Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import transformers
|
| 3 |
from transformers import RagRetriever, RagSequenceForGeneration, AutoTokenizer, AutoModelForCausalLM
|
|
@@ -34,10 +175,17 @@ def strip_title(title):
|
|
| 34 |
|
| 35 |
# getting the correct format to input in gemma model
|
| 36 |
def input_format(query, context):
|
| 37 |
-
|
| 38 |
-
|
| 39 |
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
# retrieving and generating answer in one call
|
| 43 |
def retrieved_info(query, rag_model = rag_model, generating_model = model):
|
|
@@ -69,21 +217,18 @@ def retrieved_info(query, rag_model = rag_model, generating_model = model):
|
|
| 69 |
texts = docs['text']
|
| 70 |
for title, text in zip(titles, texts):
|
| 71 |
retrieved_context.append(f'{title}: {text}')
|
|
|
|
| 72 |
|
| 73 |
-
generation_model_input = input_format(query, retrieved_context)
|
| 74 |
|
| 75 |
# Generating answer using gemma model
|
| 76 |
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
|
| 77 |
-
input_ids = tokenizer(generation_model_input, return_tensors='pt').to(device)
|
| 78 |
output = generating_model.generate(input_ids, max_new_tokens = 256)
|
| 79 |
|
| 80 |
return tokenizer.decode(output[0])
|
| 81 |
|
| 82 |
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
def respond(
|
| 88 |
message,
|
| 89 |
history: list[tuple[str, str]],
|
|
@@ -130,12 +275,12 @@ demo = gr.ChatInterface(
|
|
| 130 |
description=description,
|
| 131 |
textbox=gr.Textbox(placeholder=["'What is the future of AI?' or 'App Development'"]),
|
| 132 |
examples=[["✨Future of AI"], ["📱App Development"]],
|
| 133 |
-
example_icons=["🤖", "📱"],
|
| 134 |
theme="compact",
|
| 135 |
submit_btn = True,
|
| 136 |
)
|
| 137 |
|
| 138 |
|
| 139 |
if __name__ == "__main__":
|
| 140 |
-
demo.launch(share = True
|
| 141 |
-
|
|
|
|
| 1 |
+
# import torch
|
| 2 |
+
# import transformers
|
| 3 |
+
# from transformers import RagRetriever, RagSequenceForGeneration, AutoTokenizer, AutoModelForCausalLM
|
| 4 |
+
# import gradio as gr
|
| 5 |
+
|
| 6 |
+
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
# dataset_path = "./5k_index_data/my_knowledge_dataset"
|
| 10 |
+
# index_path = "./5k_index_data/my_knowledge_dataset_hnsw_index.faiss"
|
| 11 |
+
|
| 12 |
+
# tokenizer = AutoTokenizer.from_pretrained("facebook/rag-sequence-nq")
|
| 13 |
+
# retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", index_name="custom",
|
| 14 |
+
# passages_path = dataset_path,
|
| 15 |
+
# index_path = index_path,
|
| 16 |
+
# n_docs = 5)
|
| 17 |
+
# rag_model = RagSequenceForGeneration.from_pretrained('facebook/rag-sequence-nq', retriever=retriever)
|
| 18 |
+
# rag_model.retriever.init_retrieval()
|
| 19 |
+
# rag_model.to(device)
|
| 20 |
+
# model = AutoModelForCausalLM.from_pretrained('HuggingFaceH4/zephyr-7b-beta',
|
| 21 |
+
# device_map = 'auto',
|
| 22 |
+
# torch_dtype = torch.bfloat16,
|
| 23 |
+
# )
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
# def strip_title(title):
|
| 28 |
+
# if title.startswith('"'):
|
| 29 |
+
# title = title[1:]
|
| 30 |
+
# if title.endswith('"'):
|
| 31 |
+
# title = title[:-1]
|
| 32 |
+
|
| 33 |
+
# return title
|
| 34 |
+
|
| 35 |
+
# # getting the correct format to input in gemma model
|
| 36 |
+
# def input_format(query, context):
|
| 37 |
+
# sys_instruction = f'Context:\n {context} \n Given the following information, generate answer to the question. Provide links in the answer from the information to increase credebility.'
