Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,11 +1,10 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import
|
| 3 |
from PIL import Image
|
| 4 |
import torch
|
| 5 |
from typing import Tuple, Optional, Dict, Any
|
| 6 |
from dataclasses import dataclass
|
| 7 |
import random
|
| 8 |
-
from datetime import datetime, timedelta
|
| 9 |
|
| 10 |
@dataclass
|
| 11 |
class PatientMetadata:
|
|
@@ -21,7 +20,6 @@ class PatientMetadata:
|
|
| 21 |
class AnalysisResult:
|
| 22 |
has_tumor: bool
|
| 23 |
tumor_size: str
|
| 24 |
-
confidence: float
|
| 25 |
metadata: PatientMetadata
|
| 26 |
|
| 27 |
class BreastSinogramAnalyzer:
|
|
@@ -51,18 +49,15 @@ class BreastSinogramAnalyzer:
|
|
| 51 |
)
|
| 52 |
|
| 53 |
def _init_llm(self) -> None:
|
| 54 |
-
"""Initialize the language model for report generation."""
|
| 55 |
-
print("Loading language model
|
| 56 |
-
self.
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
torch_dtype=
|
| 60 |
-
device_map="auto"
|
| 61 |
-
model_kwargs={
|
| 62 |
-
"load_in_4bit": False,
|
| 63 |
-
"bnb_4bit_compute_dtype": torch.float16,
|
| 64 |
-
}
|
| 65 |
)
|
|
|
|
| 66 |
|
| 67 |
def _generate_synthetic_metadata(self) -> PatientMetadata:
|
| 68 |
"""Generate realistic patient metadata for breast cancer screening."""
|
|
@@ -96,7 +91,6 @@ class BreastSinogramAnalyzer:
|
|
| 96 |
@torch.no_grad()
|
| 97 |
def _analyze_image(self, image: Image.Image) -> AnalysisResult:
|
| 98 |
"""Perform abnormality detection and size measurement."""
|
| 99 |
-
# Generate metadata
|
| 100 |
metadata = self._generate_synthetic_metadata()
|
| 101 |
|
| 102 |
# Detect abnormality
|
|
@@ -104,61 +98,73 @@ class BreastSinogramAnalyzer:
|
|
| 104 |
tumor_outputs = self.tumor_detector(**tumor_inputs)
|
| 105 |
tumor_probs = tumor_outputs.logits.softmax(dim=-1)[0].cpu()
|
| 106 |
has_tumor = tumor_probs[1] > tumor_probs[0]
|
| 107 |
-
confidence = float(tumor_probs[1] if has_tumor else tumor_probs[0])
|
| 108 |
|
| 109 |
-
# Measure size
|
| 110 |
size_inputs = self.size_processor(image, return_tensors="pt").to(self.device)
|
| 111 |
size_outputs = self.size_detector(**size_inputs)
|
| 112 |
size_pred = size_outputs.logits.softmax(dim=-1)[0].cpu()
|
| 113 |
sizes = ["no-tumor", "0.5", "1.0", "1.5"]
|
| 114 |
tumor_size = sizes[size_pred.argmax().item()]
|
| 115 |
|
| 116 |
-
return AnalysisResult(has_tumor, tumor_size,
|
| 117 |
|
| 118 |
def _generate_medical_report(self, analysis: AnalysisResult) -> str:
|
| 119 |
-
"""Generate a
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
- Risk factors: {', '.join([
|
| 129 |
-
'family history' if analysis.metadata.family_history else '',
|
| 130 |
-
analysis.metadata.smoking_status.lower(),
|
| 131 |
-
'hormone therapy' if analysis.metadata.hormone_therapy else ''
|
| 132 |
]).strip(', ')}
|
| 133 |
|
| 134 |
-
|
| 135 |
-
1.
|
| 136 |
-
2.
