eacortes commited on
Commit
4113b79
·
verified ·
1 Parent(s): c834d2c

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,11 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ model.rknn filter=lfs diff=lfs merge=lfs -text
37
+ model_b1_s256.rknn filter=lfs diff=lfs merge=lfs -text
38
+ model_b4_s256.rknn filter=lfs diff=lfs merge=lfs -text
39
+ model_b4_s512.rknn filter=lfs diff=lfs merge=lfs -text
40
+ rknn/model_o1.rknn filter=lfs diff=lfs merge=lfs -text
41
+ rknn/model_o2.rknn filter=lfs diff=lfs merge=lfs -text
42
+ rknn/model_o3.rknn filter=lfs diff=lfs merge=lfs -text
43
+ rknn/model_w8a8.rknn filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,331 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ tags:
4
+ - exbert
5
+ - rknn
6
+ - rockchip
7
+ - npu
8
+ - rk-transformers
9
+ - rk3588
10
+ license: apache-2.0
11
+ model_name: bert-base-uncased
12
+ base_model: google-bert/bert-base-uncased
13
+ library_name: rk-transformers
14
+ ---
15
+ # bert-base-uncased (RKNN2)
16
+
17
+ > This is an RKNN-compatible version of the [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) model. It has been optimized for Rockchip NPUs using the [rk-transformers](https://github.com/emapco/rk-transformers) library.
18
+
19
+ <details><summary>Click to see the RKNN model details and usage examples</summary>
20
+
21
+ ## Model Details
22
+
23
+ - **Original Model:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased)
24
+ - **Target Platform:** rk3588
25
+ - **rknn-toolkit2 Version:** 2.3.2
26
+ - **rk-transformers Version:** 0.1.0
27
+
28
+ ### Available Model Files
29
+
30
+ | Model File | Optimization Level | Quantization | File Size |
31
+ | :--------- | :----------------- | :----------- | :-------- |
32
+ | [model.rknn](./model.rknn) | 0 | float16 | 261.1 MB |
33
+ | [model_b1_s256.rknn](./model_b1_s256.rknn) | 0 | float16 | 258.4 MB |
34
+ | [model_b4_s256.rknn](./model_b4_s256.rknn) | 0 | float16 | 270.3 MB |
35
+ | [model_b4_s512.rknn](./model_b4_s512.rknn) | 0 | float16 | 280.5 MB |
36
+ | [rknn/model_o1.rknn](./rknn/model_o1.rknn) | 1 | float16 | 261.1 MB |
37
+ | [rknn/model_o2.rknn](./rknn/model_o2.rknn) | 2 | float16 | 261.1 MB |
38
+ | [rknn/model_o3.rknn](./rknn/model_o3.rknn) | 3 | float16 | 261.1 MB |
39
+ | [rknn/model_w8a8.rknn](./rknn/model_w8a8.rknn) | 0 | w8a8 | 133.6 MB |
40
+
41
+ ## Usage
42
+
43
+ ### Installation
44
+
45
+ Install `rk-transformers` to use this model:
46
+
47
+ ```bash
48
+ pip install rk-transformers
49
+ ```
50
+
51
+ #### RKTransformers API
52
+
53
+ ```python
54
+ from rktransformers import RKRTModelForFeatureExtraction
55
+ from transformers import AutoTokenizer
56
+
57
+ # Load tokenizer and model
58
+ tokenizer = AutoTokenizer.from_pretrained("rk-transformers/bert-base-uncased")
59
+ model = RKRTModelForFeatureExtraction.from_pretrained(
60
+ "rk-transformers/bert-base-uncased",
61
+ platform="rk3588",
62
+ core_mask="auto",
63
+ )
64
+
65
+ # Tokenize and run inference
66
+ inputs = tokenizer(
67
+ ["Sample text for encoding"],
68
+ padding="max_length",
69
+ max_length=256,
70
+ truncation=True,
71
+ return_tensors="np"
72
+ )
73
+
74
+ outputs = model(**inputs)
75
+ print(outputs.shape)
76
+
77
+ # Load specific optimized/quantized model file
78
+ model = RKRTModelForFeatureExtraction.from_pretrained(
79
+ "rk-transformers/bert-base-uncased",
80
+ platform="rk3588",
81
+ file_name="rknn/model_w8a8.rknn"
82
+ )
83
+ ```
84
+
85
+ ## Configuration
86
+
87
+ The full configuration for all exported RKNN models is available in the [rknn.json](./rknn.json) file.
