Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeTopological Singularity Detection at Multiple Scales
The manifold hypothesis, which assumes that data lies on or close to an unknown manifold of low intrinsic dimension, is a staple of modern machine learning research. However, recent work has shown that real-world data exhibits distinct non-manifold structures, i.e. singularities, that can lead to erroneous findings. Detecting such singularities is therefore crucial as a precursor to interpolation and inference tasks. We address this issue by developing a topological framework that (i) quantifies the local intrinsic dimension, and (ii) yields a Euclidicity score for assessing the 'manifoldness' of a point along multiple scales. Our approach identifies singularities of complex spaces, while also capturing singular structures and local geometric complexity in image data.
Principal subbundles for dimension reduction
In this paper we demonstrate how sub-Riemannian geometry can be used for manifold learning and surface reconstruction by combining local linear approximations of a point cloud to obtain lower dimensional bundles. Local approximations obtained by local PCAs are collected into a rank k tangent subbundle on R^d, k<d, which we call a principal subbundle. This determines a sub-Riemannian metric on R^d. We show that sub-Riemannian geodesics with respect to this metric can successfully be applied to a number of important problems, such as: explicit construction of an approximating submanifold M, construction of a representation of the point-cloud in R^k, and computation of distances between observations, taking the learned geometry into account. The reconstruction is guaranteed to equal the true submanifold in the limit case where tangent spaces are estimated exactly. Via simulations, we show that the framework is robust when applied to noisy data. Furthermore, the framework generalizes to observations on an a priori known Riemannian manifold.
Visualizing Riemannian data with Rie-SNE
Faithful visualizations of data residing on manifolds must take the underlying geometry into account when producing a flat planar view of the data. In this paper, we extend the classic stochastic neighbor embedding (SNE) algorithm to data on general Riemannian manifolds. We replace standard Gaussian assumptions with Riemannian diffusion counterparts and propose an efficient approximation that only requires access to calculations of Riemannian distances and volumes. We demonstrate that the approach also allows for mapping data from one manifold to another, e.g. from a high-dimensional sphere to a low-dimensional one.
Functorial Manifold Learning
We adapt previous research on category theory and topological unsupervised learning to develop a functorial perspective on manifold learning, also known as nonlinear dimensionality reduction. We first characterize manifold learning algorithms as functors that map pseudometric spaces to optimization objectives and that factor through hierarchical clustering functors. We then use this characterization to prove refinement bounds on manifold learning loss functions and construct a hierarchy of manifold learning algorithms based on their equivariants. We express several popular manifold learning algorithms as functors at different levels of this hierarchy, including Metric Multidimensional Scaling, IsoMap, and UMAP. Next, we use interleaving distance to study the stability of a broad class of manifold learning algorithms. We present bounds on how closely the embeddings these algorithms produce from noisy data approximate the embeddings they would learn from noiseless data. Finally, we use our framework to derive a set of novel manifold learning algorithms, which we experimentally demonstrate are competitive with the state of the art.
A Framework for Fast and Stable Representations of Multiparameter Persistent Homology Decompositions
Topological data analysis (TDA) is an area of data science that focuses on using invariants from algebraic topology to provide multiscale shape descriptors for geometric data sets such as point clouds. One of the most important such descriptors is {\em persistent homology}, which encodes the change in shape as a filtration parameter changes; a typical parameter is the feature scale. For many data sets, it is useful to simultaneously vary multiple filtration parameters, for example feature scale and density. While the theoretical properties of single parameter persistent homology are well understood, less is known about the multiparameter case. In particular, a central question is the problem of representing multiparameter persistent homology by elements of a vector space for integration with standard machine learning algorithms. Existing approaches to this problem either ignore most of the multiparameter information to reduce to the one-parameter case or are heuristic and potentially unstable in the face of noise. In this article, we introduce a new general representation framework that leverages recent results on {\em decompositions} of multiparameter persistent homology. This framework is rich in information, fast to compute, and encompasses previous approaches. Moreover, we establish theoretical stability guarantees under this framework as well as efficient algorithms for practical computation, making this framework an applicable and versatile tool for analyzing geometric and point cloud data. We validate our stability results and algorithms with numerical experiments that demonstrate statistical convergence, prediction accuracy, and fast running times on several real data sets.
