Spaces:
Build error
Build error
Deploy Gradio app with multiple files
Browse files- app.py +339 -0
- requirements.txt +24 -0
app.py
ADDED
|
@@ -0,0 +1,339 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import spaces
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from diffusers import DiffusionPipeline
|
| 6 |
+
from diffusers.models import AutoencoderKL
|
| 7 |
+
from diffusers.schedulers import EulerDiscreteScheduler
|
| 8 |
+
from diffusers.utils import load_image, check_min_version
|
| 9 |
+
import os
|
| 10 |
+
import time
|
| 11 |
+
from PIL import Image
|
| 12 |
+
from typing import Generator, Tuple
|
| 13 |
+
import gc
|
| 14 |
+
|
| 15 |
+
# Model configuration
|
| 16 |
+
MODEL_ID = "cerspense/zeroscope_v2_576w" # 2.5GB model with good quality
|
| 17 |
+
VAE_ID = "madebyollin/sdxl-vae-fp16-fix" # Compact VAE
|
| 18 |
+
SCHEDULER = "EulerDiscreteScheduler"
|
| 19 |
+
|
| 20 |
+
@spaces.GPU(duration=1500) # AoT compilation for 7GB+ model
|
| 21 |
+
def compile_model():
|
| 22 |
+
"""Compile the text-to-video model for optimal performance"""
|
| 23 |
+
print("π Compiling model for ahead-of-time optimization...")
|
| 24 |
+
|
| 25 |
+
# Load components
|
| 26 |
+
vae = AutoencoderKL.from_pretrained(VAE_ID, torch_dtype=torch.float16)
|
| 27 |
+
scheduler = EulerDiscreteScheduler.from_pretrained(MODEL_ID, subfolder="scheduler")
|
| 28 |
+
|
| 29 |
+
# Create pipeline with optimization
|
| 30 |
+
pipe = DiffusionPipeline.from_pretrained(
|
| 31 |
+
MODEL_ID,
|
| 32 |
+
vae=vae,
|
| 33 |
+
scheduler=scheduler,
|
| 34 |
+
torch_dtype=torch.float16,
|
| 35 |
+
variant="fp16",
|
| 36 |
+
use_safetensors=True
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
# Enable memory efficient attention and compile
|
| 40 |
+
pipe.enable_model_cpu_offload()
|
| 41 |
+
pipe.enable_vae_slicing()
|
| 42 |
+
pipe.enable_attention_slicing()
|
| 43 |
+
|
| 44 |
+
# AoT compilation for 1.3x-1.8x speedup
|
| 45 |
+
with spaces.aoti_capture(pipe.transformer) as call:
|
| 46 |
+
pipe("test prompt for compilation", num_frames=6)
|
| 47 |
+
|
| 48 |
+
exported = torch.export.export(
|
| 49 |
+
pipe.transformer,
|
| 50 |
+
args=call.args,
|
| 51 |
+
kwargs=call.kwargs,
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
compiled_model = spaces.aoti_compile(exported)
|
| 55 |
+
spaces.aoti_apply(compiled_model, pipe.transformer)
|
| 56 |
+
|
| 57 |
+
return pipe
|
| 58 |
+
|
| 59 |
+
# Initialize the model
|
| 60 |
+
print("π Loading text-to-video model...")
|
| 61 |
+
pipe = compile_model()
|
| 62 |
+
pipe.to('cuda')
|
| 63 |
+
|
| 64 |
+
@spaces.GPU
|
| 65 |
+
def generate_video(
|
| 66 |
+
prompt: str,
|
| 67 |
+
num_frames: int = 8,
|
| 68 |
+
width: int = 576,
|
| 69 |
+
height: int = 320,
|
| 70 |
+
num_inference_steps: int = 25,
|
| 71 |
+
guidance_scale: float = 17.5,
|
| 72 |
+
progress: gr.Progress = gr.Progress()
|
| 73 |
+
) -> Generator[Tuple[str, np.ndarray], None, None]:
|
| 74 |
+
"""
|
| 75 |
+
Generate a video from text prompt using the compiled model.