88
+
89
+ </details>
90
+
91
+ # BERT base model (uncased)
92
+
93
+ Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
94
+ [this paper](https://arxiv.org/abs/1810.04805) and first released in
95
+ [this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference
96
+ between english and English.
97
+
98
+ Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by
99
+ the Hugging Face team.
100
+
101
+ ## Model description
102
+
103
+ BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
104
+ was pretrained on the raw texts only, with no humans labeling them in any way (which is why it can use lots of
105
+ publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
106
+ was pretrained with two objectives:
107
+
108
+ - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
109
+ the entire masked sentence through the model and has to predict the masked words. This is different from traditional
110
+ recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
111
+ GPT which internally masks the future tokens. It allows the model to learn a bidirectional representation of the
112
+ sentence.
113
+ - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes
114
+ they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to
115
+ predict if the two sentences were following each other or not.
116
+
117
+ This way, the model learns an inner representation of the English language that can then be used to extract features
118
+ useful for downstream tasks: if you have a dataset of labeled sentences, for instance, you can train a standard
119
+ classifier using the features produced by the BERT model as inputs.
120
+
121
+ ## Model variations
122
+
123
+ BERT has originally been released in base and large variations, for cased and uncased input text. The uncased models also strips out an accent markers.
124
+ Chinese and multilingual uncased and cased versions followed shortly after.
125
+ Modified preprocessing with whole word masking has replaced subpiece masking in a following work, with the release of two models.
126
+ Other 24 smaller models are released afterward.
127
+
128
+ The detailed release history can be found on the [google-research/bert readme](https://github.com/google-research/bert/blob/master/README.md) on github.
129
+
130
+ | Model | #params | Language |
131
+ |------------------------|--------------------------------|-------|
132
+ | [`bert-base-uncased`](https://huggingface.co/bert-base-uncased) | 110M | English |
133
+ | [`bert-large-uncased`](https://huggingface.co/bert-large-uncased) | 340M | English | sub
134
+ | [`bert-base-cased`](https://huggingface.co/bert-base-cased) | 110M | English |
135
+ | [`bert-large-cased`](https://huggingface.co/bert-large-cased) | 340M | English |
136
+ | [`bert-base-chinese`](https://huggingface.co/bert-base-chinese) | 110M | Chinese |
137
+ | [`bert-base-multilingual-cased`](https://huggingface.co/bert-base-multilingual-cased) | 110M | Multiple |
138
+ | [`bert-large-uncased-whole-word-masking`](https://huggingface.co/bert-large-uncased-whole-word-masking) | 340M | English |
139
+ | [`bert-large-cased-whole-word-masking`](https://huggingface.co/bert-large-cased-whole-word-masking) | 340M | English |
140
+
141
+ ## Intended uses & limitations
142
+
143
+ You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
144
+ be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for
145
+ fine-tuned versions of a task that interests you.
146
+
147
+ Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
148
+ to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
149
+ generation you should look at model like GPT2.
150
+
151
+ ### How to use
152
+
153
+ You can use this model directly with a pipeline for masked language modeling:
154
+
155
+ ```python
156
+ >>> from transformers import pipeline
157
+ >>> unmasker = pipeline('fill-mask', model='bert-base-uncased')
158
+ >>> unmasker("Hello I'm a [MASK] model.")
159
+
160
+ [{'sequence': "[CLS] hello i'm a fashion model. [SEP]",
161
+ 'score': 0.1073106899857521,
162
+ 'token': 4827,
163
+ 'token_str': 'fashion'},
164
+ {'sequence': "[CLS] hello i'm a role model. [SEP]",
165
+ 'score': 0.08774490654468536,
166
+ 'token': 2535,
167
+ 'token_str': 'role'},
168
+ {'sequence': "[CLS] hello i'm a new model. [SEP]",
169
+ 'score': 0.05338378623127937,
170
+ 'token': 2047,
171
+ 'token_str': 'new'},
172
+ {'sequence': "[CLS] hello i'm a super model. [SEP]",
173
+ 'score': 0.04667217284440994,
174
+ 'token': 3565,
175
+ 'token_str': 'super'},
176
+ {'sequence': "[CLS] hello i'm a fine model. [SEP]",
177
+ 'score': 0.027095865458250046,
178
+ 'token': 2986,
179
+ 'token_str': 'fine'}]
180
+ ```
181
+
182
+ Here is how to use this model to get the features of a given text in PyTorch:
183
+
184
+ ```python
185
+ from transformers import BertTokenizer, BertModel
186
+ tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
187
+ model = BertModel.from_pretrained("bert-base-uncased")
188
+ text = "Replace me by any text you'd like."
