File size: 6,145 Bytes
ff99384
07f3442
 
9413b8c
ff99384
 
 
 
689f2f1
fc510a9
 
37dfe7c
fc510a9
151b836
399b116
d50851f
e51064c
8b97ef6
e51064c
8b97ef6
d50851f
c921597
 
b27927c
 
 
4ec611e
8655c10
 
c05f926
920000c
b36b04c
c921597
07f3442
ec83d4a
07f3442
 
 
 
be296b5
a7dc8ac
7a89368
07f3442
 
0467cdd
07f3442
 
0668176
8b4bfd4
3ebefbd
042d787
d95bce9
a81f137
0668176
07f3442
6a9cbc0
07f3442
 
68436a2
003e358
b2e0880
07f3442
 
 
 
 
bf28403
ec83d4a
07f3442
 
 
 
60a6de5
 
35231bb
07f3442
 
e847370
07f3442
764afec
 
fc41f66
6226972
 
ab45e4b
07f3442
c40a843
38ec1a7
07f3442
 
ac6b189
 
f595140
0e647e6
084325b
0e647e6
 
ac6b189
0e647e6
ac6b189
 
084325b
ac6b189
 
 
 
0e647e6
f595140
0e647e6
 
ac6b189
0e647e6
ac6b189
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
---
title: FinText-TSFM
emoji: πŸ“ˆ
colorFrom: gray
colorTo: blue
sdk: static
pinned: false
---

[![SSRN](https://img.shields.io/badge/SSRN-5770562-1a5dab?logo=ssrn&logoColor=white)](https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5770562)
[![arXiv](https://img.shields.io/badge/arXiv-2511.18578-b31b1b?logo=arxiv&logoColor=white)](https://www.arxiv.org/abs/2511.18578)
[![ResearchGate](https://img.shields.io/badge/ResearchGate-Paper-00CCBB?logo=researchgate&logoColor=white)](https://www.researchgate.net/publication/397872068_ReVisiting_Time_Series_Foundation_Models_in_Finance)
[![Website - FinText.ai](https://img.shields.io/badge/Website-FinText.ai-0A66C2?logo=google-chrome&logoColor=white)](https://fintext.ai)
[![GitHub - FinText.ai](https://img.shields.io/badge/GitHub-FinText.ai-181717?logo=github&logoColor=white)](https://github.com/DeepIntoStreams/TSFM_Finance)


## 🎀 Podcast

You can now listen to the accompanying podcast here: https://soundcloud.com/eghbal-rahimikia/revisiting-time-series-foundation-models-in-finance


## πŸ†• GitHub Model Loading Support (NEW)

All models can now be loaded directly from GitHub. The repository includes utilities and setup instructions.
πŸ”— **https://github.com/DeepIntoStreams/TSFM_Finance**


## πŸš€ TSFMs Release

We are pleased to introduce **FinText-TSFM**, a comprehensive suite of **time series foundation models (TSFMs)** with 613 models pre-trained for quantitative finance. This release accompanies the paper :
**[*Re(Visiting) Time Series Foundation Models in Finance*](https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5770562)** by *Eghbal Rahimikia, Hao Ni, and Weiguan Wang (2025)*.


### πŸ’‘ Key Highlights

- **Finance-Native Pre-training:**  
  Models are pre-trained **from scratch** on large-scale financial time series datasets β€” including daily excess returns across **89 markets** and **over 2 billion observations** β€” to ensure full temporal and domain alignment.

- **Bias-Free Design:**  
  Pre-training strictly follows a **chronological expanding-window setup**, avoiding any **look-ahead bias** or **information leakage**.<br>
  Each variation includes 23 separately pre-trained models, corresponding to each year from **2000** to **2023**, with data starting in 1990.
  
- **Model Families:**  
  This release includes variants of **Chronos** and **TimesFM** architectures adapted for financial time series:
  - Chronos-Tiny (8M) / Mini (20M) / Small (46M)  
  - TimesFM-8M / 20M  

- **Model Collections:**  
  - U.S.: Covers **U.S.** market-wide excess returns from 2000 to 2023, with one pre-trained model per year.
  - Global: Covers excess returns across **94 global markets** from 2000 to 2023, with one pre-trained model for each year.
  - Augmented: Extends the global data with  **augmented factors** from 2000 to 2023, with one pre-trained model for each year.
  - The remaining **253 pre-trained models** are available for download via the [**FinText.ai Portal**](https://fintext.ai). These include models pre-trained with varying **hyperparameter configurations** for extended experimentation and performance comparison.


- **Performance Insights:**  
  Our findings show that **off-the-shelf TSFMs** underperform in zero-shot forecasting, while **finance-pretrained models** achieve large gains in both predictive accuracy and portfolio performance.

- **Evaluation Scope:**  
  Models are benchmarked across **U.S. and seven international markets**, using rolling windows of **5, 21, 252, and 512 days**, with over **18 million out-of-sample forecasts** spanning **22 years (2001–2023)** of daily excess returns, evaluated at both the **statistical** and **economic performance** levels.




### 🧠 Technical Overview

- **Architecture:** Transformer-based TSFMs (Chronos & TimesFM)  
- **Compute:** 50,000 GPU hours on NVIDIA GH200 Grace Hopper clusters  

### πŸ“š Citation

Please cite the accompanying paper if you use these models:

> **Re(Visiting) Time Series Foundation Models in Finance.**  
> **Rahimikia, Eghbal; Ni, Hao; Wang, Weiguan.**  
> SSRN: [https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5770562)

### πŸ”‹ Acknowledgments

This project was made possible through computational and institutional support from:
- **UK Research and Innovation (UKRI)**
- **Isambard-AI National AI Research Resource (AIRR)**
- **Alliance Manchester Business School (AMBS), University of Manchester**
- **N8 Centre of Excellence in Computationally Intensive Research (N8 CIR)**
- **The University of Manchester** (Research IT & Computational Shared Facility)
- **University College London (UCL)**
- **The Alan Turing Institute**  
- **Shanghai University**


---
<div style="text-align:center; margin:auto; max-width:800px;">
  <!-- Developed by -->
  <div style="margin-bottom:12px;">
    <p style="font-weight:bold; font-size:1.1em; margin:4px 0;">Developed by:</p>
    <div style="display:flex; justify-content:center; align-items:center; gap:20px; flex-wrap:wrap; margin-bottom:15px;">
      <img src="https://fintext.ai/UoM-logo.svg" alt="University of Manchester Logo" width="210" style="display:block; margin:0;">
      <img src="https://fintext.ai/UCL-logo.jpg" alt="UCL Logo" width="100" style="display:block; margin:0;">
    </div>
    <p style="font-size:0.8em; margin-top:0; line-height:1.3;">
      Alliance Manchester Business School, University of Manchester<br>
      Department of Mathematics, University College London (UCL)
    </p>
  </div>

  <!-- Powered by -->
  <div>
    <p style="font-weight:bold; font-size:1.1em; margin:4px 0;">Powered by:</p>
    <div style="display:flex; justify-content:center; align-items:center; gap:20px; flex-wrap:wrap; margin-bottom:10px;">
      <img src="https://fintext.ai/BriCS-logo.png" alt="BriCS Logo" width="180" style="display:block; margin:0;">
      <img src="https://fintext.ai/N8_bede_logo.webp" alt="N8 Bede Logo" width="140" style="display:block; margin:0;">
    </div>
    <p style="font-size:0.8em; margin-top:0; line-height:1.3;">
      Isambard-AI, Bristol Centre for Supercomputing (BriCS)<br>
      The Bede Supercomputer
    </p>
  </div>
</div>