|
| 76 |
+
|
| 77 |
+
Args:
|
| 78 |
+
prompt: Text description for video generation
|
| 79 |
+
num_frames: Number of frames in the video (6-16)
|
| 80 |
+
width: Video width (576 recommended for quality)
|
| 81 |
+
height: Video height (320 recommended for quality)
|
| 82 |
+
num_inference_steps: Diffusion steps (20-30 recommended)
|
| 83 |
+
guidance_scale: CFG scale (15-20 recommended)
|
| 84 |
+
|
| 85 |
+
Yields:
|
| 86 |
+
Tuple of (status_message, video_data)
|
| 87 |
+
"""
|
| 88 |
+
try:
|
| 89 |
+
# Clear GPU cache for optimal performance
|
| 90 |
+
if torch.cuda.is_available():
|
| 91 |
+
torch.cuda.empty_cache()
|
| 92 |
+
gc.collect()
|
| 93 |
+
|
| 94 |
+
# Validate parameters
|
| 95 |
+
prompt = prompt.strip()
|
| 96 |
+
if not prompt:
|
| 97 |
+
yield "β Please enter a text prompt", None
|
| 98 |
+
return
|
| 99 |
+
|
| 100 |
+
if not 6 <= num_frames <= 16:
|
| 101 |
+
yield "β Number of frames must be between 6-16", None
|
| 102 |
+
return
|
| 103 |
+
|
| 104 |
+
if not 200 <= width <= 1024:
|
| 105 |
+
yield "β Width must be between 200-1024", None
|
| 106 |
+
return
|
| 107 |
+
|
| 108 |
+
if not 200 <= height <= 1024:
|
| 109 |
+
yield "β Height must be between 200-1024", None
|
| 110 |
+
return
|
| 111 |
+
|
| 112 |
+
yield "π¬ Initializing video generation...", None
|
| 113 |
+
|
| 114 |
+
# Set up progress tracking
|
| 115 |
+
total_steps = num_inference_steps
|
| 116 |
+
current_step = 0
|
| 117 |
+
|
| 118 |
+
def progress_callback(step, timestep, latents):
|
| 119 |
+
nonlocal current_step
|
| 120 |
+
current_step += 1
|
| 121 |
+
progress = (current_step / total_steps) * 100
|
| 122 |
+
yield f"π¨ Generating video... {progress:.1f}% ({current_step}/{total_steps} steps)", None
|
| 123 |
+
|
| 124 |
+
# Generate video frames
|
| 125 |
+
yield "π₯ Generating video frames...", None
|
| 126 |
+
start_time = time.time()
|
| 127 |
+
|
| 128 |
+
# Run inference with optimized settings
|
| 129 |
+
with torch.inference_mode():
|
| 130 |
+
result = pipe(
|
| 131 |
+
prompt=prompt,
|
| 132 |
+
num_frames=num_frames,
|
| 133 |
+
width=width,
|
| 134 |
+
height=height,
|
| 135 |
+
num_inference_steps=num_inference_steps,
|
| 136 |
+
guidance_scale=guidance_scale,
|
| 137 |
+
callback=progress_callback,
|
| 138 |
+
callback_steps=1
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
# Extract frames
|
| 142 |
+
frames = result.frames[0] # Get first batch of frames
|
| 143 |
+
generation_time = time.time() - start_time
|
| 144 |
+
|
| 145 |
+
yield f"β
Video generated in {generation_time:.1f}s!", frames
|
| 146 |
+
|
| 147 |
+
except Exception as e:
|
| 148 |
+
error_msg = f"β Generation failed: {str(e)}"
|
| 149 |
+
yield error_msg, None
|
| 150 |
+
print(f"Error: {e}")
|
| 151 |
+
|
| 152 |
+
finally:
|
| 153 |
+
# Clean up
|
| 154 |
+
if torch.cuda.is_available():
|
| 155 |
+
torch.cuda.empty_cache()
|
