Spaces:
Sleeping
Sleeping
Upload streamlit_test_space.py
Browse files- streamlit_test_space.py +114 -0
streamlit_test_space.py
ADDED
|
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import time
|
| 2 |
+
import wavmark
|
| 3 |
+
import streamlit as st
|
| 4 |
+
import os
|
| 5 |
+
import torch
|
| 6 |
+
import datetime
|
| 7 |
+
import numpy as np
|
| 8 |
+
import soundfile
|
| 9 |
+
from wavmark.utils import file_reader
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def my_read_file(audio_path, max_second):
|
| 13 |
+
signal, sr, audio_length_second = file_reader.read_as_single_channel_16k(audio_path, default_sr)
|
| 14 |
+
if audio_length_second > max_second:
|
| 15 |
+
signal = signal[0:default_sr * max_second]
|
| 16 |
+
audio_length_second = max_second
|
| 17 |
+
|
| 18 |
+
return signal, sr, audio_length_second
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def add_watermark(audio_path, watermark_text):
|
| 22 |
+
#t1 = time.time()
|
| 23 |
+
assert len(watermark_text) == 16
|
| 24 |
+
watermark_npy = np.array([int(i) for i in watermark_text])
|
| 25 |
+
signal, sr, audio_length_second = my_read_file(audio_path, max_second_encode)
|
| 26 |
+
watermarked_signal, _ = wavmark.encode_watermark(model, signal, watermark_npy, show_progress=False)
|
| 27 |
+
|
| 28 |
+
tmp_file_name = datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S') + "_" + watermark_text + ".wav"
|
| 29 |
+
tmp_file_path = '/tmp/' + tmp_file_name
|
| 30 |
+
soundfile.write(tmp_file_path, watermarked_signal, sr)
|
| 31 |
+
#encode_time_cost = time.time() - t1
|
| 32 |
+
return tmp_file_path
|
| 33 |
+
|
| 34 |
+
#def encode_water()
|
| 35 |
+
|
| 36 |
+
def decode_watermark(audio_path):
|
| 37 |
+
assert os.path.exists(audio_path)
|
| 38 |
+
|
| 39 |
+
#t1 = time.time()
|
| 40 |
+
signal, sr, audio_length_second = my_read_file(audio_path, max_second_decode)
|
| 41 |
+
payload_decoded, _ = wavmark.decode_watermark(model, signal, show_progress=False)
|
| 42 |
+
decode_cost = time.time() - t1
|
| 43 |
+
|
| 44 |
+
if payload_decoded is None:
|
| 45 |
+
return "No Watermark", decode_cost
|
| 46 |
+
|
| 47 |
+
payload_decoded_str = "".join([str(i) for i in payload_decoded])
|
| 48 |
+
st.write("Result:", payload_decoded_str)
|
| 49 |
+
#st.write("Time Cost:%d seconds" % (decode_cost))
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def create_default_value():
|
| 53 |
+
if "def_value" not in st.session_state:
|
| 54 |
+
def_val_npy = np.random.choice([0, 1], size=32 - len_start_bit)
|
| 55 |
+
def_val_str = "".join([str(i) for i in def_val_npy])
|
| 56 |
+
st.session_state.def_value = def_val_str
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def main():
|
| 61 |
+
create_default_value()
|
| 62 |
+
|
| 63 |
+
# st.title("AudioWaterMarking")
|
| 64 |
+
markdown_text = """
|
| 65 |
+
# Audio WaterMarking
|
| 66 |
+
You can upload an audio file and encode a custom 16-bit watermark or perform decoding from a watermarked audio.
|
| 67 |
+
|
| 68 |
+
See [WaveMarktoolkit](https://github.com/wavmark/wavmark) for further details.
|
| 69 |
+
"""
|
| 70 |
+
|
| 71 |
+
st.markdown(markdown_text)
|
| 72 |
+
|
| 73 |
+
audio_file = st.file_uploader("Upload Audio", type=["wav", "mp3"], accept_multiple_files=False)
|
| 74 |
+
|
| 75 |
+
if audio_file:
|
| 76 |
+
|
| 77 |
+
tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
|
| 78 |
+
with open(tmp_input_audio_file, "wb") as f:
|
| 79 |
+
f.write(audio_file.getbuffer())
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
# st.audio(tmp_input_audio_file, format="audio/wav")
|
| 83 |
+
|
| 84 |
+
action = st.selectbox("Select Action", ["Add Watermark", "Decode Watermark"])
|
| 85 |
+
|
| 86 |
+
if action == "Add Watermark":
|
| 87 |
+
watermark_text = st.text_input("The watermark (0, 1 list of length-16):", value=st.session_state.def_value)
|
| 88 |
+
add_watermark_button = st.button("Add Watermark", key="add_watermark_btn")
|
| 89 |
+
if add_watermark_button:
|
| 90 |
+
if audio_file and watermark_text:
|
| 91 |
+
with st.spinner("Adding Watermark..."):
|
| 92 |
+
#watermarked_audio, encode_time_cost = add_watermark(tmp_input_audio_file, watermark_text)
|
| 93 |
+
watermarked_audio = add_watermark(tmp_input_audio_file, watermark_text)
|
| 94 |
+
st.write("Watermarked Audio:")
|
| 95 |
+
print("watermarked_audio:", watermarked_audio)
|
| 96 |
+
st.audio(watermarked_audio, format="audio/wav")
|
| 97 |
+
#st.write("Time Cost: %d seconds" % encode_time_cost)
|
| 98 |
+
|
| 99 |
+
elif action == "Decode Watermark":
|
| 100 |
+
if st.button("Decode"):
|
| 101 |
+
with st.spinner("Decoding..."):
|
| 102 |
+
decode_watermark(tmp_input_audio_file)
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
if __name__ == "__main__":
|
| 106 |
+
default_sr = 16000
|
| 107 |
+
max_second_encode = 60
|
| 108 |
+
max_second_decode = 30
|
| 109 |
+
len_start_bit = 16
|
| 110 |
+
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
| 111 |
+
model = wavmark.load_model().to(device)
|
| 112 |
+
main()
|
| 113 |
+
|
| 114 |
+
|