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
max_new_tokens=128,
|
| 143 |
temperature=0.3,
|
| 144 |
top_p=0.9,
|
| 145 |
repetition_penalty=1.1,
|
| 146 |
-
do_sample=True
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
return f"""INTERPRETATION AND RECOMMENDATION:
|
| 159 |
-
{report}"""
|
| 160 |
|
| 161 |
-
print("Report too short, using fallback")
|
| 162 |
return self._generate_fallback_report(analysis)
|
| 163 |
|
| 164 |
except Exception as e:
|
|
@@ -166,17 +172,19 @@ Provide:
|
|
| 166 |
return self._generate_fallback_report(analysis)
|
| 167 |
|
| 168 |
def _generate_fallback_report(self, analysis: AnalysisResult) -> str:
|
| 169 |
-
"""Generate a
|
| 170 |
if analysis.has_tumor:
|
| 171 |
-
return f"""
|
| 172 |
-
Microwave imaging reveals abnormal dielectric properties measuring {analysis.tumor_size} cm with {analysis.confidence:.1%} confidence level.
|
| 173 |
|
| 174 |
-
|
|
|
|
|
|
|
| 175 |
else:
|
| 176 |
-
return
|
| 177 |
-
|
|
|
|
| 178 |
|
| 179 |
-
|
| 180 |
|
| 181 |
def analyze(self, image: Image.Image) -> str:
|
| 182 |
"""Main analysis pipeline."""
|
|
@@ -185,20 +193,18 @@ Routine screening recommended per standard protocol."""
|
|
| 185 |
analysis = self._analyze_image(processed_image)
|
| 186 |
report = self._generate_medical_report(analysis)
|
| 187 |
|
| 188 |
-
return f"""
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
|
| 193 |
-
PATIENT
|
| 194 |
• Age: {analysis.metadata.age} years
|
| 195 |
• Risk Factors: {', '.join([
|
| 196 |
-
'family history' if analysis.metadata.family_history else '',
|
| 197 |
analysis.metadata.smoking_status.lower(),
|
| 198 |
-
'hormone therapy' if analysis.metadata.hormone_therapy else '',
|
| 199 |
]).strip(', ')}
|
| 200 |
|
| 201 |
-
REPORT:
|
| 202 |
{report}"""
|
| 203 |
except Exception as e:
|
| 204 |
return f"Error during analysis: {str(e)}"
|
|
@@ -210,13 +216,13 @@ def create_interface() -> gr.Interface:
|
|
| 210 |
interface = gr.Interface(
|
| 211 |
fn=analyzer.analyze,
|
| 212 |
inputs=[
|
| 213 |
-
gr.Image(type="pil", label="Upload Breast
|
| 214 |
],
|
| 215 |
outputs=[
|
| 216 |
gr.Textbox(label="Analysis Results", lines=20)
|
| 217 |
],
|
| 218 |
-
title="Breast
|
| 219 |
-
description="Upload a breast
|
| 220 |
)
|
| 221 |
|
| 222 |
return interface
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification, AutoModelForCausalLM, AutoTokenizer
|
| 3 |
from PIL import Image
|
| 4 |
import torch
|
| 5 |
from typing import Tuple, Optional, Dict, Any
|
| 6 |
from dataclasses import dataclass
|
| 7 |
import random
|
|
|
|
| 8 |
|
| 9 |
@dataclass
|
| 10 |
class PatientMetadata:
|
|
|
|
| 20 |
class AnalysisResult:
|
| 21 |
has_tumor: bool
|
| 22 |
tumor_size: str
|
|
|
|
| 23 |
metadata: PatientMetadata
|
| 24 |
|
| 25 |
class BreastSinogramAnalyzer:
|
|
|
|
| 49 |
)
|
| 50 |
|
| 51 |
def _init_llm(self) -> None:
|
| 52 |
+
"""Initialize the Qwen language model for report generation."""
|
| 53 |
+
print("Loading Qwen language model...")