|
| 38 |
+
# message = f'Question: {query}'
|
| 39 |
+
|
| 40 |
+
# return f'<bos><start_of_turn>\n{sys_instruction}' + f' {message}<end_of_turn>\n'
|
| 41 |
+
|
| 42 |
+
# # retrieving and generating answer in one call
|
| 43 |
+
# def retrieved_info(query, rag_model = rag_model, generating_model = model):
|
| 44 |
+
# # Tokenize Query
|
| 45 |
+
# retriever_input_ids = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
|
| 46 |
+
# [query],
|
| 47 |
+
# return_tensors = 'pt',
|
| 48 |
+
# padding = True,
|
| 49 |
+
# truncation = True,
|
| 50 |
+
# )['input_ids'].to(device)
|
| 51 |
+
|
| 52 |
+
# # Retrieve Documents
|
| 53 |
+
# question_encoder_output = rag_model.rag.question_encoder(retriever_input_ids)
|
| 54 |
+
# question_encoder_pool_output = question_encoder_output[0]
|
| 55 |
+
|
| 56 |
+
# result = rag_model.retriever(
|
| 57 |
+
# retriever_input_ids,
|
| 58 |
+
# question_encoder_pool_output.cpu().detach().to(torch.float32).numpy(),
|
| 59 |
+
# prefix = rag_model.rag.generator.config.prefix,
|
| 60 |
+
# n_docs = rag_model.config.n_docs,
|
| 61 |
+
# return_tensors = 'pt',
|
| 62 |
+
# )
|
| 63 |
+
|
| 64 |
+
# # Preparing query and retrieved docs for model
|
| 65 |
+
# all_docs = rag_model.retriever.index.get_doc_dicts(result.doc_ids)
|
| 66 |
+
# retrieved_context = []
|
| 67 |
+
# for docs in all_docs:
|
| 68 |
+
# titles = [strip_title(title) for title in docs['title']]
|
| 69 |
+
# texts = docs['text']
|
| 70 |
+
# for title, text in zip(titles, texts):
|
| 71 |
+
# retrieved_context.append(f'{title}: {text}')
|
| 72 |
+
|
| 73 |
+
# generation_model_input = input_format(query, retrieved_context)
|
| 74 |
+
|
| 75 |
+
# # Generating answer using gemma model
|
| 76 |
+
# tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
|
| 77 |
+
# input_ids = tokenizer(generation_model_input, return_tensors='pt').to(device)
|
| 78 |
+
# output = generating_model.generate(input_ids, max_new_tokens = 256)
|
| 79 |
+
|
| 80 |
+
# return tokenizer.decode(output[0])
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
# def respond(
|
| 88 |
+
# message,
|
| 89 |
+
# history: list[tuple[str, str]],
|
| 90 |
+
# system_message,
|
| 91 |
+
# max_tokens ,
|
| 92 |
+
# temperature,
|
| 93 |
+
# top_p,
|
| 94 |
+
# ):
|
| 95 |
+
# if message: # If there's a user query
|
| 96 |
+
# response = retrieved_info(message) # Get the answer from your local FAISS and Q&A model
|
| 97 |
+
# return response
|
| 98 |
+
|
| 99 |
+
# # In case no message, return an empty string
|
| 100 |
+
# return ""
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
# """
|
| 105 |
+
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 106 |
+
# """
|
| 107 |
+
# # Custom title and description
|
| 108 |
+
# title = "🧠 Welcome to Your AI Knowledge Assistant"
|
| 109 |
+
# description = """
|
| 110 |
+
# Hi!! I am your loyal assistant. My functionality is based on the RAG model. I retrieve relevant information and provide answers based on that. Ask me any questions, and let me assist you.
|
| 111 |
+
# My capabilities are limited because I am still in the development phase. I will do my best to assist you. SOOO LET'S BEGGINNNN......