189
+ encoded_input = tokenizer(text, return_tensors='pt')
190
+ output = model(**encoded_input)
191
+ ```
192
+
193
+ and in TensorFlow:
194
+
195
+ ```python
196
+ from transformers import BertTokenizer, TFBertModel
197
+ tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
198
+ model = TFBertModel.from_pretrained("bert-base-uncased")
199
+ text = "Replace me by any text you'd like."
200
+ encoded_input = tokenizer(text, return_tensors='tf')
201
+ output = model(encoded_input)
202
+ ```
203
+
204
+ ### Limitations and bias
205
+
206
+ Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
207
+ predictions:
208
+
209
+ ```python
210
+ >>> from transformers import pipeline
211
+ >>> unmasker = pipeline('fill-mask', model='bert-base-uncased')
212
+ >>> unmasker("The man worked as a [MASK].")
213
+
214
+ [{'sequence': '[CLS] the man worked as a carpenter. [SEP]',
215
+ 'score': 0.09747550636529922,
216
+ 'token': 10533,
217
+ 'token_str': 'carpenter'},
218
+ {'sequence': '[CLS] the man worked as a waiter. [SEP]',
219
+ 'score': 0.0523831807076931,
220
+ 'token': 15610,
221
+ 'token_str': 'waiter'},
222
+ {'sequence': '[CLS] the man worked as a barber. [SEP]',
223
+ 'score': 0.04962705448269844,
224
+ 'token': 13362,
225
+ 'token_str': 'barber'},
226
+ {'sequence': '[CLS] the man worked as a mechanic. [SEP]',
227
+ 'score': 0.03788609802722931,
228
+ 'token': 15893,
229
+ 'token_str': 'mechanic'},
230
+ {'sequence': '[CLS] the man worked as a salesman. [SEP]',
231
+ 'score': 0.037680890411138535,
232
+ 'token': 18968,
233
+ 'token_str': 'salesman'}]
234
+
235
+ >>> unmasker("The woman worked as a [MASK].")
236
+
237
+ [{'sequence': '[CLS] the woman worked as a nurse. [SEP]',
238
+ 'score': 0.21981462836265564,
239
+ 'token': 6821,
240
+ 'token_str': 'nurse'},
241
+ {'sequence': '[CLS] the woman worked as a waitress. [SEP]',
242
+ 'score': 0.1597415804862976,
243
+ 'token': 13877,
244
+ 'token_str': 'waitress'},
245
+ {'sequence': '[CLS] the woman worked as a maid. [SEP]',
246
+ 'score': 0.1154729500412941,
247
+ 'token': 10850,
248
+ 'token_str': 'maid'},
249
+ {'sequence': '[CLS] the woman worked as a prostitute. [SEP]',
250
+ 'score': 0.037968918681144714,
251
+ 'token': 19215,
252
+ 'token_str': 'prostitute'},
253
+ {'sequence': '[CLS] the woman worked as a cook. [SEP]',
254
+ 'score': 0.03042375110089779,
255
+ 'token': 5660,
256
+ 'token_str': 'cook'}]
257
+ ```
258
+
259
+ This bias will also affect all fine-tuned versions of this model.
260
+
261
+ ## Training data
262
+
263
+ The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
264
+ unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
265
+ headers).
266
+
267
+ ## Training procedure
268
+
269
+ ### Preprocessing
270
+
271
+ The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are
272
+ then of the form:
273
+
274
+ ```
275
+ [CLS] Sentence A [SEP] Sentence B [SEP]
276
+ ```
277
+
278
+ With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus, and in
279
+ the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a
280
+ consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two
281
+ "sentences" has a combined length of less than 512 tokens.
282
+
283
+ The details of the masking procedure for each sentence are the following:
284
+ - 15% of the tokens are masked.
