new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 17

JarvisArt: Liberating Human Artistic Creativity via an Intelligent Photo Retouching Agent

Photo retouching has become integral to contemporary visual storytelling, enabling users to capture aesthetics and express creativity. While professional tools such as Adobe Lightroom offer powerful capabilities, they demand substantial expertise and manual effort. In contrast, existing AI-based solutions provide automation but often suffer from limited adjustability and poor generalization, failing to meet diverse and personalized editing needs. To bridge this gap, we introduce JarvisArt, a multi-modal large language model (MLLM)-driven agent that understands user intent, mimics the reasoning process of professional artists, and intelligently coordinates over 200 retouching tools within Lightroom. JarvisArt undergoes a two-stage training process: an initial Chain-of-Thought supervised fine-tuning to establish basic reasoning and tool-use skills, followed by Group Relative Policy Optimization for Retouching (GRPO-R) to further enhance its decision-making and tool proficiency. We also propose the Agent-to-Lightroom Protocol to facilitate seamless integration with Lightroom. To evaluate performance, we develop MMArt-Bench, a novel benchmark constructed from real-world user edits. JarvisArt demonstrates user-friendly interaction, superior generalization, and fine-grained control over both global and local adjustments, paving a new avenue for intelligent photo retouching. Notably, it outperforms GPT-4o with a 60% improvement in average pixel-level metrics on MMArt-Bench for content fidelity, while maintaining comparable instruction-following capabilities. Project Page: https://jarvisart.vercel.app/.

  • 11 authors
·
Jun 21 3

GraphiMind: LLM-centric Interface for Information Graphics Design

Information graphics are pivotal in effective information dissemination and storytelling. However, creating such graphics is extremely challenging for non-professionals, since the design process requires multifaceted skills and comprehensive knowledge. Thus, despite the many available authoring tools, a significant gap remains in enabling non-experts to produce compelling information graphics seamlessly, especially from scratch. Recent breakthroughs show that Large Language Models (LLMs), especially when tool-augmented, can autonomously engage with external tools, making them promising candidates for enabling innovative graphic design applications. In this work, we propose a LLM-centric interface with the agent GraphiMind for automatic generation, recommendation, and composition of information graphics design resources, based on user intent expressed through natural language. Our GraphiMind integrates a Textual Conversational Interface, powered by tool-augmented LLM, with a traditional Graphical Manipulation Interface, streamlining the entire design process from raw resource curation to composition and refinement. Extensive evaluations highlight our tool's proficiency in simplifying the design process, opening avenues for its use by non-professional users. Moreover, we spotlight the potential of LLMs in reshaping the domain of information graphics design, offering a blend of automation, versatility, and user-centric interactivity.

  • 6 authors
·
Jan 24, 2024

Creative Robot Tool Use with Large Language Models

Tool use is a hallmark of advanced intelligence, exemplified in both animal behavior and robotic capabilities. This paper investigates the feasibility of imbuing robots with the ability to creatively use tools in tasks that involve implicit physical constraints and long-term planning. Leveraging Large Language Models (LLMs), we develop RoboTool, a system that accepts natural language instructions and outputs executable code for controlling robots in both simulated and real-world environments. RoboTool incorporates four pivotal components: (i) an "Analyzer" that interprets natural language to discern key task-related concepts, (ii) a "Planner" that generates comprehensive strategies based on the language input and key concepts, (iii) a "Calculator" that computes parameters for each skill, and (iv) a "Coder" that translates these plans into executable Python code. Our results show that RoboTool can not only comprehend explicit or implicit physical constraints and environmental factors but also demonstrate creative tool use. Unlike traditional Task and Motion Planning (TAMP) methods that rely on explicit optimization, our LLM-based system offers a more flexible, efficient, and user-friendly solution for complex robotics tasks. Through extensive experiments, we validate that RoboTool is proficient in handling tasks that would otherwise be infeasible without the creative use of tools, thereby expanding the capabilities of robotic systems. Demos are available on our project page: https://creative-robotool.github.io/.

  • 10 authors
·
Oct 19, 2023 1