AItool commited on
Commit
04e075f
·
verified ·
1 Parent(s): 80027a8

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +65 -0
app.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ from PIL import Image
4
+ import cv2
5
+ import torch
6
+ from segment_anything import sam_model_registry, SamPredictor
7
+
8
+ # --- CONFIG ---
9
+ SAM_CHECKPOINT = "sam_vit_h_4b8939.pth"
10
+ SAM_MODEL_TYPE = "vit_h"
11
+ DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
12
+ BLUR_RADIUS = 10
13
+ DEMO_IMAGE = "demo.png" # put a demo image in the repo
14
+ # --------------
15
+
16
+ sam = sam_model_registry[SAM_MODEL_TYPE](checkpoint=SAM_CHECKPOINT)
17
+ sam.to(device=DEVICE)
18
+ predictor = SamPredictor(sam)
19
+
20
+ def soft_alpha(mask_uint8, blur_radius=10):
21
+ blurred = cv2.GaussianBlur(mask_uint8, (0,0), sigmaX=blur_radius, sigmaY=blur_radius)
22
+ return (blurred.astype(np.float32) / 255.0).clip(0.0, 1.0)
23
+
24
+ def isolate_with_click(image: Image.Image, evt: gr.SelectData):
25
+ img_rgb = np.array(image.convert("RGB"))
26
+ predictor.set_image(img_rgb)
27
+
28
+ input_point = np.array([[evt.index[0], evt.index[1]]])
29
+ input_label = np.array([1])
30
+
31
+ masks, scores, _ = predictor.predict(
32
+ point_coords=input_point,
33
+ point_labels=input_label,
34
+ multimask_output=True
35
+ )
36
+
37
+ best_mask = masks[np.argmax(scores)].astype(np.uint8) * 255
38
+ alpha = soft_alpha(best_mask, blur_radius=BLUR_RADIUS)
39
+
40
+ ys, xs = np.where(best_mask == 255)
41
+ if len(xs) == 0 or len(ys) == 0:
42
+ return None
43
+ x0, x1 = xs.min(), xs.max()
44
+ y0, y1 = ys.min(), ys.max()
45
+ pad = int(max(img_rgb.shape[:2]) * 0.02)
46
+ x0 = max(0, x0 - pad); x1 = min(img_rgb.shape[1]-1, x1 + pad)
47
+ y0 = max(0, y0 - pad); y1 = min(img_rgb.shape[0]-1, y1 + pad)
48
+
49
+ fg_rgb = img_rgb[y0:y1+1, x0:x1+1]
50
+ fg_alpha = alpha[y0:y1+1, x0:x1+1]
51
+
52
+ rgba = np.dstack((fg_rgb, (fg_alpha * 255).astype(np.uint8)))
53
+ return Image.fromarray(rgba)
54
+
55
+ with gr.Blocks() as demo:
56
+ gr.Markdown("### SAM Object Isolation\nUpload an image or use the demo below, then click on the object to isolate it.")
57
+
58
+ inp = gr.Image(type="pil", label="Upload image", interactive=True)
59
+ demo_img = gr.Image(value=DEMO_IMAGE, type="pil", label="Demo image (click to try)", interactive=True)
60
+ out = gr.Image(type="pil", label="Isolated cutout (RGBA)")
61
+
62
+ inp.select(isolate_with_click, inputs=[inp], outputs=out)
63
+ demo_img.select(isolate_with_click, inputs=[demo_img], outputs=out)
64
+
65
+ demo.launch()