285
+ - In 80% of the cases, the masked tokens are replaced by `[MASK]`.
286
+ - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
287
+ - In the 10% remaining cases, the masked tokens are left as is.
288
+
289
+ ### Pretraining
290
+
291
+ The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size
292
+ of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer
293
+ used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01,
294
+ learning rate warmup for 10,000 steps and linear decay of the learning rate after.
295
+
296
+ ## Evaluation results
297
+
298
+ When fine-tuned on downstream tasks, this model achieves the following results:
299
+
300
+ Glue test results:
301
+
302
+ | Task | MNLI-(m/mm) | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | Average |
303
+ |:----:|:-----------:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|:-------:|
304
+ | | 84.6/83.4 | 71.2 | 90.5 | 93.5 | 52.1 | 85.8 | 88.9 | 66.4 | 79.6 |
305
+
306
+
307
+ ### BibTeX entry and citation info
308
+
309
+ ```bibtex
310
+ @article{DBLP:journals/corr/abs-1810-04805,
311
+ author = {Jacob Devlin and
312
+ Ming{-}Wei Chang and
313
+ Kenton Lee and
314
+ Kristina Toutanova},
315
+ title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language
316
+ Understanding},
317
+ journal = {CoRR},
318
+ volume = {abs/1810.04805},
319
+ year = {2018},
320
+ url = {http://arxiv.org/abs/1810.04805},
321
+ archivePrefix = {arXiv},
322
+ eprint = {1810.04805},
323
+ timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},
324
+ biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},
325
+ bibsource = {dblp computer science bibliography, https://dblp.org}
326
+ }
327
+ ```
328
+
329
+ <a href="https://huggingface.co/exbert/?model=bert-base-uncased">
330
+ <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
331
+ </a>
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForMaskedLM"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.55.4",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
coreml/fill-mask/float32_model.mlpackage/Manifest.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "fileFormatVersion": "1.0.0",
3
+ "itemInfoEntries": {
4
+ "9D749A46-ADA0-43CA-B5C2-8E722B91F41E": {
5
+ "author": "com.apple.CoreML",
6
+ "description": "CoreML Model Specification",
7
+ "name": "model.mlmodel",
8
+ "path": "com.apple.CoreML/model.mlmodel"
9
+ },
10
+ "D545B13F-2D5E-4CFB-BFF1-C10E9EFD70DA": {
11
+ "author": "com.apple.CoreML",
12
+ "description": "CoreML Model Weights",
13
+ "name": "weights",
14
+ "path": "com.apple.CoreML/weights"
15
+ }
16
+ },
17
+ "rootModelIdentifier": "9D749A46-ADA0-43CA-B5C2-8E722B91F41E"
18
+ }
model.rknn ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b82e76cd0d3c4bb14ba88aa6a0e2843f2e904cb65ca955ba5f465f0b5c9304d7
3
+ size 273830854
model_b1_s256.rknn ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5c3d5aa68001fd22f0f66cda6c8e04cbdad931a430d5d0802e8bed325d72d36
3
+ size 270969670
model_b4_s256.rknn ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:abad409b4f884e6a49c4d1a2144dd90f5a70ec9a615014da2fc62747fb755457
3
+ size 283424646
model_b4_s512.rknn ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c777bf44463b5738af0693ce5a5fe54cf4f4516c6bff68e7979f89d8c11ee80
3
+ size 294075782
rknn.json ADDED
@@ -0,0 +1,350 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model.rknn": {
3
+ "model_input_names": [
4
+ "input_ids",
5
+ "attention_mask",
6
+ "token_type_ids"
