = AutoTokenizer.from_pretrained(
base_model_id,
trust_remote_code=True
)
except GatedRepoError as e:
logger.error(f"❌ Gated Repository Error: Cannot access gated repo {base_model_id}")
logger.error(f" Access to model {base_model_id} is restricted and you are not in the authorized list.")
logger.error(f" Visit https://huggingface.co/{base_model_id} to request access.")
logger.error(f" Error details: {e}")
raise GatedRepoError(
f"Cannot access gated repository {base_model_id}. "
f"Visit https://huggingface.co/{base_model_id} to request access."
) from e
# Determine quantization config
if load_in_4bit and self.device == "cuda":
try:
from transformers import BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
logger.info("Using 4-bit quantization")
except ImportError:
logger.warning("bitsandbytes not available, loading without quantization")
quantization_config = None
elif load_in_8bit and self.device == "cuda":
try:
quantization_config = {"load_in_8bit": True}
logger.info("Using 8-bit quantization")
except:
quantization_config = None
else:
quantization_config = None
# Load model with GPU optimization
try:
if self.device == "cuda":
model = AutoModelForCausalLM.from_pretrained(
base_model_id,
device_map="auto", # Automatically uses GPU
torch_dtype=torch.float16, # Use FP16 for memory efficiency
trust_remote_code=True,
**(quantization_config if isinstance(quantization_config, dict) else {}),
**({"quantization_config": quantization_config} if quantization_config and not isinstance(quantization_config, dict) else {})
)
else:
model = AutoModelForCausalLM.from_pretrained(
base_model_id,
torch_dtype=torch.float32,
trust_remote_code=True
)
model = model.to(self.device)
except GatedRepoError as e:
logger.error(f"❌ Gated Repository Error: Cannot access gated repo {base_model_id}")
logger.error(f" Access to model {base_model_id} is restricted and you are not in the authorized list.")
logger.error(f" Visit https://huggingface.co/{base_model_id} to request access.")
logger.error(f" Error details: {e}")
raise GatedRepoError(
f"Cannot access gated repository {base_model_id}. "
f"Visit https://huggingface.co/{base_model_id} to request access."
) from e
# Ensure padding token is set
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Cache models (use original model_id for cache key to maintain API compatibility)
self.loaded_models[model_id] = model
self.loaded_tokenizers[model_id] = tokenizer
# Log memory usage
if self.device == "cuda":
allocated = torch.cuda.memory_allocated(0) / 1024**3
reserved = torch.cuda.memory_reserved(0) / 1024**3
logger.info(f"GPU Memory - Allocated: {allocated:.2f} GB, Reserved: {reserved:.2f} GB")
logger.info(f"✓ Model {model_id} (base: {base_model_id}) loaded successfully on {self.device}")
return model, tokenizer
except GatedRepoError:
# Re-raise GatedRepoError to be handled by caller
raise
except Exception as e:
logger.error(f"Error loading model {model_id}: {e}", exc_info=True)
raise
def load_embedding_model(self, model_id: str) -> SentenceTransformer:
"""
Load a sentence transformer model for embeddings.
Args:
model_id: HuggingFace model identifier
Returns:
SentenceTransformer model
"""
if model_id in self.loaded_embedding_models:
logger.info(f"Embedding model {model_id} already loaded, reusing")
return self.loaded_embedding_models[model_id]
try:
logger.info(f"Loading embedding model {model_id}...")
# Strip API-specific suffixes for local loading
base_model_id = model_id.split(':')[0] if ':' in model_id else model_id
if base_model_id != model_id:
logger.info(f"Stripping API suffix from {model_id}, using base model: {base_model_id}")
# SentenceTransformer automatically handles GPU
try:
model = SentenceTransformer(
base_model_id,
device=self.device
)
except GatedRepoError as e:
logger.error(f"❌ Gated Repository Error: Cannot access gated repo {base_model_id}")
logger.error(f" Access to model {base_model_id} is restricted and you are not in the authorized list.")
logger.error(f" Visit https://huggingface.co/{base_model_id} to request access.")
logger.error(f" Error details: {e}")
raise GatedRepoError(
f"Cannot access gated repository {base_model_id}. "
f"Visit https://huggingface.co/{base_model_id} to request access."