|
| 54 |
+
self.model_name = "Qwen/QwQ-32B-Preview"
|
| 55 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 56 |
+
self.model_name,
|
| 57 |
+
torch_dtype="auto",
|
| 58 |
+
device_map="auto"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
)
|
| 60 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
| 61 |
|
| 62 |
def _generate_synthetic_metadata(self) -> PatientMetadata:
|
| 63 |
"""Generate realistic patient metadata for breast cancer screening."""
|
|
|
|
| 91 |
@torch.no_grad()
|
| 92 |
def _analyze_image(self, image: Image.Image) -> AnalysisResult:
|
| 93 |
"""Perform abnormality detection and size measurement."""
|
|
|
|
| 94 |
metadata = self._generate_synthetic_metadata()
|
| 95 |
|
| 96 |
# Detect abnormality
|
|
|
|
| 98 |
tumor_outputs = self.tumor_detector(**tumor_inputs)
|
| 99 |
tumor_probs = tumor_outputs.logits.softmax(dim=-1)[0].cpu()
|
| 100 |
has_tumor = tumor_probs[1] > tumor_probs[0]
|
|
|
|
| 101 |
|
| 102 |
+
# Measure size if tumor detected
|
| 103 |
size_inputs = self.size_processor(image, return_tensors="pt").to(self.device)
|
| 104 |
size_outputs = self.size_detector(**size_inputs)
|
| 105 |
size_pred = size_outputs.logits.softmax(dim=-1)[0].cpu()
|
| 106 |
sizes = ["no-tumor", "0.5", "1.0", "1.5"]
|
| 107 |
tumor_size = sizes[size_pred.argmax().item()]
|
| 108 |
|
| 109 |
+
return AnalysisResult(has_tumor, tumor_size, metadata)
|
| 110 |
|
| 111 |
def _generate_medical_report(self, analysis: AnalysisResult) -> str:
|
| 112 |
+
"""Generate a clear medical report using Qwen."""
|
| 113 |
+
try:
|
| 114 |
+
messages = [
|
| 115 |
+
{
|
| 116 |
+
"role": "system",
|
| 117 |
+
"content": "You are a radiologist providing clear and straightforward medical reports. Focus on clarity and actionable recommendations."
|
| 118 |
+
},
|
| 119 |
+
{
|
| 120 |
+
"role": "user",
|
| 121 |
+
"content": f"""Generate a clear medical report for this breast imaging scan:
|
| 122 |
+
|
| 123 |
+
Scan Results:
|
| 124 |
+
- Finding: {'Abnormal area detected' if analysis.has_tumor else 'No abnormalities detected'}
|
| 125 |
+
{f'- Size of abnormal area: {analysis.tumor_size} cm' if analysis.has_tumor else ''}
|
| 126 |
+
|
| 127 |
+
Patient Information:
|
| 128 |
+
- Age: {analysis.metadata.age} years
|
| 129 |
- Risk factors: {', '.join([
|
| 130 |
+
'family history of breast cancer' if analysis.metadata.family_history else '',
|
| 131 |
+
f'{analysis.metadata.smoking_status.lower()}',
|
| 132 |
+
'currently on hormone therapy' if analysis.metadata.hormone_therapy else ''
|
| 133 |
]).strip(', ')}
|
| 134 |
|
| 135 |
+
Please provide:
|
| 136 |
+
1. A clear interpretation of the findings
|
| 137 |
+
2. A specific recommendation for next steps"""
|
| 138 |
+
}
|
| 139 |
+
]
|
| 140 |
+
|
| 141 |
+
text = self.tokenizer.apply_chat_template(
|
| 142 |
+
messages,
|
| 143 |
+
tokenize=False,
|
| 144 |
+
add_generation_prompt=True
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
model_inputs = self.tokenizer([text], return_tensors="pt").to(self.model.device)
|
| 148 |
+
|
| 149 |
+
generated_ids = self.model.generate(
|
| 150 |
+
**model_inputs,
|
| 151 |
max_new_tokens=128,
|
| 152 |
temperature=0.3,
|
| 153 |
top_p=0.9,
|
| 154 |
repetition_penalty=1.1,
|
| 155 |
+
do_sample=True
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
generated_ids = [
|
| 159 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
| 160 |
+
]
|
| 161 |
+
|
| 162 |
+
response = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 163 |
+
|
| 164 |
+
if len(response.split()) >= 10:
|
| 165 |
+
return f"""FINDINGS AND RECOMMENDATIONS:
|
| 166 |
+
{response}"""
|
|
|
|
|
|
|
| 167 |
|
|
|
|
| 168 |
return self._generate_fallback_report(analysis)
|
| 169 |
|
| 170 |
except Exception as e:
|
|
|
|
| 172 |
return self._generate_fallback_report(analysis)
|
| 173 |
|
| 174 |
def _generate_fallback_report(self, analysis: AnalysisResult) -> str:
|
| 175 |
+
"""Generate a clear fallback report."""
|
| 176 |
if analysis.has_tumor:
|
| 177 |
+
return f"""FINDINGS AND RECOMMENDATIONS:
|
|
|
|
| 178 |
|
| 179 |
+
Finding: An abnormal area measuring {analysis.tumor_size} cm was detected during the scan.
|
| 180 |
+
|
| 181 |
+
Recommendation: {'An immediate follow-up with conventional mammogram and ultrasound is required.' if analysis.tumor_size in ['1.0', '1.5'] else 'A follow-up scan is recommended in 6 months.'}"""
|
| 182 |
else:
|
| 183 |
+
return """FINDINGS AND RECOMMENDATIONS:
|
| 184 |
+
|
| 185 |
+
Finding: No abnormal areas were detected during this scan.
|
| 186 |
|
| 187 |
+
Recommendation: Continue with routine screening as per standard guidelines."""
|
| 188 |
|
| 189 |
def analyze(self, image: Image.Image) -> str:
|
| 190 |
"""Main analysis pipeline."""
|
|
|
|
| 193 |
analysis = self._analyze_image(processed_image)
|
| 194 |
report = self._generate_medical_report(analysis)
|
| 195 |
|
| 196 |
+
return f"""SCAN RESULTS:
|
| 197 |
+
{'⚠️ Abnormal area detected' if analysis.has_tumor else '✓ No abnormalities detected'}
|
| 198 |
+
{f'Size of abnormal area: {analysis.tumor_size} cm' if analysis.has_tumor else ''}
|
|
|
|
| 199 |
|
| 200 |
+
PATIENT INFORMATION:
|
| 201 |
• Age: {analysis.metadata.age} years
|
| 202 |
• Risk Factors: {', '.join([
|
| 203 |
+
'family history of breast cancer' if analysis.metadata.family_history else '',
|
| 204 |
analysis.metadata.smoking_status.lower(),
|
| 205 |
+
'currently on hormone therapy' if analysis.metadata.hormone_therapy else '',
|
| 206 |
]).strip(', ')}
|
| 207 |
|
|
|
|
| 208 |
{report}"""
|
| 209 |
except Exception as e:
|
| 210 |
return f"Error during analysis: {str(e)}"
|
|
|
|
| 216 |
interface = gr.Interface(
|
| 217 |
fn=analyzer.analyze,
|
| 218 |
inputs=[
|
| 219 |
+
gr.Image(type="pil", label="Upload Breast Image for Analysis")
|
| 220 |
],
|
| 221 |
outputs=[
|
| 222 |
gr.Textbox(label="Analysis Results", lines=20)
|
| 223 |
],
|
| 224 |
+
title="Breast Imaging Analysis System",
|
| 225 |
+
description="Upload a breast image for analysis and medical assessment.",
|
| 226 |
)
|
| 227 |
|
| 228 |
return interface
|