7
+ ],
8
+ "batch_size": 1,
9
+ "max_seq_length": 512,
10
+ "float_dtype": "float16",
11
+ "target_platform": "rk3588",
12
+ "single_core_mode": false,
13
+ "mean_values": null,
14
+ "std_values": null,
15
+ "custom_string": null,
16
+ "inputs_yuv_fmt": null,
17
+ "dynamic_input": null,
18
+ "opset": 18,
19
+ "task": "fill-mask",
20
+ "quantization": {
21
+ "do_quantization": false,
22
+ "dataset_name": null,
23
+ "dataset_subset": null,
24
+ "dataset_size": 128,
25
+ "dataset_split": null,
26
+ "dataset_columns": null,
27
+ "quantized_dtype": "w8a8",
28
+ "quantized_algorithm": "normal",
29
+ "quantized_method": "channel",
30
+ "quantized_hybrid_level": 0,
31
+ "quant_img_RGB2BGR": false,
32
+ "auto_hybrid_cos_thresh": 0.98,
33
+ "auto_hybrid_euc_thresh": null
34
+ },
35
+ "optimization": {
36
+ "optimization_level": 0,
37
+ "enable_flash_attention": true,
38
+ "remove_weight": false,
39
+ "compress_weight": false,
40
+ "remove_reshape": false,
41
+ "sparse_infer": false,
42
+ "model_pruning": false
43
+ }
44
+ },
45
+ "rknn/model_o1.rknn": {
46
+ "model_input_names": [
47
+ "input_ids",
48
+ "attention_mask",
49
+ "token_type_ids"
50
+ ],
51
+ "batch_size": 1,
52
+ "max_seq_length": 512,
53
+ "float_dtype": "float16",
54
+ "target_platform": "rk3588",
55
+ "single_core_mode": false,
56
+ "mean_values": null,
57
+ "std_values": null,
58
+ "custom_string": null,
59
+ "inputs_yuv_fmt": null,
60
+ "dynamic_input": null,
61
+ "opset": 18,
62
+ "task": "fill-mask",
63
+ "quantization": {
64
+ "do_quantization": false,
65
+ "dataset_name": null,
66
+ "dataset_subset": null,
67
+ "dataset_size": 128,
68
+ "dataset_split": null,
69
+ "dataset_columns": null,
70
+ "quantized_dtype": "w8a8",
71
+ "quantized_algorithm": "normal",
72
+ "quantized_method": "channel",
73
+ "quantized_hybrid_level": 0,
74
+ "quant_img_RGB2BGR": false,
75
+ "auto_hybrid_cos_thresh": 0.98,
76
+ "auto_hybrid_euc_thresh": null
77
+ },
78
+ "optimization": {
79
+ "optimization_level": 1,
80
+ "enable_flash_attention": true,
81
+ "remove_weight": false,
82
+ "compress_weight": false,
83
+ "remove_reshape": false,
84
+ "sparse_infer": false,
85
+ "model_pruning": false
86
+ }
87
+ },
88
+ "rknn/model_o2.rknn": {
89
+ "model_input_names": [
90
+ "input_ids",
91
+ "attention_mask",
92
+ "token_type_ids"
93
+ ],
94
+ "batch_size": 1,
95
+ "max_seq_length": 512,
96
+ "float_dtype": "float16",
97
+ "target_platform": "rk3588",
98
+ "single_core_mode": false,
99
+ "mean_values": null,
100
+ "std_values": null,
101
+ "custom_string": null,
102
+ "inputs_yuv_fmt": null,
103
+ "dynamic_input": null,
104
+ "opset": 18,
105
+ "task": "fill-mask",
106
+ "quantization": {
107
+ "do_quantization": false,
108
+ "dataset_name": null,
109
+ "dataset_subset": null,
110
+ "dataset_size": 128,
111
+ "dataset_split": null,
112
+ "dataset_columns": null,
113
+ "quantized_dtype": "w8a8",
114
+ "quantized_algorithm": "normal",
115
+ "quantized_method": "channel",
116
+ "quantized_hybrid_level": 0,
117
+ "quant_img_RGB2BGR": false,
118
+ "auto_hybrid_cos_thresh": 0.98,
119
+ "auto_hybrid_euc_thresh": null
120
+ },
121
+ "optimization": {
122
+ "optimization_level": 2,
123
+ "enable_flash_attention": true,
124
+ "remove_weight": false,
125
+ "compress_weight": false,
126
+ "remove_reshape": false,
127
+ "sparse_infer": false,
128
+ "model_pruning": false
129
+ }
130
+ },
131
+ "rknn/model_o3.rknn": {
132
+ "model_input_names": [
133
+ "input_ids",
