Spaces:
Sleeping
Sleeping
File size: 13,820 Bytes
4fb2fcf b7be972 4fb2fcf b7be972 4fb2fcf 8640891 4fb2fcf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import os, json, time, sqlite3, requests, io, csv
import numpy as np
import gradio as gr
from typing import List, Dict
from sentence_transformers import SentenceTransformer
# ---- DAO CONFIG ----
DAO_ADDRESS = os.environ.get("DAO_ADDRESS", "0xE2F60eEEd806Cb2790c0685334D0b95417c386E0")
FIELD_TOKEN = os.environ.get("FIELD_TOKEN", "0xcBC6309dd6c79C9210cB3DBc014d43205A92BbC8")
ARBITRUM_RPC = os.environ.get("ARBITRUM_RPC", "https://arb1.arbitrum.io/rpc")
TELEMETRY_WEBHOOK = os.environ.get("TELEMETRY_WEBHOOK", "http://0.0.0.0:8080") # point to FastAPI server /usage
PREMIUM_KEY = os.environ.get("PREMIUM_KEY", "")
FREE_LIMIT = int(os.environ.get("FREE_LIMIT", "20"))
DB_PATH = os.environ.get("DB_PATH", "inneri_reskill.db")
EMBED_MODEL = os.environ.get("EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
TOP_K = int(os.environ.get("TOP_K", "5"))
def db():
conn = sqlite3.connect(DB_PATH)
conn.execute("PRAGMA foreign_keys = ON;")
return conn
def init_db():
conn = db(); cur = conn.cursor()
cur.execute("CREATE TABLE IF NOT EXISTS users(user_id TEXT PRIMARY KEY, balance_cents INTEGER DEFAULT 0);")
cur.execute("CREATE TABLE IF NOT EXISTS guides(id INTEGER PRIMARY KEY AUTOINCREMENT, owner_id TEXT, title TEXT, text TEXT, tags TEXT, namespace TEXT, created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP);")
cur.execute("CREATE TABLE IF NOT EXISTS embeds(id INTEGER PRIMARY KEY AUTOINCREMENT, guide_id INTEGER, namespace TEXT, dim INTEGER, vec BLOB, FOREIGN KEY(guide_id) REFERENCES guides(id) ON DELETE CASCADE);")
cur.execute("CREATE TABLE IF NOT EXISTS traces(id INTEGER PRIMARY KEY AUTOINCREMENT, trace_id TEXT, user_id TEXT, question TEXT, answer TEXT, sources TEXT, created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP);")
cur.execute("CREATE TABLE IF NOT EXISTS usage_credits(user_id TEXT, guide_id INTEGER, credits REAL, period TEXT);")
conn.commit(); conn.close()
def ensure_user(user_id:str):
conn = db(); cur = conn.cursor()
cur.execute("INSERT OR IGNORE INTO users(user_id,balance_cents) VALUES(?,0)", (user_id,))
conn.commit(); conn.close()
_embedder = None
def get_embedder():
global _embedder
if _embedder is None:
_embedder = SentenceTransformer(EMBED_MODEL)
return _embedder
def embed_texts(texts: List[str]):
return np.array(get_embedder().encode(texts, show_progress_bar=False, normalize_embeddings=True), dtype=np.float32)
def vec_to_blob(vec: np.ndarray) -> bytes:
return vec.astype(np.float32).tobytes()
def blob_to_vec(blob: bytes) -> np.ndarray:
return np.frombuffer(blob, dtype=np.float32)
def add_guide(owner_id:str, title:str, text:str, tags:str, namespace:str):
ensure_user(owner_id)
conn = db(); cur = conn.cursor()
cur.execute("INSERT INTO guides(owner_id,title,text,tags,namespace) VALUES(?,?,?,?,?)",(owner_id, title, text, tags, namespace))
gid = cur.lastrowid
vec = embed_texts([text])[0]
cur.execute("INSERT INTO embeds(guide_id,namespace,dim,vec) VALUES(?,?,?,?)",(gid, namespace, vec.shape[0], vec_to_blob(vec)))
conn.commit(); conn.close()
return gid
def list_guides(namespace:str):
conn = db(); cur = conn.cursor()
cur.execute("SELECT id, owner_id, title, tags, created_at FROM guides WHERE namespace=? ORDER BY created_at DESC",(namespace,))