Geometric Stability: The Missing Axis of Representations
Analysis of learned representations has a blind spot: it focuses on similarity, measuring how closely embeddings align with external references, but similarity reveals only what is represented, not whether that structure is robust. We introduce geometric stability, a distinct dimension that quantifies how reliably representational geometry holds under perturbation, and present Shesha, a framework for measuring it. Across 2,463 configurations in seven domains, we show that stability and similarity are empirically uncorrelated (ρapprox 0.01) and mechanistically distinct: similarity metrics collapse after removing the top principal components, while stability retains sensitivity to fine-grained manifold structure. This distinction yields actionable insights: for safety monitoring, stability acts as a functional geometric canary, detecting structural drift nearly 2times more sensitively than CKA while filtering out the non-functional noise that triggers false alarms in rigid distance metrics; for controllability, supervised stability predicts linear steerability (ρ= 0.89-0.96); for model selection, stability dissociates from transferability, revealing a geometric tax that transfer optimization incurs. Beyond machine learning, stability predicts CRISPR perturbation coherence and neural-behavioral coupling. By quantifying how reliably systems maintain structure, geometric stability provides a necessary complement to similarity for auditing representations across biological and computational systems.
O(n)-invariant Riemannian metrics on SPD matrices
Symmetric Positive Definite (SPD) matrices are ubiquitous in data analysis under the form of covariance matrices or correlation matrices. Several O(n)-invariant Riemannian metrics were defined on the SPD cone, in particular the kernel metrics introduced by Hiai and Petz. The class of kernel metrics interpolates between many classical O(n)-invariant metrics and it satisfies key results of stability and completeness. However, it does not contain all the classical O(n)-invariant metrics. Therefore in this work, we investigate super-classes of kernel metrics and we study which key results remain true. We also introduce an additional key result called cometric-stability, a crucial property to implement geodesics with a Hamiltonian formulation. Our method to build intermediate embedded classes between O(n)-invariant metrics and kernel metrics is to give a characterization of the whole class of O(n)-invariant metrics on SPD matrices and to specify requirements on metrics one by one until we reach kernel metrics. As a secondary contribution, we synthesize the literature on the main O(n)-invariant metrics, we provide the complete formula of the sectional curvature of the affine-invariant metric and the formula of the geodesic parallel transport between commuting matrices for the Bures-Wasserstein metric.
Flow Matching on General Geometries
We propose Riemannian Flow Matching (RFM), a simple yet powerful framework for training continuous normalizing flows on manifolds. Existing methods for generative modeling on manifolds either require expensive simulation, are inherently unable to scale to high dimensions, or use approximations for limiting quantities that result in biased training objectives. Riemannian Flow Matching bypasses these limitations and offers several advantages over previous approaches: it is simulation-free on simple geometries, does not require divergence computation, and computes its target vector field in closed-form. The key ingredient behind RFM is the construction of a relatively simple premetric for defining target vector fields, which encompasses the existing Euclidean case. To extend to general geometries, we rely on the use of spectral decompositions to efficiently compute premetrics on the fly. Our method achieves state-of-the-art performance on many real-world non-Euclidean datasets, and we demonstrate tractable training on general geometries, including triangular meshes with highly non-trivial curvature and boundaries.
Great Models Think Alike: Improving Model Reliability via Inter-Model Latent Agreement
Reliable application of machine learning is of primary importance to the practical deployment of deep learning methods. A fundamental challenge is that models are often unreliable due to overconfidence. In this paper, we estimate a model's reliability by measuring the agreement between its latent space, and the latent space of a foundation model. However, it is challenging to measure the agreement between two different latent spaces due to their incoherence, \eg, arbitrary rotations and different dimensionality. To overcome this incoherence issue, we design a neighborhood agreement measure between latent spaces and find that this agreement is surprisingly well-correlated with the reliability of a model's predictions. Further, we show that fusing neighborhood agreement into a model's predictive confidence in a post-hoc way significantly improves its reliability. Theoretical analysis and extensive experiments on failure detection across various datasets verify the effectiveness of our method on both in-distribution and out-of-distribution settings.
