Spaces:
Running
Running
File size: 6,145 Bytes
ff99384 07f3442 9413b8c ff99384 689f2f1 fc510a9 37dfe7c fc510a9 151b836 399b116 d50851f e51064c 8b97ef6 e51064c 8b97ef6 d50851f c921597 b27927c 4ec611e 8655c10 c05f926 920000c b36b04c c921597 07f3442 ec83d4a 07f3442 be296b5 a7dc8ac 7a89368 07f3442 0467cdd 07f3442 0668176 8b4bfd4 3ebefbd 042d787 d95bce9 a81f137 0668176 07f3442 6a9cbc0 07f3442 68436a2 003e358 b2e0880 07f3442 bf28403 ec83d4a 07f3442 60a6de5 35231bb 07f3442 e847370 07f3442 764afec fc41f66 6226972 ab45e4b 07f3442 c40a843 38ec1a7 07f3442 ac6b189 f595140 0e647e6 084325b 0e647e6 ac6b189 0e647e6 ac6b189 084325b ac6b189 0e647e6 f595140 0e647e6 ac6b189 0e647e6 ac6b189 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
---
title: FinText-TSFM
emoji: π
colorFrom: gray
colorTo: blue
sdk: static
pinned: false
---
[](https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5770562)
[](https://www.arxiv.org/abs/2511.18578)
[](https://www.researchgate.net/publication/397872068_ReVisiting_Time_Series_Foundation_Models_in_Finance)
[](https://fintext.ai)
[](https://github.com/DeepIntoStreams/TSFM_Finance)
## π€ Podcast
You can now listen to the accompanying podcast here: https://soundcloud.com/eghbal-rahimikia/revisiting-time-series-foundation-models-in-finance
## π GitHub Model Loading Support (NEW)
All models can now be loaded directly from GitHub. The repository includes utilities and setup instructions.
π **https://github.com/DeepIntoStreams/TSFM_Finance**
## π TSFMs Release
We are pleased to introduce **FinText-TSFM**, a comprehensive suite of **time series foundation models (TSFMs)** with 613 models pre-trained for quantitative finance. This release accompanies the paper :
**[*Re(Visiting) Time Series Foundation Models in Finance*](https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5770562)** by *Eghbal Rahimikia, Hao Ni, and Weiguan Wang (2025)*.
### π‘ Key Highlights
- **Finance-Native Pre-training:**
Models are pre-trained **from scratch** on large-scale financial time series datasets β including daily excess returns across **89 markets** and **over 2 billion observations** β to ensure full temporal and domain alignment.
- **Bias-Free Design:**
Pre-training strictly follows a **chronological expanding-window setup**, avoiding any **look-ahead bias** or **information leakage**.<br>
Each variation includes 23 separately pre-trained models, corresponding to each year from **2000** to **2023**, with data starting in 1990.
- **Model Families:**
This release includes variants of **Chronos** and **TimesFM** architectures adapted for financial time series:
- Chronos-Tiny (8M) / Mini (20M) / Small (46M)
- TimesFM-8M / 20M
- **Model Collections:**
- U.S.: Covers **U.S.** market-wide excess returns from 2000 to 2023, with one pre-trained model per year.
- Global: Covers excess returns across **94 global markets** from 2000 to 2023, with one pre-trained model for each year.
- Augmented: Extends the global data with **augmented factors** from 2000 to 2023, with one pre-trained model for each year.
- The remaining **253 pre-trained models** are available for download via the [**FinText.ai Portal**](https://fintext.ai). These include models pre-trained with varying **hyperparameter configurations** for extended experimentation and performance comparison.
- **Performance Insights:**
Our findings show that **off-the-shelf TSFMs** underperform in zero-shot forecasting, while **finance-pretrained models** achieve large gains in both predictive accuracy and portfolio performance.
- **Evaluation Scope:**
Models are benchmarked across **U.S. and seven international markets**, using rolling windows of **5, 21, 252, and 512 days**, with over **18 million out-of-sample forecasts** spanning **22 years (2001β2023)** of daily excess returns, evaluated at both the **statistical** and **economic performance** levels.
### π§ Technical Overview
- **Architecture:** Transformer-based TSFMs (Chronos & TimesFM)
- **Compute:** 50,000 GPU hours on NVIDIA GH200 Grace Hopper clusters
### π Citation
Please cite the accompanying paper if you use these models:
> **Re(Visiting) Time Series Foundation Models in Finance.**
> **Rahimikia, Eghbal; Ni, Hao; Wang, Weiguan.**
> SSRN: [https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5770562)
### π Acknowledgments
This project was made possible through computational and institutional support from:
- **UK Research and Innovation (UKRI)**
- **Isambard-AI National AI Research Resource (AIRR)**
- **Alliance Manchester Business School (AMBS), University of Manchester**
- **N8 Centre of Excellence in Computationally Intensive Research (N8 CIR)**
- **The University of Manchester** (Research IT & Computational Shared Facility)
- **University College London (UCL)**
- **The Alan Turing Institute**
- **Shanghai University**
---
<div style="text-align:center; margin:auto; max-width:800px;">
<!-- Developed by -->
<div style="margin-bottom:12px;">
<p style="font-weight:bold; font-size:1.1em; margin:4px 0;">Developed by:</p>
<div style="display:flex; justify-content:center; align-items:center; gap:20px; flex-wrap:wrap; margin-bottom:15px;">
<img src="https://fintext.ai/UoM-logo.svg" alt="University of Manchester Logo" width="210" style="display:block; margin:0;">
<img src="https://fintext.ai/UCL-logo.jpg" alt="UCL Logo" width="100" style="display:block; margin:0;">
</div>
<p style="font-size:0.8em; margin-top:0; line-height:1.3;">
Alliance Manchester Business School, University of Manchester<br>
Department of Mathematics, University College London (UCL)
</p>
</div>
<!-- Powered by -->
<div>
<p style="font-weight:bold; font-size:1.1em; margin:4px 0;">Powered by:</p>
<div style="display:flex; justify-content:center; align-items:center; gap:20px; flex-wrap:wrap; margin-bottom:10px;">
<img src="https://fintext.ai/BriCS-logo.png" alt="BriCS Logo" width="180" style="display:block; margin:0;">
<img src="https://fintext.ai/N8_bede_logo.webp" alt="N8 Bede Logo" width="140" style="display:block; margin:0;">
</div>
<p style="font-size:0.8em; margin-top:0; line-height:1.3;">
Isambard-AI, Bristol Centre for Supercomputing (BriCS)<br>
The Bede Supercomputer
</p>
</div>
</div>
|