rows = cur.fetchall(); conn.close()
return rows
def retrieve(question:str, namespace:str, top_k:int=TOP_K)->List[Dict]:
qv = embed_texts([question])[0]
conn = db(); cur = conn.cursor()
cur.execute("SELECT e.id, e.guide_id, e.vec, g.title, g.owner_id, g.text FROM embeds e JOIN guides g ON e.guide_id=g.id WHERE e.namespace=?",(namespace,))
rows = cur.fetchall(); conn.close()
if not rows: return []
mat = np.stack([blob_to_vec(r[2]) for r in rows])
sims = mat @ qv
idx = np.argsort(-sims)[:top_k]
results = []
for i in idx:
_, gid, _, title, owner, text = rows[int(i)]
results.append({"guide_id": int(gid), "owner": owner, "title": title or "Untitled", "text": text, "score": float(sims[int(i)])})
return results
def synthesize_answer(question:str, contexts:List[Dict])->str:
bullets = []
for i,c in enumerate(contexts):
snippet = c["text"][:400].replace("\n"," ").strip()
bullets.append(f"[{i+1}] {c['title']}: {snippet}")
return "Q: " + question + "\n\nGuides:\n" + "\n".join(bullets)
def record_usage(ctx:List[Dict], period:str):
conn = db(); cur = conn.cursor()
total = sum(max(0.0, c["score"]) for c in ctx) or 1.0
for c in ctx:
w = max(0.0, c["score"])/total
cur.execute("INSERT INTO usage_credits(user_id, guide_id, credits, period) VALUES(?,?,?,?)",
(c["owner"], c["guide_id"], w, period))
conn.commit(); conn.close()
def payout_csv(period:str, total_field:int=50000):
conn = db(); cur = conn.cursor()
cur.execute("SELECT user_id, SUM(credits) FROM usage_credits WHERE period=? GROUP BY user_id", (period,))
rows = cur.fetchall(); conn.close()
total = sum(r[1] for r in rows) or 1.0
lines = ["recipient_address,amount_FIELD,reason,period"]
for user, credits in rows:
amt = int(round(total_field * (credits/total)))
lines.append(f"{user},{amt},Guide usage,{period}")
return "\n".join(lines)
def dao_panel_read(field_token:str):
out = {"dao_address": DAO_ADDRESS, "field_token": field_token or "(set FIELD_TOKEN)", "balances": {}, "notes": ""}
try:
from web3 import Web3
ERC20_ABI = [
{"constant":True,"inputs":[{"name":"a","type":"address"}],"name":"balanceOf","outputs":[{"name":"","type":"uint256"}],"type":"function"},
{"constant":True,"inputs":[],"name":"totalSupply","outputs":[{"name":"","type":"uint256"}],"type":"function"},
{"constant":True,"inputs":[],"name":"decimals","outputs":[{"name":"","type":"uint8"}],"type":"function"},
{"constant":True,"inputs":[],"name":"symbol","outputs":[{"name":"","type":"string"}],"type":"function"}
]
w3 = Web3(Web3.HTTPProvider(ARBITRUM_RPC, request_kwargs={"timeout": 10}))
if not field_token:
out["notes"] = "Set FIELD_TOKEN to read balances."
return json.dumps(out, indent=2)
token = w3.eth.contract(address=w3.to_checksum_address(field_token), abi=ERC20_ABI)
dec = token.functions.decimals().call()
sym = token.functions.symbol().call()
ts = token.functions.totalSupply().call() / (10**dec)
bal = token.functions.balanceOf(w3.to_checksum_address(DAO_ADDRESS)).call() / (10**dec)
out["balances"] = {"symbol": sym, "decimals": dec, "total_supply": ts, "dao_balance": bal}
except Exception as e:
out["notes"] = f"RPC/ABI error: {e}"
return json.dumps(out, indent=2)
def generate_actions_from_csv(csv_text:str, token_address:str, decimals:int=18):
try:
from web3 import Web3
from eth_abi import encode as abi_encode
except Exception as e:
return "Missing dependency: web3/eth_abi. Ensure requirements are installed."