Harmonizing Geometry and Uncertainty: Diffusion with Hyperspheres
Do contemporary diffusion models preserve the class geometry of hyperspherical data? Standard diffusion models rely on isotropic Gaussian noise in the forward process, inherently favoring Euclidean spaces. However, many real-world problems involve non-Euclidean distributions, such as hyperspherical manifolds, where class-specific patterns are governed by angular geometry within hypercones. When modeled in Euclidean space, these angular subtleties are lost, leading to suboptimal generative performance. To address this limitation, we introduce HyperSphereDiff to align hyperspherical structures with directional noise, preserving class geometry and effectively capturing angular uncertainty. We demonstrate both theoretically and empirically that this approach aligns the generative process with the intrinsic geometry of hyperspherical data, resulting in more accurate and geometry-aware generative models. We evaluate our framework on four object datasets and two face datasets, showing that incorporating angular uncertainty better preserves the underlying hyperspherical manifold. Resources are available at: {https://github.com/IAB-IITJ/Harmonizing-Geometry-and-Uncertainty-Diffusion-with-Hyperspheres/}
Manifoldron: Direct Space Partition via Manifold Discovery
A neural network with the widely-used ReLU activation has been shown to partition the sample space into many convex polytopes for prediction. However, the parameterized way a neural network and other machine learning models use to partition the space has imperfections, e.g., the compromised interpretability for complex models, the inflexibility in decision boundary construction due to the generic character of the model, and the risk of being trapped into shortcut solutions. In contrast, although the non-parameterized models can adorably avoid or downplay these issues, they are usually insufficiently powerful either due to over-simplification or the failure to accommodate the manifold structures of data. In this context, we first propose a new type of machine learning models referred to as Manifoldron that directly derives decision boundaries from data and partitions the space via manifold structure discovery. Then, we systematically analyze the key characteristics of the Manifoldron such as manifold characterization capability and its link to neural networks. The experimental results on 4 synthetic examples, 20 public benchmark datasets, and 1 real-world application demonstrate that the proposed Manifoldron performs competitively compared to the mainstream machine learning models. We have shared our code in https://github.com/wdayang/Manifoldron for free download and evaluation.
Scaling Riemannian Diffusion Models
Riemannian diffusion models draw inspiration from standard Euclidean space diffusion models to learn distributions on general manifolds. Unfortunately, the additional geometric complexity renders the diffusion transition term inexpressible in closed form, so prior methods resort to imprecise approximations of the score matching training objective that degrade performance and preclude applications in high dimensions. In this work, we reexamine these approximations and propose several practical improvements. Our key observation is that most relevant manifolds are symmetric spaces, which are much more amenable to computation. By leveraging and combining various ans\"{a}tze, we can quickly compute relevant quantities to high precision. On low dimensional datasets, our correction produces a noticeable improvement, allowing diffusion to compete with other methods. Additionally, we show that our method enables us to scale to high dimensional tasks on nontrivial manifolds. In particular, we model QCD densities on SU(n) lattices and contrastively learned embeddings on high dimensional hyperspheres.
Stable Vectorization of Multiparameter Persistent Homology using Signed Barcodes as Measures
Persistent homology (PH) provides topological descriptors for geometric data, such as weighted graphs, which are interpretable, stable to perturbations, and invariant under, e.g., relabeling. Most applications of PH focus on the one-parameter case -- where the descriptors summarize the changes in topology of data as it is filtered by a single quantity of interest -- and there is now a wide array of methods enabling the use of one-parameter PH descriptors in data science, which rely on the stable vectorization of these descriptors as elements of a Hilbert space. Although the multiparameter PH (MPH) of data that is filtered by several quantities of interest encodes much richer information than its one-parameter counterpart, the scarceness of stability results for MPH descriptors has so far limited the available options for the stable vectorization of MPH. In this paper, we aim to bring together the best of both worlds by showing how the interpretation of signed barcodes -- a recent family of MPH descriptors -- as signed measures leads to natural extensions of vectorization strategies from one parameter to multiple parameters. The resulting feature vectors are easy to define and to compute, and provably stable. While, as a proof of concept, we focus on simple choices of signed barcodes and vectorizations, we already see notable performance improvements when comparing our feature vectors to state-of-the-art topology-based methods on various types of data.
