shaocong commited on
Commit
0e0bd20
·
1 Parent(s): da65577

merge with hf

Browse files
Files changed (3) hide show
  1. app.py +1 -1
  2. debug.py +0 -77
  3. debug2.py +0 -11
app.py CHANGED
@@ -443,7 +443,7 @@ with gr.Blocks(css=css, title="DKT", head=head_html) as demo:
443
  if __name__ == '__main__':
444
 
445
  #* main code, model and moge model initialization
446
- demo.queue().launch(share = True)
447
 
448
 
449
 
 
443
  if __name__ == '__main__':
444
 
445
  #* main code, model and moge model initialization
446
+ demo.queue().launch()
447
 
448
 
449
 
debug.py DELETED
@@ -1,77 +0,0 @@
1
- import torch
2
- import os
3
- from loguru import logger
4
- from moge.model.v2 import MoGeModel
5
-
6
- from tools.eval_utils import colorize_depth_map
7
-
8
- import cv2
9
-
10
- video_path = 'examples/1.mp4'
11
- frames = []
12
-
13
- cap = cv2.VideoCapture(video_path)
14
- while True:
15
- ret, frame = cap.read()
16
- if not ret:
17
- break
18
- frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
19
- frames.append(frame_rgb)
20
- cap.release()
21
-
22
- print(f"Loaded {len(frames)} frames from {video_path}")
23
-
24
-
25
-
26
- # device= torch.device("cuda" if torch.cuda.is_available() else "cpu")
27
-
28
- # cached_model_path = 'checkpoints/moge_ckpt/moge-2-vitl-normal/model.pt'
29
- # if os.path.exists(cached_model_path):
30
- # logger.info(f"Found cached model at {cached_model_path}, loading from cache...")
31
- # moge_pipe = MoGeModel.from_pretrained(cached_model_path).to(device)
32
- # else:
33
- # logger.info(f"Cache not found at {cached_model_path}, downloading from HuggingFace...")
34
- # os.makedirs(os.path.dirname(cached_model_path), exist_ok=True)
35
- # moge_pipe = MoGeModel.from_pretrained('Ruicheng/moge-2-vitl-normal', cache_dir=os.path.dirname(cached_model_path)).to(device)
36
-
37
-
38
-
39
-
40
- #* save small video
41
-
42
- # import numpy as np
43
-
44
- # # Save the first 5 frames as new mp4
45
- # out_path = "first5_output.mp4"
46
- # frame_subset = frames[:5]
47
- # target_width, target_height = 832, 480 # width, height as required
48
- # if len(frame_subset) > 0:
49
- # fourcc = cv2.VideoWriter_fourcc(*'mp4v')
50
- # out = cv2.VideoWriter(out_path, fourcc, 15, (target_width, target_height))
51
- # for f in frame_subset:
52
- # if f.dtype != np.uint8:
53
- # f = np.clip(f, 0, 255).astype(np.uint8)
54
- # # Resize the frame to 832x430 before writing
55
- # resized_frame = cv2.resize(f, (target_width, target_height), interpolation=cv2.INTER_AREA)
56
- # out.write(resized_frame)
57
- # out.release()
58
- # print(f"Saved first 5 frames to {out_path} (resized to {target_width}x{target_height})")
59
- # else:
60
- # print("No frames to save.")
61
-
62
- # import torch
63
-
64
- # demo_input = frames[0]
65
- # demo_input = torch.tensor(demo_input / 255, dtype=torch.float32, device=device).permute(2, 0, 1)
66
-
67
- # print(demo_input.max(),demo_input.min(), demo_input.shape)
68
- # moge_prediction = moge_pipe.infer(demo_input)
69
-
70
-
71
- # moge_depth = moge_prediction['depth'].cpu().numpy()
72
- # logger.info(f'moge input shape: {demo_input.shape}, input image mean: {demo_input.mean()}, std:{demo_input.std()}, moge_depth:{moge_depth.mean()}, moge_depth: {moge_depth.min()}, moge_depth.max():{moge_depth.max()}')
73
- # print(f'moge input shape: {demo_input.shape}, input image mean: {demo_input.mean()}, std:{demo_input.std()}, moge_depth:{moge_depth.mean()}, moge_depth: {moge_depth.min()}, moge_depth.max():{moge_depth.max()}')
74
-
75
- # moge_depth = colorize_depth_map(moge_depth)
76
-
77
- # moge_depth.save('debug.jpg')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
debug2.py DELETED
@@ -1,11 +0,0 @@
1
-
2
-
3
- from app import *
4
-
5
- video_file = 'examples/1.mp4'
6
-
7
- results = process_video(video_file,'1.3B',1,1)
8
-
9
-
10
- for k in results:
11
- print(k)