File size: 444 Bytes
73fbc5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
# rag/loader.py
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
def load_rag_index(index_path="faiss_index_fast"):
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2"
)
vectorstore = FAISS.load_local(
index_path,
embeddings,
allow_dangerous_deserialization=True
)
return vectorstore
|