Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,7 +6,7 @@ import argparse
|
|
| 6 |
from PIL import Image
|
| 7 |
import numpy as np
|
| 8 |
|
| 9 |
-
MIN_FACE_SIZE =
|
| 10 |
|
| 11 |
def parse_args():
|
| 12 |
parser = argparse.ArgumentParser(description='Test MTCNN',
|
|
@@ -24,12 +24,12 @@ def parse_args():
|
|
| 24 |
parser.add_argument('--input_mode', default=1,help='image or video', type=int)
|
| 25 |
args = parser.parse_args()
|
| 26 |
return args
|
| 27 |
-
def greet(
|
| 28 |
args = parse_args()
|
| 29 |
thresh = [float(i) for i in (args.thresh).split('[')[1].split(']')[0].split(',')]
|
| 30 |
pnet, rnet, onet = create_mtcnn_net(p_model_path=args.pnet_path, r_model_path=args.rnet_path,o_model_path=args.onet_path, use_cuda=args.use_cuda)
|
| 31 |
mtcnn_detector = MtcnnDetector(pnet=pnet, rnet=rnet, onet=onet, min_face_size=args.min_face_size,threshold=thresh)
|
| 32 |
-
img = cv2.imread(
|
| 33 |
b,g,r = cv2.split(img)
|
| 34 |
img_bg = cv2.merge([r,g,b])
|
| 35 |
p_bboxs, r_bboxs, bboxs, landmarks = mtcnn_detector.detect_face(img)
|
|
|
|
| 6 |
from PIL import Image
|
| 7 |
import numpy as np
|
| 8 |
|
| 9 |
+
MIN_FACE_SIZE = 12
|
| 10 |
|
| 11 |
def parse_args():
|
| 12 |
parser = argparse.ArgumentParser(description='Test MTCNN',
|
|
|
|
| 24 |
parser.add_argument('--input_mode', default=1,help='image or video', type=int)
|
| 25 |
args = parser.parse_args()
|
| 26 |
return args
|
| 27 |
+
def greet(请上传待检测人脸图片):
|
| 28 |
args = parse_args()
|
| 29 |
thresh = [float(i) for i in (args.thresh).split('[')[1].split(']')[0].split(',')]
|
| 30 |
pnet, rnet, onet = create_mtcnn_net(p_model_path=args.pnet_path, r_model_path=args.rnet_path,o_model_path=args.onet_path, use_cuda=args.use_cuda)
|
| 31 |
mtcnn_detector = MtcnnDetector(pnet=pnet, rnet=rnet, onet=onet, min_face_size=args.min_face_size,threshold=thresh)
|
| 32 |
+
img = cv2.imread(请上传待检测人脸图片)
|
| 33 |
b,g,r = cv2.split(img)
|
| 34 |
img_bg = cv2.merge([r,g,b])
|
| 35 |
p_bboxs, r_bboxs, bboxs, landmarks = mtcnn_detector.detect_face(img)
|