rows = list(csv.reader(io.StringIO(csv_text.strip())))
header = [h.strip().lower() for h in rows[0]]
if header[:2] != ["recipient_address","amount_field"]:
return "CSV must start with columns: recipient_address,amount_FIELD,..."
actions = []
selector = Web3.keccak(text="transfer(address,uint256)")[:4]
w3 = Web3()
for r in rows[1:]:
if not r or len(r)<2:
continue
to = w3.to_checksum_address(r[0].strip())
amt = int(r[1].strip())
wei = amt * (10**decimals)
data = "0x" + (selector + abi_encode(["address","uint256"], [to, wei])).hex()
actions.append({"to": token_address, "value": 0, "data": data})
return json.dumps(actions, indent=2)
SESSION_QUERIES = {}
def log(evt, payload):
try:
if TELEMETRY_WEBHOOK:
requests.post(TELEMETRY_WEBHOOK, json={"evt":evt, **payload}, timeout=5)
except Exception:
pass
def ask(user_id:str, question:str, namespace:str, premium_key:str, period:str):
sid = user_id or "anon"
count = SESSION_QUERIES.get(sid, 0)
if (not PREMIUM_KEY) or (premium_key != PREMIUM_KEY):
if count >= FREE_LIMIT:
return f"Free limit reached ({FREE_LIMIT}). Enter premium key.", "", ""
SESSION_QUERIES[sid] = count + 1
ctx = retrieve(question, namespace)
if not ctx:
return "No guides yet. Add some first.", "", ""
ans = synthesize_answer(question, ctx)
record_usage(ctx, period)
log("ask", {"user": sid, "ns": namespace, "period": period, "guide_ids": [c["guide_id"] for c in ctx]})
src = "\n".join([f"[{i+1}] {c['title']} (id {c['guide_id']}) {c['score']:.2f}" for i,c in enumerate(ctx)])
return ans, src, str(int(time.time()*1000))
SEED_NAMESPACE = "inneri-guides"
SEED_GUIDES = [
("seed","Prompt Clarity: 3 Moves","1) State the goal clearly.\n2) Add 1β3 constraints.\n3) Give a short example.","prompt,basics"),
("seed","RAG Basics: Store & Retrieve","Chunk docs, embed, retrieve, generate with citations.","rag,basics"),
("seed","Chunking That Works","Overlap 50β100 tokens, respect headings, avoid >1k tokens.","rag,chunking"),
("seed","Choosing Embedding Models","MiniLM for speed; e5/bge for quality; normalize; version.","embeddings,models"),
("seed","Eval Signals","Score faithfulness, relevance, actionability.","evals,quality"),
("seed","Langfuse Setup","Log routes, latency; attach evals; dashboard triage.","observability,langfuse"),
("seed","Agentic Loops","Plan β Act β Observe β Reflect; timeouts; state; kill switch.","agents,loops"),
("seed","FastAPI for AI","/chat, /embed, /query; rate limit; metrics; costs.","ops,api"),
("seed","Data Rights & Payouts","Creators own docs; track usage; split fees.","legal,economics"),
("seed","Safety & Scope","Refuse dangerous asks; stay in domain; red-team.","safety,policy"),
]
def seed_if_empty():
conn = db(); cur = conn.cursor()
cur.execute("SELECT COUNT(*) FROM guides WHERE namespace=?",(SEED_NAMESPACE,))
if cur.fetchone()[0]==0:
for o,t,tx,tg in SEED_GUIDES:
add_guide(o,t,tx,tg,SEED_NAMESPACE)
init_db(); seed_if_empty()
with gr.Blocks(title="Reskill the Field β Inner I Agentic AI (DAO-Wired)") as demo:
gr.Markdown(f"### Reskill the Field DAO β Inner I Agentic AI\nDAO: **{DAO_ADDRESS}** (Arbitrum) | Library + RAG + Payouts + Proposal Generator")
with gr.Tab("DAO Panel"):
token_in = gr.Textbox(label="$FIELD Token Address (ERC-20)", value=FIELD_TOKEN)
read_btn = gr.Button("Read DAO Balances")
read_out = gr.Textbox(label="DAO Balances (JSON)", lines=10)
read_btn.click(lambda t: dao_panel_read(t), [token_in], [read_out])
gr.Markdown("Treasury note: target **1,000,000 $FIELD** held. Set `FIELD_TOKEN` to verify on-chain.")