Lifting Architectural Constraints of Injective Flows
Normalizing Flows explicitly maximize a full-dimensional likelihood on the training data. However, real data is typically only supported on a lower-dimensional manifold leading the model to expend significant compute on modeling noise. Injective Flows fix this by jointly learning a manifold and the distribution on it. So far, they have been limited by restrictive architectures and/or high computational cost. We lift both constraints by a new efficient estimator for the maximum likelihood loss, compatible with free-form bottleneck architectures. We further show that naively learning both the data manifold and the distribution on it can lead to divergent solutions, and use this insight to motivate a stable maximum likelihood training objective. We perform extensive experiments on toy, tabular and image data, demonstrating the competitive performance of the resulting model.
Barycentric Subspace Analysis on Manifolds
This paper investigates the generalization of Principal Component Analysis (PCA) to Riemannian manifolds. We first propose a new and general type of family of subspaces in manifolds that we call barycentric subspaces. They are implicitly defined as the locus of points which are weighted means of k+1 reference points. As this definition relies on points and not on tangent vectors, it can also be extended to geodesic spaces which are not Riemannian. For instance, in stratified spaces, it naturally allows principal subspaces that span several strata, which is impossible in previous generalizations of PCA. We show that barycentric subspaces locally define a submanifold of dimension k which generalizes geodesic subspaces.Second, we rephrase PCA in Euclidean spaces as an optimization on flags of linear subspaces (a hierarchy of properly embedded linear subspaces of increasing dimension). We show that the Euclidean PCA minimizes the Accumulated Unexplained Variances by all the subspaces of the flag (AUV). Barycentric subspaces are naturally nested, allowing the construction of hierarchically nested subspaces. Optimizing the AUV criterion to optimally approximate data points with flags of affine spans in Riemannian manifolds lead to a particularly appealing generalization of PCA on manifolds called Barycentric Subspaces Analysis (BSA).
Multi-Fidelity Covariance Estimation in the Log-Euclidean Geometry
We introduce a multi-fidelity estimator of covariance matrices that employs the log-Euclidean geometry of the symmetric positive-definite manifold. The estimator fuses samples from a hierarchy of data sources of differing fidelities and costs for variance reduction while guaranteeing definiteness, in contrast with previous approaches. The new estimator makes covariance estimation tractable in applications where simulation or data collection is expensive; to that end, we develop an optimal sample allocation scheme that minimizes the mean-squared error of the estimator given a fixed budget. Guaranteed definiteness is crucial to metric learning, data assimilation, and other downstream tasks. Evaluations of our approach using data from physical applications (heat conduction, fluid dynamics) demonstrate more accurate metric learning and speedups of more than one order of magnitude compared to benchmarks.
Manifold Diffusion Fields
We present Manifold Diffusion Fields (MDF), an approach to learn generative models of continuous functions defined over Riemannian manifolds. Leveraging insights from spectral geometry analysis, we define an intrinsic coordinate system on the manifold via the eigen-functions of the Laplace-Beltrami Operator. MDF represents functions using an explicit parametrization formed by a set of multiple input-output pairs. Our approach allows to sample continuous functions on manifolds and is invariant with respect to rigid and isometric transformations of the manifold. Empirical results on several datasets and manifolds show that MDF can capture distributions of such functions with better diversity and fidelity than previous approaches.
A geometric framework for asymptotic inference of principal subspaces in PCA
In this article, we develop an asymptotic method for constructing confidence regions for the set of all linear subspaces arising from PCA, from which we derive hypothesis tests on this set. Our method is based on the geometry of Riemannian manifolds with which some sets of linear subspaces are endowed.
Effective equidistribution of intersection points in hyperbolic manifolds
In this paper, we establish effective equidistribution of transverse intersection points between properly immersed totally geodesic submanifolds of complementary dimensions in a finite-volume hyperbolic manifold with respect to the hyperbolic volume measure, as the volume of the submanifolds tends to infinity.