134
+ "attention_mask",
135
+ "token_type_ids"
136
+ ],
137
+ "batch_size": 1,
138
+ "max_seq_length": 512,
139
+ "float_dtype": "float16",
140
+ "target_platform": "rk3588",
141
+ "single_core_mode": false,
142
+ "mean_values": null,
143
+ "std_values": null,
144
+ "custom_string": null,
145
+ "inputs_yuv_fmt": null,
146
+ "dynamic_input": null,
147
+ "opset": 18,
148
+ "task": "fill-mask",
149
+ "quantization": {
150
+ "do_quantization": false,
151
+ "dataset_name": null,
152
+ "dataset_subset": null,
153
+ "dataset_size": 128,
154
+ "dataset_split": null,
155
+ "dataset_columns": null,
156
+ "quantized_dtype": "w8a8",
157
+ "quantized_algorithm": "normal",
158
+ "quantized_method": "channel",
159
+ "quantized_hybrid_level": 0,
160
+ "quant_img_RGB2BGR": false,
161
+ "auto_hybrid_cos_thresh": 0.98,
162
+ "auto_hybrid_euc_thresh": null
163
+ },
164
+ "optimization": {
165
+ "optimization_level": 3,
166
+ "enable_flash_attention": true,
167
+ "remove_weight": false,
168
+ "compress_weight": false,
169
+ "remove_reshape": false,
170
+ "sparse_infer": false,
171
+ "model_pruning": false
172
+ }
173
+ },
174
+ "rknn/model_w8a8.rknn": {
175
+ "model_input_names": [
176
+ "input_ids",
177
+ "attention_mask",
178
+ "token_type_ids"
179
+ ],
180
+ "batch_size": 1,
181
+ "max_seq_length": 512,
182
+ "float_dtype": "float16",
183
+ "target_platform": "rk3588",
184
+ "single_core_mode": false,
185
+ "mean_values": null,
186
+ "std_values": null,
187
+ "custom_string": null,
188
+ "inputs_yuv_fmt": null,
189
+ "dynamic_input": null,
190
+ "opset": 18,
191
+ "task": "fill-mask",
192
+ "quantization": {
193
+ "do_quantization": true,
194
+ "dataset_name": "sentence-transformers/natural-questions",
195
+ "dataset_subset": null,
196
+ "dataset_size": 2048,
197
+ "dataset_split": [
198
+ "train"
199
+ ],
200
+ "dataset_columns": [
201
+ "answer"
202
+ ],
203
+ "quantized_dtype": "w8a8",
204
+ "quantized_algorithm": "normal",
205
+ "quantized_method": "channel",
206
+ "quantized_hybrid_level": 0,
207
+ "quant_img_RGB2BGR": false,
208
+ "auto_hybrid_cos_thresh": 0.98,
209
+ "auto_hybrid_euc_thresh": null
210
+ },
211
+ "optimization": {
212
+ "optimization_level": 0,
213
+ "enable_flash_attention": true,
214
+ "remove_weight": false,
215
+ "compress_weight": false,
216
+ "remove_reshape": false,
217
+ "sparse_infer": false,
218
+ "model_pruning": false
219
+ }
220
+ },
221
+ "model_b4_s512.rknn": {
222
+ "model_input_names": [
223
+ "input_ids",
224
+ "attention_mask",
225
+ "token_type_ids"
226
+ ],
227
+ "batch_size": 4,
228
+ "max_seq_length": 512,
229
+ "float_dtype": "float16",
230
+ "target_platform": "rk3588",
231
+ "single_core_mode": false,
232
+ "mean_values": null,
233
+ "std_values": null,
234
+ "custom_string": null,
235
+ "inputs_yuv_fmt": null,
236
+ "dynamic_input": null,
237
+ "opset": 18,
238
+ "task": "fill-mask",
239
+ "quantization": {
240
+ "do_quantization": false,
241
+ "dataset_name": null,
242
+ "dataset_subset": null,
243
+ "dataset_size": 128,
244
+ "dataset_split": null,
245
+ "dataset_columns": null,
246
+ "quantized_dtype": "w8a8",
247
+ "quantized_algorithm": "normal",
248
+ "quantized_method": "channel",
249
+ "quantized_hybrid_level": 0,
250
+ "quant_img_RGB2BGR": false,
251
+ "auto_hybrid_cos_thresh": 0.98,
252
+ "auto_hybrid_euc_thresh": null
253
+ },
254
+ "optimization": {
255
+ "optimization_level": 0,
256
+ "enable_flash_attention": true,
257
+ "remove_weight": false,