with gr.Tab("Browse Guides"):
ns = gr.Textbox(label="Namespace", value=SEED_NAMESPACE)
list_btn = gr.Button("List")
table = gr.Dataframe(headers=["id","owner","title","tags","created"], datatype=["number","str","str","str","str"])
def _list(namespace): return [[r[0],r[1],r[2],r[3],r[4]] for r in list_guides(namespace)]
list_btn.click(_list,[ns],[table])
with gr.Tab("Add Guide"):
u = gr.Textbox(label="Your Handle (wallet address preferred for payouts)", value="0xYourWallet")
title = gr.Textbox(label="Title", value="My New Guide")
tags = gr.Textbox(label="Tags", value="custom")
ns2 = gr.Textbox(label="Namespace", value=SEED_NAMESPACE)
txt = gr.Textbox(label="Guide Text", lines=10)
add_btn = gr.Button("Add Guide")
add_out = gr.Textbox(label="Result")
def _add(uid,title,text,tags,ns):
if not text.strip(): return "Add some text."
gid=add_guide(uid,title,text,tags,ns); return f"Added id={gid}"
add_btn.click(_add,[u,title,txt,tags,ns2],[add_out])
with gr.Tab("Ask (RAG) + Usage Log"):
u2=gr.Textbox(label="User ID (optional)", value="")
q=gr.Textbox(label="Question", value="How do I set up eval signals?", lines=3)
ns3=gr.Textbox(label="Namespace", value=SEED_NAMESPACE)
period=gr.Textbox(label="Period (YYYY-MM)", value="2025-09")
prem=gr.Textbox(label="Premium Key (optional)", value="")
ask_btn=gr.Button("Ask")
ans=gr.Textbox(label="Answer", lines=12)
src=gr.Textbox(label="Sources", lines=8)
trace=gr.Textbox(label="Trace ID")
ask_btn.click(lambda uid,qq,ns,per,pk: ask(uid,qq,ns,pk,per), [u2,q,ns3,period,prem],[ans,src,trace])
with gr.Tab("Payout Builder (CSV)"):
per=gr.Textbox(label="Period (YYYY-MM)", value="2025-09")
total=gr.Number(label="Total $FIELD to distribute", value=50000, precision=0)
build=gr.Button("Generate CSV")
csv_out=gr.Textbox(label="CSV Preview", lines=12)
build.click(lambda p,t: payout_csv(p, int(t)), [per,total],[csv_out])
with gr.Tab("Proposal Generator (Aragon Actions)"):
gr.Markdown("Paste payout CSV β get ERC-20 `transfer()` actions JSON for Aragon's Custom action.")
csv_in = gr.Textbox(label="Payout CSV", lines=12, value="recipient_address,amount_FIELD,reason,period\n0x0000000000000000000000000000000000000000,1000,Guide usage,2025-09")
token_addr = gr.Textbox(label="$FIELD Token Address", value=FIELD_TOKEN)
decimals = gr.Number(label="Token Decimals", value=18, precision=0)
gen_btn = gr.Button("Generate Actions JSON")
actions_out = gr.Textbox(label="Encoded Actions JSON", lines=14)
gen_btn.click(lambda c,t,d: generate_actions_from_csv(c,t,int(d)), [csv_in, token_addr, decimals], [actions_out])
demo.launch()
|