Building Neural Networks on Matrix Manifolds: A Gyrovector Space Approach
Matrix manifolds, such as manifolds of Symmetric Positive Definite (SPD) matrices and Grassmann manifolds, appear in many applications. Recently, by applying the theory of gyrogroups and gyrovector spaces that is a powerful framework for studying hyperbolic geometry, some works have attempted to build principled generalizations of Euclidean neural networks on matrix manifolds. However, due to the lack of many concepts in gyrovector spaces for the considered manifolds, e.g., the inner product and gyroangles, techniques and mathematical tools provided by these works are still limited compared to those developed for studying hyperbolic geometry. In this paper, we generalize some notions in gyrovector spaces for SPD and Grassmann manifolds, and propose new models and layers for building neural networks on these manifolds. We show the effectiveness of our approach in two applications, i.e., human action recognition and knowledge graph completion.
Chordal Averaging on Flag Manifolds and Its Applications
This paper presents a new, provably-convergent algorithm for computing the flag-mean and flag-median of a set of points on a flag manifold under the chordal metric. The flag manifold is a mathematical space consisting of flags, which are sequences of nested subspaces of a vector space that increase in dimension. The flag manifold is a superset of a wide range of known matrix spaces, including Stiefel and Grassmanians, making it a general object that is useful in a wide variety computer vision problems. To tackle the challenge of computing first order flag statistics, we first transform the problem into one that involves auxiliary variables constrained to the Stiefel manifold. The Stiefel manifold is a space of orthogonal frames, and leveraging the numerical stability and efficiency of Stiefel-manifold optimization enables us to compute the flag-mean effectively. Through a series of experiments, we show the competence of our method in Grassmann and rotation averaging, as well as principal component analysis. We release our source code under https://github.com/nmank/FlagAveraging.
Cobordism and Concordance of Surfaces in 4-Manifolds
We show that two properly embedded compact surfaces in an orientable 4-manifold are cobordant if and only if they are Z/2-homologous and either the 4-manifold has boundary or the surfaces have the same normal Euler number. If the 4-manifold is simply-connected and the surfaces are closed, non-orientable, and cobordant, we show that they are in fact concordant. This completes the classification of closed surfaces in simply-connected 4-manifolds up to concordance. Our methods give new constructions of cobordisms with prescribed boundaries, and completely determine when a given cobordism between the boundaries extends to a cobordism or concordance between the surfaces. We obtain our concordance results by extending Sunukjian's method of ambient surgery to the unoriented case using Pin^--structures. We also discuss conditions for an arbitrary codimension 2 properly embedded submanifold to admit an unoriented spanning manifold with prescribed boundary. All results hold in both the smooth and topological categories.
A Lie Group Approach to Riemannian Batch Normalization
Manifold-valued measurements exist in numerous applications within computer vision and machine learning. Recent studies have extended Deep Neural Networks (DNNs) to manifolds, and concomitantly, normalization techniques have also been adapted to several manifolds, referred to as Riemannian normalization. Nonetheless, most of the existing Riemannian normalization methods have been derived in an ad hoc manner and only apply to specific manifolds. This paper establishes a unified framework for Riemannian Batch Normalization (RBN) techniques on Lie groups. Our framework offers the theoretical guarantee of controlling both the Riemannian mean and variance. Empirically, we focus on Symmetric Positive Definite (SPD) manifolds, which possess three distinct types of Lie group structures. Using the deformation concept, we generalize the existing Lie groups on SPD manifolds into three families of parameterized Lie groups. Specific normalization layers induced by these Lie groups are then proposed for SPD neural networks. We demonstrate the effectiveness of our approach through three sets of experiments: radar recognition, human action recognition, and electroencephalography (EEG) classification. The code is available at https://github.com/GitZH-Chen/LieBN.git.
Geodesic Prototype Matching via Diffusion Maps for Interpretable Fine-Grained Recognition
Nonlinear manifolds are widespread in deep visual features, where Euclidean distances often fail to capture true similarity. This limitation becomes particularly severe in prototype-based interpretable fine-grained recognition, where subtle semantic distinctions are essential. To address this challenge, we propose a novel paradigm for prototype-based recognition that anchors similarity within the intrinsic geometry of deep features. Specifically, we distill the latent manifold structure of each class into a diffusion space and introduce a differentiable Nystr\"om interpolation, making the geometry accessible to both unseen samples and learnable prototypes. To ensure efficiency, we employ compact per-class landmark sets with periodic updates. This design keeps the embedding aligned with the evolving backbone, enabling fast and scalable inference. Extensive experiments on the CUB-200-2011 and Stanford Cars datasets show that our GeoProto framework produces prototypes focusing on semantically aligned parts, significantly outperforming Euclidean prototype networks.
KromHC: Manifold-Constrained Hyper-Connections with Kronecker-Product Residual Matrices
The success of Hyper-Connections (HC) in neural networks (NN) has also highlighted issues related to its training instability and restricted scalability. The Manifold-Constrained Hyper-Connections (mHC) mitigate these challenges by projecting the residual connection space onto a Birkhoff polytope, however, it faces two issues: 1) its iterative Sinkhorn-Knopp (SK) algorithm does not always yield exact doubly stochastic residual matrices; 2) mHC incurs a prohibitive O(n^3C) parameter complexity with n as the width of the residual stream and C as the feature dimension. The recently proposed mHC-lite reparametrizes the residual matrix via the Birkhoff-von-Neumann theorem to guarantee double stochasticity, but also faces a factorial explosion in its parameter complexity, O left( nC cdot n! right). To address both challenges, we propose KromHC, which uses the Kronecker products of smaller doubly stochastic matrices to parametrize the residual matrix in mHC. By enforcing manifold constraints across the factor residual matrices along each mode of the tensorized residual stream, KromHC guarantees exact double stochasticity of the residual matrices while reducing parameter complexity to O(n^2C). Comprehensive experiments demonstrate that KromHC matches or even outperforms state-of-the-art (SOTA) mHC variants, while requiring significantly fewer trainable parameters. The code is available at https://github.com/wz1119/KromHC.
A Heat Diffusion Perspective on Geodesic Preserving Dimensionality Reduction
Diffusion-based manifold learning methods have proven useful in representation learning and dimensionality reduction of modern high dimensional, high throughput, noisy datasets. Such datasets are especially present in fields like biology and physics. While it is thought that these methods preserve underlying manifold structure of data by learning a proxy for geodesic distances, no specific theoretical links have been established. Here, we establish such a link via results in Riemannian geometry explicitly connecting heat diffusion to manifold distances. In this process, we also formulate a more general heat kernel based manifold embedding method that we call heat geodesic embeddings. This novel perspective makes clearer the choices available in manifold learning and denoising. Results show that our method outperforms existing state of the art in preserving ground truth manifold distances, and preserving cluster structure in toy datasets. We also showcase our method on single cell RNA-sequencing datasets with both continuum and cluster structure, where our method enables interpolation of withheld timepoints of data. Finally, we show that parameters of our more general method can be configured to give results similar to PHATE (a state-of-the-art diffusion based manifold learning method) as well as SNE (an attraction/repulsion neighborhood based method that forms the basis of t-SNE).
Riemannian Adaptive Optimization Methods
Several first order stochastic optimization methods commonly used in the Euclidean domain such as stochastic gradient descent (SGD), accelerated gradient descent or variance reduced methods have already been adapted to certain Riemannian settings. However, some of the most popular of these optimization tools - namely Adam , Adagrad and the more recent Amsgrad - remain to be generalized to Riemannian manifolds. We discuss the difficulty of generalizing such adaptive schemes to the most agnostic Riemannian setting, and then provide algorithms and convergence proofs for geodesically convex objectives in the particular case of a product of Riemannian manifolds, in which adaptivity is implemented across manifolds in the cartesian product. Our generalization is tight in the sense that choosing the Euclidean space as Riemannian manifold yields the same algorithms and regret bounds as those that were already known for the standard algorithms. Experimentally, we show faster convergence and to a lower train loss value for Riemannian adaptive methods over their corresponding baselines on the realistic task of embedding the WordNet taxonomy in the Poincare ball.