258
+ "compress_weight": false,
259
+ "remove_reshape": false,
260
+ "sparse_infer": false,
261
+ "model_pruning": false
262
+ }
263
+ },
264
+ "model_b1_s256.rknn": {
265
+ "model_input_names": [
266
+ "input_ids",
267
+ "attention_mask",
268
+ "token_type_ids"
269
+ ],
270
+ "batch_size": 1,
271
+ "max_seq_length": 256,
272
+ "float_dtype": "float16",
273
+ "target_platform": "rk3588",
274
+ "single_core_mode": false,
275
+ "mean_values": null,
276
+ "std_values": null,
277
+ "custom_string": null,
278
+ "inputs_yuv_fmt": null,
279
+ "dynamic_input": null,
280
+ "opset": 18,
281
+ "task": "auto",
282
+ "quantization": {
283
+ "do_quantization": false,
284
+ "dataset_name": null,
285
+ "dataset_subset": null,
286
+ "dataset_size": 128,
287
+ "dataset_split": null,
288
+ "dataset_columns": null,
289
+ "quantized_dtype": "w8a8",
290
+ "quantized_algorithm": "normal",
291
+ "quantized_method": "channel",
292
+ "quantized_hybrid_level": 0,
293
+ "quant_img_RGB2BGR": false,
294
+ "auto_hybrid_cos_thresh": 0.98,
295
+ "auto_hybrid_euc_thresh": null
296
+ },
297
+ "optimization": {
298
+ "optimization_level": 0,
299
+ "enable_flash_attention": true,
300
+ "remove_weight": false,
301
+ "compress_weight": false,
302
+ "remove_reshape": false,
303
+ "sparse_infer": false,
304
+ "model_pruning": false
305
+ }
306
+ },
307
+ "model_b4_s256.rknn": {
308
+ "model_input_names": [
309
+ "input_ids",
310
+ "attention_mask",
311
+ "token_type_ids"
312
+ ],
313
+ "batch_size": 4,
314
+ "max_seq_length": 256,
315
+ "float_dtype": "float16",
316
+ "target_platform": "rk3588",
317
+ "single_core_mode": false,
318
+ "mean_values": null,
319
+ "std_values": null,
320
+ "custom_string": null,
321
+ "inputs_yuv_fmt": null,
322
+ "dynamic_input": null,
323
+ "opset": 18,
324
+ "task": "auto",
325
+ "quantization": {
326
+ "do_quantization": false,
327
+ "dataset_name": null,
328
+ "dataset_subset": null,
329
+ "dataset_size": 128,
330
+ "dataset_split": null,
331
+ "dataset_columns": null,
332
+ "quantized_dtype": "w8a8",
333
+ "quantized_algorithm": "normal",
334
+ "quantized_method": "channel",
335
+ "quantized_hybrid_level": 0,
336
+ "quant_img_RGB2BGR": false,
337
+ "auto_hybrid_cos_thresh": 0.98,
338
+ "auto_hybrid_euc_thresh": null
339
+ },
340
+ "optimization": {
341
+ "optimization_level": 0,
342
+ "enable_flash_attention": true,
343
+ "remove_weight": false,
344
+ "compress_weight": false,
345
+ "remove_reshape": false,
346
+ "sparse_infer": false,
347
+ "model_pruning": false
348
+ }
349
+ }
350
+ }
rknn/model_o1.rknn ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b82e76cd0d3c4bb14ba88aa6a0e2843f2e904cb65ca955ba5f465f0b5c9304d7
3
+ size 273830854
rknn/model_o2.rknn ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b82e76cd0d3c4bb14ba88aa6a0e2843f2e904cb65ca955ba5f465f0b5c9304d7
3
+ size 273830854
rknn/model_o3.rknn ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8436f148c0cc91d78ba562aac653601a3a69e7cc11d70922efa107437a750ebd
3
+ size 273830854
rknn/model_w8a8.rknn ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b35b9cf8db6760f45b2fd9cc700e5bd88f8af73a69ecc87fe70799aa8ecd5b0
3
+ size 140070675
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "pad_token": "[PAD]",
51
+ "sep_token": "[SEP]",
52
+ "strip_accents": null,
53
+ "tokenize_chinese_chars": true,
54
+ "tokenizer_class": "BertTokenizer",
55
+ "unk_token": "[UNK]"
56
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff