Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import torch | |
| from PIL import Image | |
| import os | |
| import sys | |
| import importlib.util | |
| import spaces | |
| # 중요: 패치 적용 - huggingface_hub에 cached_download 함수 추가 | |
| import huggingface_hub | |
| if not hasattr(huggingface_hub, "cached_download"): | |
| # 기존 hf_hub_download 함수를 cached_download로 별칭 추가 | |
| huggingface_hub.cached_download = huggingface_hub.hf_hub_download | |
| # 그 후 나머지 임포트 진행 | |
| from huggingface_hub import snapshot_download, hf_hub_download, model_info | |
| from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor | |
| from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter import StableDiffusionXLPipeline | |
| from kolors.models.modeling_chatglm import ChatGLMModel | |
| from kolors.models.tokenization_chatglm import ChatGLMTokenizer | |
| from kolors.models.unet_2d_condition import UNet2DConditionModel | |
| from diffusers import AutoencoderKL, EulerDiscreteScheduler | |
| device = "cuda" | |
| root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) | |
| ckpt_dir = f'{root_dir}/weights/Kolors' | |
| snapshot_download(repo_id="Kwai-Kolors/Kolors", local_dir=ckpt_dir) | |
| snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus", local_dir=f"{root_dir}/weights/Kolors-IP-Adapter-Plus") | |
| # Load models | |
| text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device) | |
| tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder') | |
| vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device) | |
| scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler") | |
| unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device) | |
| image_encoder = CLIPVisionModelWithProjection.from_pretrained( | |
| f'{root_dir}/weights/Kolors-IP-Adapter-Plus/image_encoder', | |
| ignore_mismatched_sizes=True | |
| ).to(dtype=torch.float16, device=device) | |
| ip_img_size = 336 | |
| clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size) | |
| pipe = StableDiffusionXLPipeline( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| scheduler=scheduler, | |
| image_encoder=image_encoder, | |
| feature_extractor=clip_image_processor, | |
| force_zeros_for_empty_prompt=False | |
| ).to(device) | |
| if hasattr(pipe.unet, 'encoder_hid_proj'): | |
| pipe.unet.text_encoder_hid_proj = pipe.unet.encoder_hid_proj | |
| pipe.load_ip_adapter(f'{root_dir}/weights/Kolors-IP-Adapter-Plus', subfolder="", weight_name=["ip_adapter_plus_general.bin"]) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1024 | |
| # ---------------------------------------------- | |
| # infer 함수 (기존 로직 그대로 유지) | |
| # ---------------------------------------------- | |
| def infer( | |
| user_prompt, | |
| ip_adapter_image, | |
| ip_adapter_scale=0.5, | |
| negative_prompt="", | |
| seed=100, | |
| randomize_seed=False, | |
| width=1024, | |
| height=1024, | |
| guidance_scale=5.0, | |
| num_inference_steps=50, | |
| progress=gr.Progress(track_tqdm=True) | |
| ): | |
| # 숨겨진(기본/필수) 프롬프트 | |
| hidden_prompt = ( | |
| "Ghibli Studio style, Charming hand-drawn anime-style illustration" | |
| ) | |
| # 실제로 파이프라인에 전달할 최종 프롬프트 | |
| prompt = f"{hidden_prompt}, {user_prompt}" | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator(device="cuda").manual_seed(seed) | |
| pipe.to("cuda") | |
| image_encoder.to("cuda") | |
| pipe.image_encoder = image_encoder | |
| pipe.set_ip_adapter_scale([ip_adapter_scale]) | |
| image = pipe( | |
| prompt=prompt, | |
| ip_adapter_image=[ip_adapter_image], | |
| negative_prompt=negative_prompt, | |
| height=height, | |
| width=width, | |
| num_inference_steps=num_inference_steps, | |
| guidance_scale=guidance_scale, | |
| num_images_per_prompt=1, | |
| generator=generator, | |
| ).images[0] | |
| return image, seed | |
| examples = [ | |
| [ | |
| "background alps", | |
| "gh0.webp", | |
| 0.5 | |
| ], | |
| [ | |
| "dancing", | |
| "gh5.jpg", | |
| 0.5 | |
| ], | |
| [ | |
| "smile", | |
| "gh2.jpg", | |
| 0.5 | |
| ], | |
| [ | |
| "3d style", | |
| "gh3.webp", | |
| 0.6 | |
| ], | |
| [ | |
| "with Pikachu", | |
| "gh4.jpg", | |
| 0.5 | |
| ], | |
| [ | |
| "Ghibli Studio style, Charming hand-drawn anime-style illustration", | |
| "gh7.jpg", | |
| 0.5 | |
| ], | |
| [ | |
| "Ghibli Studio style, Charming hand-drawn anime-style illustration", | |
| "gh1.jpg", | |
| 0.5 | |
| ], | |
| ] | |
| # -------------------------- | |
| # 개선된 UI를 위한 CSS | |
| # -------------------------- | |
| css = """ | |
| body { | |
| background: linear-gradient(135deg, #f5f7fa, #c3cfe2); | |
| font-family: 'Helvetica Neue', Arial, sans-serif; | |
| color: #333; | |
| margin: 0; | |
| padding: 0; | |
| } | |
| #col-container { | |
| margin: 0 auto !important; | |
| max-width: 720px; | |
| background: rgba(255,255,255,0.85); | |
| border-radius: 16px; | |
| padding: 2rem; | |
| box-shadow: 0 8px 24px rgba(0,0,0,0.1); | |
| } | |
| #header-title { | |
| text-align: center; | |
| font-size: 2rem; | |
| font-weight: bold; | |
| margin-bottom: 1rem; | |
| } | |
| #prompt-row { | |
| display: flex; | |
| gap: 0.5rem; | |
| align-items: center; | |
| margin-bottom: 1rem; | |
| } | |
| #prompt-text { | |
| flex: 1; | |
| } | |
| #result img { | |
| object-position: top; | |
| border-radius: 8px; | |
| } | |
| #result .image-container { | |
| height: 100%; | |
| } | |
| .gr-button { | |
| background-color: #2E8BFB !important; | |
| color: white !important; | |
| border: none !important; | |
| transition: background-color 0.2s ease; | |
| } | |
| .gr-button:hover { | |
| background-color: #186EDB !important; | |
| } | |
| .gr-slider input[type=range] { | |
| accent-color: #2E8BFB !important; | |
| } | |
| .gr-box { | |
| background-color: #fafafa !important; | |
| border: 1px solid #ddd !important; | |
| border-radius: 8px !important; | |
| padding: 1rem !important; | |
| } | |
| #advanced-settings { | |
| margin-top: 1rem; | |
| border-radius: 8px; | |
| } | |
| """ | |
| with gr.Blocks(theme="apriel", css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown("<div id='header-title'>Ghibli Meme Studio</div>") | |
| gr.Markdown("<div id='header-title' style='font-size: 12px;'>Community: https://discord.gg/openfreeai</div>") | |
| # 상단: 프롬프트 입력 + 실행 버튼 | |
| with gr.Row(elem_id="prompt-row"): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| elem_id="prompt-text", | |
| ) | |
| run_button = gr.Button("Run", elem_id="run-button") | |
| # 가운데: 이미지 입력과 슬라이더, 결과 이미지 | |
| with gr.Row(): | |
| with gr.Column(): | |
| ip_adapter_image = gr.Image(label="IP-Adapter Image", type="pil") | |
| ip_adapter_scale = gr.Slider( | |
| label="Image influence scale", | |
| info="Use 1 for creating variations", | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.05, | |
| value=0.5, | |
| ) | |
| result = gr.Image(label="Result", elem_id="result") | |
| # 하단: 고급 설정(Accordion) | |
| with gr.Accordion("Advanced Settings", open=False, elem_id="advanced-settings"): | |
| negative_prompt = gr.Text( | |
| label="Negative prompt", | |
| max_lines=2, | |
| placeholder=( | |
| "Copy(worst quality, low quality:1.4), bad anatomy, bad hands, text, error, " | |
| "missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, " | |
| "normal quality, jpeg artifacts, signature, watermark, username, blurry, " | |
| "artist name, (deformed iris, deformed pupils:1.2), (semi-realistic, cgi, " | |
| "3d, render:1.1), amateur, (poorly drawn hands, poorly drawn face:1.2)" | |
| ), | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.0, | |
| maximum=10.0, | |
| step=0.1, | |
| value=5.0, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=100, | |
| step=1, | |
| value=50, | |
| ) | |
| # 예시들 | |
| gr.Examples( | |
| examples=examples, | |
| fn=infer, | |
| inputs=[prompt, ip_adapter_image, ip_adapter_scale], | |
| outputs=[result, seed], | |
| cache_examples="lazy" | |
| ) | |
| # 버튼 클릭/프롬프트 엔터 시 실행 | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=infer, | |
| inputs=[ | |
| prompt, | |
| ip_adapter_image, | |
| ip_adapter_scale, | |
| negative_prompt, | |
| seed, | |
| randomize_seed, | |
| width, | |
| height, | |
| guidance_scale, | |
| num_inference_steps | |
| ], | |
| outputs=[result, seed] | |
| ) | |
| demo.queue().launch() |