new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 9

Bridging the Novice-Expert Gap via Models of Decision-Making: A Case Study on Remediating Math Mistakes

Scaling high-quality tutoring remains a major challenge in education. Due to growing demand, many platforms employ novice tutors who, unlike experienced educators, struggle to address student mistakes and thus fail to seize prime learning opportunities. Our work explores the potential of large language models (LLMs) to close the novice-expert knowledge gap in remediating math mistakes. We contribute Bridge, a method that uses cognitive task analysis to translate an expert's latent thought process into a decision-making model for remediation. This involves an expert identifying (A) the student's error, (B) a remediation strategy, and (C) their intention before generating a response. We construct a dataset of 700 real tutoring conversations, annotated by experts with their decisions. We evaluate state-of-the-art LLMs on our dataset and find that the expert's decision-making model is critical for LLMs to close the gap: responses from GPT4 with expert decisions (e.g., "simplify the problem") are +76% more preferred than without. Additionally, context-sensitive decisions are critical to closing pedagogical gaps: random decisions decrease GPT4's response quality by -97% than expert decisions. Our work shows the potential of embedding expert thought processes in LLM generations to enhance their capability to bridge novice-expert knowledge gaps. Our dataset and code can be found at: https://github.com/rosewang2008/bridge.

  • 5 authors
·
Oct 16, 2023

Let it Calm: Exploratory Annealed Decoding for Verifiable Reinforcement Learning

Reinforcement learning with verifiable rewards (RLVR) is a powerful paradigm for enhancing the reasoning capabilities of large language models (LLMs), yet its success hinges on effective exploration. An ideal exploration strategy must navigate two fundamental challenges: it must preserve sample quality while also ensuring training stability. While standard fixed-temperature sampling is simple, it struggles to balance these competing demands, as high temperatures degrade sample quality and low temperatures limit discovery. In this work, we propose a simpler and more effective strategy, Exploratory Annealed Decoding (EAD), grounded in the insight that exploration is most impactful on early tokens which define a sequence's semantic direction. EAD implements an intuitive **explore-at-the-beginning, exploit-at-the-end** strategy by annealing the sampling temperature from high to low during generation. This dynamic schedule encourages meaningful, high-level diversity at the start, then gradually lowers the temperature to preserve sample quality and keep the sampling distribution close to the target policy, which is essential for stable training. We demonstrate that EAD is a lightweight, plug-and-play method that significantly improves sample efficiency, consistently outperforming fixed-temperature sampling across various RLVR algorithms and model sizes. Our work suggests that aligning exploration with the natural dynamics of sequential generation offers a robust path to improving LLM reasoning.

  • 6 authors
·
Oct 6, 2025 3

Antidote: Post-fine-tuning Safety Alignment for Large Language Models against Harmful Fine-tuning

Safety aligned Large Language Models (LLMs) are vulnerable to harmful fine-tuning attacks qi2023fine-- a few harmful data mixed in the fine-tuning dataset can break the LLMs's safety alignment. Existing mitigation strategies include alignment stage solutions huang2024vaccine, rosati2024representation and fine-tuning stage solutions huang2024lazy,mukhoti2023fine. However, our evaluation shows that both categories of defenses fail when some specific training hyper-parameters are chosen -- a large learning rate or a large number of training epochs in the fine-tuning stage can easily invalidate the defense, which however, is necessary to guarantee finetune performance. To this end, we propose Antidote, a post-fine-tuning stage solution, which remains \textit{agnostic to the training hyper-parameters in the fine-tuning stage}. Antidote relies on the philosophy that by removing the harmful parameters, the harmful model can be recovered from the harmful behaviors, regardless of how those harmful parameters are formed in the fine-tuning stage. With this philosophy, we introduce a one-shot pruning stage after harmful fine-tuning to remove the harmful weights that are responsible for the generation of harmful content. Despite its embarrassing simplicity, empirical results show that Antidote can reduce harmful score while maintaining accuracy on downstream tasks.Our project page is at https://huangtiansheng.github.io/Antidote_gh_page/

  • 5 authors
·
Aug 18, 2024

Deep GraphRAG: A Balanced Approach to Hierarchical Retrieval and Adaptive Integration

Graph-based Retrieval-Augmented Generation (GraphRAG) frameworks face a trade-off between the comprehensiveness of global search and the efficiency of local search. Existing methods are often challenged by navigating large-scale hierarchical graphs, optimizing retrieval paths, and balancing exploration-exploitation dynamics, frequently lacking robust multi-stage re-ranking. To overcome these deficits, we propose Deep GraphRAG, a framework designed for a balanced approach to hierarchical retrieval and adaptive integration. It introduces a hierarchical global-to-local retrieval strategy that integrates macroscopic inter-community and microscopic intra-community contextual relations. This strategy employs a three-stage process: (1) inter-community filtering, which prunes the search space using local context; (2) community-level refinement, which prioritizes relevant subgraphs via entity-interaction analysis; and (3) entity-level fine-grained search within target communities. A beam search-optimized dynamic re-ranking module guides this process, continuously filtering candidates to balance efficiency and global comprehensiveness. Deep GraphRAG also features a Knowledge Integration Module leveraging a compact LLM, trained with Dynamic Weighting Reward GRPO (DW-GRPO). This novel reinforcement learning approach dynamically adjusts reward weights to balance three key objectives: relevance, faithfulness, and conciseness. This training enables compact models (1.5B) to approach the performance of large models (70B) in the integration task. Evaluations on Natural Questions and HotpotQA demonstrate that Deep GraphRAG significantly outperforms baseline graph retrieval methods in both accuracy and efficiency.

  • 6 authors
·
Jan 16