| 156 |
+
gc.collect()
|
| 157 |
+
|
| 158 |
+
def get_recommended_settings() -> dict:
|
| 159 |
+
"""Get recommended generation settings"""
|
| 160 |
+
return {
|
| 161 |
+
"num_frames": 8,
|
| 162 |
+
"width": 576,
|
| 163 |
+
"height": 320,
|
| 164 |
+
"num_inference_steps": 25,
|
| 165 |
+
"guidance_scale": 17.5
|
| 166 |
+
}
|
| 167 |
+
|
| 168 |
+
# Create the Gradio interface
|
| 169 |
+
def create_demo():
|
| 170 |
+
"""Create the main Gradio demo"""
|
| 171 |
+
|
| 172 |
+
with gr.Blocks(
|
| 173 |
+
title="π Lightning Text-to-Video Generator",
|
| 174 |
+
description="Generate high-quality videos from text prompts using advanced AI",
|
| 175 |
+
theme=gr.themes.Soft()
|
| 176 |
+
) as demo:
|
| 177 |
+
|
| 178 |
+
# Header with anycoder attribution
|
| 179 |
+
gr.HTML("""
|
| 180 |
+
<div style="text-align: center; padding: 20px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); border-radius: 10px; margin-bottom: 20px;">
|
| 181 |
+
<h1 style="color: white; margin: 0; font-size: 2.5em;">π¬ Lightning Text-to-Video Generator</h1>
|
| 182 |
+
<p style="color: white; margin: 10px 0; font-size: 1.2em;">Transform your ideas into stunning videos instantly</p>
|
| 183 |
+
<a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank" style="color: #FFD700; text-decoration: none; font-size: 1.1em; font-weight: bold;">
|
| 184 |
+
β Built with anycoder
|
| 185 |
+
</a>
|
| 186 |
+
</div>
|
| 187 |
+
""")
|
| 188 |
+
|
| 189 |
+
with gr.Row():
|
| 190 |
+
with gr.Column(scale=1):
|
| 191 |
+
gr.HTML("<h3>π Text Prompt</h3>")
|
| 192 |
+
prompt_input = gr.Textbox(
|
| 193 |
+
label="Describe your video",
|
| 194 |
+
placeholder="A majestic dragon flying over a mystical forest at sunset, with glowing particles falling from the sky",
|
| 195 |
+
lines=4,
|
| 196 |
+
max_length=500
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
# Quick presets
|
| 200 |
+
gr.HTML("<h3>π― Quick Presets</h3>")
|
| 201 |
+
with gr.Row():
|
| 202 |
+
preset_btn1 = gr.Button("π Nature Scene", variant="secondary", size="sm")
|
| 203 |
+
preset_btn2 = gr.Button("ποΈ Urban Scene", variant="secondary", size="sm")
|
| 204 |
+
preset_btn3 = gr.Button("π Sci-Fi", variant="secondary", size="sm")
|
| 205 |
+
preset_btn4 = gr.Button("π Fantasy", variant="secondary", size="sm")
|
| 206 |
+
|
| 207 |
+
# Advanced settings
|
| 208 |
+
with gr.Accordion("βοΈ Advanced Settings", open=False):
|
| 209 |
+
num_frames = gr.Slider(
|
| 210 |
+
minimum=6, maximum=16, value=8, step=1,
|
| 211 |
+
label="Number of Frames",
|
| 212 |
+
info="More frames = longer video but slower generation"
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
with gr.Row():
|
| 216 |
+
width = gr.Slider(
|
| 217 |
+
minimum=200, maximum=1024, value=576, step=64,
|
| 218 |
+
label="Width",
|
| 219 |
+
info="Video width (576px recommended)"
|
| 220 |
+
)
|
| 221 |
+
height = gr.Slider(
|
| 222 |
+
minimum=200, maximum=1024, value=320, step=64,
|
| 223 |
+
label="Height",
|
| 224 |
+
info="Video height (320px recommended)"
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
num_inference_steps = gr.Slider(
|
| 228 |
+
minimum=15, maximum=50, value=25, step=5,
|
| 229 |
+
label="Generation Steps",
|
| 230 |
+
info="More steps = better quality but slower"
|
| 231 |
+
)
|
| 232 |
+
|
| 233 |
+
guidance_scale = gr.Slider(
|
| 234 |
+
minimum=5, maximum=25, value=17.5, step=0.5,
|
| 235 |
+
label="Guidance Scale",
|
| 236 |
+
info="How closely to follow the prompt (15-20 recommended)"
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
# Action buttons
|
| 240 |
+
with gr.Row():
|
| 241 |
+
generate_btn = gr.Button("π Generate Video", variant="primary", size="lg")
|
| 242 |
+
clear_btn = gr.Button("ποΈ Clear", variant="secondary")
|
| 243 |
+
|
| 244 |
+
# Quick settings
|
| 245 |
+
with gr.Row():
|
| 246 |
+
quality_btn = gr.Button("β‘ Fast", variant="secondary", size="sm")
|
| 247 |
+
quality_btn2 = gr.Button("π¨ High Quality", variant="secondary", size="sm")
|
| 248 |
+
|
| 249 |
+
# Status display
|
| 250 |
+
status = gr.HTML("<p style='color: #666;'>Ready to generate your video!</p>")
|
| 251 |
+
|
| 252 |
+
with gr.Column(scale=1):
|
| 253 |
+
gr.HTML("<h3>π₯ Generated Video</h3>")
|
| 254 |
+
video_output = gr.Video(
|
| 255 |
+
label="Your Generated Video",
|
| 256 |
+
format="mp4",
|
| 257 |
+
loop=True,
|
| 258 |
+
autoplay=True,
|
| 259 |
+
height=400
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
# Info panel
|
| 263 |
+
info_panel = gr.HTML("""
|
| 264 |
+
<div style="padding: 15px; background: #f8f9fa; border-radius: 8px; margin-top: 10px;">
|
| 265 |
+
<h4>π‘ Tips for Better Results:</h4>
|
| 266 |
+
<ul style="color: #555; font-size: 0.9em;">
|
| 267 |
+
<li>Be specific and descriptive in your prompts</li>
|
| 268 |
+
<li>Use adjectives to describe style, lighting, mood</li>
|
| 269 |
+
<li>Include camera movements (pan, zoom, rotate)</li>
|
| 270 |
+
<li>Fast mode: 6-8 frames, 15-20 steps</li>
|
| 271 |
+
<li>High quality: 10-12 frames, 25-30 steps</li>
|
| 272 |
+
</ul>
|
| 273 |
+
</div>
|
| 274 |
+
""")
|
| 275 |
+
|
| 276 |
+
# Preset prompt handlers
|
| 277 |
+
preset_prompts = {
|
| 278 |
+
preset_btn1: "A serene mountain landscape with flowing river, golden hour lighting, birds flying in the sky",
|
| 279 |
+
preset_btn2: "A bustling city street at night with neon lights, cars driving by, people walking",
|
| 280 |
+
preset_btn3: "A futuristic spaceship flying through a galaxy with colorful nebulas and distant stars",
|
| 281 |
+
preset_btn4: "A magical forest with glowing mushrooms, fairy lights dancing, mystical creatures moving"
|
| 282 |
+
}
|
| 283 |
+
|
| 284 |
+
for btn, preset_text in preset_prompts.items():
|
| 285 |
+
btn.click(
|
| 286 |
+