) from e
# Cache model (use original model_id for cache key)
self.loaded_embedding_models[model_id] = model
logger.info(f"✓ Embedding model {model_id} (base: {base_model_id}) loaded successfully on {self.device}")
return model
except GatedRepoError:
# Re-raise GatedRepoError to be handled by caller
raise
except Exception as e:
logger.error(f"Error loading embedding model {model_id}: {e}", exc_info=True)
raise
def generate_text(
self,
model_id: str,
prompt: str,
max_tokens: int = 512,
temperature: float = 0.7,
**kwargs
) -> str:
"""
Generate text using a loaded chat model.
Args:
model_id: Model identifier
prompt: Input prompt
max_tokens: Maximum tokens to generate
temperature: Sampling temperature
Returns:
Generated text
"""
if model_id not in self.loaded_models:
raise ValueError(f"Model {model_id} not loaded. Call load_chat_model() first.")
model = self.loaded_models[model_id]
tokenizer = self.loaded_tokenizers[model_id]
try:
# Tokenize input
inputs = tokenizer(prompt, return_tensors="pt").to(self.device)
# Generate
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=max_tokens,
temperature=temperature,
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
**kwargs
)
# Decode
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Remove prompt from output if present
if generated_text.startswith(prompt):
generated_text = generated_text[len(prompt):].strip()
return generated_text
except Exception as e:
logger.error(f"Error generating text: {e}", exc_info=True)
raise
def generate_chat_completion(
self,
model_id: str,
messages: list,
max_tokens: int = 512,
temperature: float = 0.7,
**kwargs
) -> str:
"""
Generate chat completion using a loaded model.
Args:
model_id: Model identifier
messages: List of message dicts with 'role' and 'content'
max_tokens: Maximum tokens to generate
temperature: Sampling temperature
Returns:
Generated response
"""
if model_id not in self.loaded_models:
raise ValueError(f"Model {model_id} not loaded. Call load_chat_model() first.")
model = self.loaded_models[model_id]
tokenizer = self.loaded_tokenizers[model_id]
try:
# Format messages as prompt
if hasattr(tokenizer, 'apply_chat_template'):
# Use chat template if available
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
else:
# Fallback: simple formatting
prompt = "\n".join([
f"{msg['role']}: {msg['content']}"
for msg in messages
]) + "\nassistant: "
# Generate
return self.generate_text(
model_id=model_id,
prompt=prompt,
max_tokens=max_tokens,
temperature=temperature,
**kwargs
)
except Exception as e:
logger.error(f"Error generating chat completion: {e}", exc_info=True)
raise
def get_embedding(self, model_id: str, text: str) -> list:
"""
Get embedding vector for text.
Args:
model_id: Embedding model identifier
text: Input text
Returns:
Embedding vector
"""
if model_id not in self.loaded_embedding_models:
raise ValueError(f"Embedding model {model_id} not loaded. Call load_embedding_model() first.")
model = self.loaded_embedding_models[model_id]
try:
embedding = model.encode(text, convert_to_numpy=True)
return embedding.tolist()
except Exception as e:
logger.error(f"Error getting embedding: {e}", exc_info=True)
raise
def clear_cache(self):
"""Clear all loaded models from memory."""
logger.info("Clearing model cache...")
# Clear models
for model_id in list(self.loaded_models.keys()):
del self.loaded_models[model_id]
for model_id in list(self.loaded_tokenizers.keys()):
del self.loaded_tokenizers[model_id]
for model_id in list(self.loaded_embedding_models.keys()):
del self.loaded_embedding_models[model_id]
# Clear GPU cache
if self.device == "cuda":
torch.cuda.empty_cache()
logger.info("✓ Model cache cleared")
def get_memory_usage(self) -> Dict[str, float]:
"""Get current GPU memory usage in GB."""
if self.device != "cuda":
return {"device": "cpu", "gpu_available": False}
return {
"device": self.device_name,
"gpu_available": True,
"allocated_gb": torch.cuda.memory_allocated(0) / 1024**3,
"reserved_gb": torch.cuda.memory_reserved(0) / 1024**3,
"total_gb": torch.cuda.get_device_properties(0).total_memory / 1024**3
}
|