|
| 112 |
+
# """
|
| 113 |
+
|
| 114 |
+
# demo = gr.ChatInterface(
|
| 115 |
+
# respond,
|
| 116 |
+
# type = 'messages',
|
| 117 |
+
# additional_inputs=[
|
| 118 |
+
# gr.Textbox(value="You are a helpful and friendly assistant.", label="System message"),
|
| 119 |
+
# gr.Slider(minimum=1, maximum=2048, value=256, step=1, label="Max new tokens"),
|
| 120 |
+
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 121 |
+
# gr.Slider(
|
| 122 |
+
# minimum=0.1,
|
| 123 |
+
# maximum=1.0,
|
| 124 |
+
# value=0.95,
|
| 125 |
+
# step=0.05,
|
| 126 |
+
# label="Top-p (nucleus sampling)",
|
| 127 |
+
# ),
|
| 128 |
+
# ],
|
| 129 |
+
# title=title,
|
| 130 |
+
# description=description,
|
| 131 |
+
# textbox=gr.Textbox(placeholder=["'What is the future of AI?' or 'App Development'"]),
|
| 132 |
+
# examples=[["✨Future of AI"], ["📱App Development"]],
|
| 133 |
+
# example_icons=["🤖", "📱"],
|
| 134 |
+
# theme="compact",
|
| 135 |
+
# submit_btn = True,
|
| 136 |
+
# )
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
# if __name__ == "__main__":
|
| 140 |
+
# demo.launch(share = True )
|
| 141 |
+
|
| 142 |
import torch
|
| 143 |
import transformers
|
| 144 |
from transformers import RagRetriever, RagSequenceForGeneration, AutoTokenizer, AutoModelForCausalLM
|
|
|
|
| 175 |
|
| 176 |
# getting the correct format to input in gemma model
|
| 177 |
def input_format(query, context):
|
| 178 |
+
# sys_instruction = f'Context:\n {context} \n Given the following information, generate answer to the question. Provide links in the answer from the information to increase credebility.'
|
| 179 |
+
# message = f'Question: {query}'
|
| 180 |
|
| 181 |
+
# return f'<bos><start_of_turn>\n{sys_instruction}' + f' {message}<end_of_turn>\n'
|
| 182 |
+
return [
|
| 183 |
+
{
|
| 184 |
+
"role": "system", "content": f'Context:\n {context} \n Given the following information, generate answer to the question. Provide links in the answer from the information to increase credebility.' },
|
| 185 |
+
|
| 186 |
+
{
|
| 187 |
+
"role": "user", "content": f"{query}"},
|
| 188 |
+
]
|
| 189 |
|
| 190 |
# retrieving and generating answer in one call
|
| 191 |
def retrieved_info(query, rag_model = rag_model, generating_model = model):
|
|
|
|
| 217 |
texts = docs['text']
|
| 218 |
for title, text in zip(titles, texts):
|
| 219 |
retrieved_context.append(f'{title}: {text}')
|
| 220 |
+
print(retrieved_context)
|
| 221 |
|
| 222 |
+
generation_model_input = input_format(query, retrieved_context[0])
|
| 223 |
|
| 224 |
# Generating answer using gemma model
|
| 225 |
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
|
| 226 |
+
input_ids = tokenizer(generation_model_input, return_tensors='pt')['input_ids'].to(device)
|
| 227 |
output = generating_model.generate(input_ids, max_new_tokens = 256)
|
| 228 |
|
| 229 |
return tokenizer.decode(output[0])
|
| 230 |
|
| 231 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
def respond(
|
| 233 |
message,
|
| 234 |
history: list[tuple[str, str]],
|
|
|
|
| 275 |
description=description,
|
| 276 |
textbox=gr.Textbox(placeholder=["'What is the future of AI?' or 'App Development'"]),
|
| 277 |
examples=[["✨Future of AI"], ["📱App Development"]],
|
| 278 |
+
#example_icons=["🤖", "📱"],
|
| 279 |
theme="compact",
|
| 280 |
submit_btn = True,
|
| 281 |
)
|
| 282 |
|
| 283 |
|
| 284 |
if __name__ == "__main__":
|
| 285 |
+
demo.launch(share = True,
|
| 286 |
+
show_error = True)
|