lambda text=preset_text: gr.update(value=text),
|
| 287 |
+
outputs=prompt_input
|
| 288 |
+
)
|
| 289 |
+
|
| 290 |
+
# Quality settings
|
| 291 |
+
def apply_fast_settings():
|
| 292 |
+
return 6, 512, 288, 15, 15.0
|
| 293 |
+
|
| 294 |
+
def apply_quality_settings():
|
| 295 |
+
return 12, 576, 320, 30, 18.0
|
| 296 |
+
|
| 297 |
+
quality_btn.click(apply_fast_settings, outputs=[num_frames, width, height, num_inference_steps, guidance_scale])
|
| 298 |
+
quality_btn2.click(apply_quality_settings, outputs=[num_frames, width, height, num_inference_steps, guidance_scale])
|
| 299 |
+
|
| 300 |
+
# Main generation handler
|
| 301 |
+
def handle_generate(prompt, num_frames, width, height, steps, guidance):
|
| 302 |
+
# Create generator for progress updates
|
| 303 |
+
def gen():
|
| 304 |
+
for status, video in generate_video(prompt, num_frames, width, height, steps, guidance):
|
| 305 |
+
yield status, video
|
| 306 |
+
|
| 307 |
+
return gen
|
| 308 |
+
|
| 309 |
+
# Connect events
|
| 310 |
+
generate_btn.click(
|
| 311 |
+
handle_generate,
|
| 312 |
+
inputs=[prompt_input, num_frames, width, height, num_inference_steps, guidance_scale],
|
| 313 |
+
outputs=[status, video_output]
|
| 314 |
+
)
|
| 315 |
+
|
| 316 |
+
def clear_all():
|
| 317 |
+
return "", None, *get_recommended_settings().values(), "ποΈ Cleared! Ready for new generation."
|
| 318 |
+
|
| 319 |
+
clear_btn.click(
|
| 320 |
+
clear_all,
|
| 321 |
+
outputs=[prompt_input, video_output, num_frames, width, height, num_inference_steps, guidance_scale, status]
|
| 322 |
+
)
|
| 323 |
+
|
| 324 |
+
return demo
|
| 325 |
+
|
| 326 |
+
# Create and launch the demo
|
| 327 |
+
if __name__ == "__main__":
|
| 328 |
+
demo = create_demo()
|
| 329 |
+
|
| 330 |
+
# Launch with optimized settings
|
| 331 |
+
demo.launch(
|
| 332 |
+
server_name="0.0.0.0",
|
| 333 |
+
server_port=7860,
|
| 334 |
+
share=True,
|
| 335 |
+
show_error=True,
|
| 336 |
+
quiet=False,
|
| 337 |
+
max_threads=40,
|
| 338 |
+
concurrency_limit=10
|
| 339 |
+
)
|
requirements.txt
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio[webrtc]==4.29.0
|
| 2 |
+
spaces==0.20.0
|
| 3 |
+
torch>=2.0.0
|
| 4 |
+
torchvision>=0.15.0
|
| 5 |
+
torchaudio>=2.0.0
|
| 6 |
+
diffusers==0.27.0
|
| 7 |
+
transformers==4.40.0
|
| 8 |
+
accelerate==0.27.0
|
| 9 |
+
safetensors==0.4.2
|
| 10 |
+
xformers==0.0.24
|
| 11 |
+
pillow>=10.0.0
|
| 12 |
+
numpy>=1.24.0
|
| 13 |
+
opencv-python>=4.8.0
|
| 14 |
+
einops>=0.7.0
|
| 15 |
+
triton>=2.0.0
|
| 16 |
+
Petitioner:
|
| 17 |
+
spaces (for ZeroGPU optimization)
|
| 18 |
+
torch (>=2.0.0 for diffusion models)
|
| 19 |
+
diffusers (for Stable Video Diffusion pipeline)
|
| 20 |
+
transformers (for model components)
|
| 21 |
+
accelerate (for memory optimization)
|
| 22 |
+
pillow (for image handling)
|
| 23 |
+
numpy (for array operations)
|
| 24 |
+
opencv-python (for video processing)
|