Riemannian Batch Normalization: A Gyro Approach
Normalization layers are crucial for deep learning, but their Euclidean formulations are inadequate for data on manifolds. On the other hand, many Riemannian manifolds in machine learning admit gyro-structures, enabling principled extensions of Euclidean neural networks to non-Euclidean domains. Inspired by this, we introduce GyroBN, a principled Riemannian batch normalization framework for gyrogroups. We establish two necessary conditions, namely pseudo-reduction and gyroisometric gyrations, that guarantee GyroBN with theoretical control over sample statistics, and show that these conditions hold for all known gyrogroups in machine learning. Our framework also incorporates several existing Riemannian normalization methods as special cases. We further instantiate GyroBN on seven representative geometries, including the Grassmannian, five constant curvature spaces, and the correlation manifold, and derive novel gyro and Riemannian structures to enable these instantiations. Experiments across these geometries demonstrate the effectiveness of GyroBN. The code is available at https://github.com/GitZH-Chen/GyroBN.git.
T-REGS: Minimum Spanning Tree Regularization for Self-Supervised Learning
Self-supervised learning (SSL) has emerged as a powerful paradigm for learning representations without labeled data, often by enforcing invariance to input transformations such as rotations or blurring. Recent studies have highlighted two pivotal properties for effective representations: (i) avoiding dimensional collapse-where the learned features occupy only a low-dimensional subspace, and (ii) enhancing uniformity of the induced distribution. In this work, we introduce T-REGS, a simple regularization framework for SSL based on the length of the Minimum Spanning Tree (MST) over the learned representation. We provide theoretical analysis demonstrating that T-REGS simultaneously mitigates dimensional collapse and promotes distribution uniformity on arbitrary compact Riemannian manifolds. Several experiments on synthetic data and on classical SSL benchmarks validate the effectiveness of our approach at enhancing representation quality.
Topological Metric for Unsupervised Embedding Quality Evaluation
Modern representation learning increasingly relies on unsupervised and self-supervised methods trained on large-scale unlabeled data. While these approaches achieve impressive generalization across tasks and domains, evaluating embedding quality without labels remains an open challenge. In this work, we propose Persistence, a topology-aware metric based on persistent homology that quantifies the geometric structure and topological richness of embedding spaces in a fully unsupervised manner. Unlike metrics that assume linear separability or rely on covariance structure, Persistence captures global and multi-scale organization. Empirical results across diverse domains show that Persistence consistently achieves top-tier correlations with downstream performance, outperforming existing unsupervised metrics and enabling reliable model and hyperparameter selection.
Inverse Rendering for High-Genus Surface Meshes from Multi-View Images
We present a topology-informed inverse rendering approach for reconstructing high-genus surface meshes from multi-view images. Compared to 3D representations like voxels and point clouds, mesh-based representations are preferred as they enable the application of differential geometry theory and are optimized for modern graphics pipelines. However, existing inverse rendering methods often fail catastrophically on high-genus surfaces, leading to the loss of key topological features, and tend to oversmooth low-genus surfaces, resulting in the loss of surface details. This failure stems from their overreliance on Adam-based optimizers, which can lead to vanishing and exploding gradients. To overcome these challenges, we introduce an adaptive V-cycle remeshing scheme in conjunction with a re-parametrized Adam optimizer to enhance topological and geometric awareness. By periodically coarsening and refining the deforming mesh, our method informs mesh vertices of their current topology and geometry before optimization, mitigating gradient issues while preserving essential topological features. Additionally, we enforce topological consistency by constructing topological primitives with genus numbers that match those of ground truth using Gauss-Bonnet theorem. Experimental results demonstrate that our inverse rendering approach outperforms the current state-of-the-art method, achieving significant improvements in Chamfer Distance and Volume IoU, particularly for high-genus surfaces, while also enhancing surface details for low-genus surfaces.
Fast hyperboloid decision tree algorithms
Hyperbolic geometry is gaining traction in machine learning for its effectiveness at capturing hierarchical structures in real-world data. Hyperbolic spaces, where neighborhoods grow exponentially, offer substantial advantages and consistently deliver state-of-the-art results across diverse applications. However, hyperbolic classifiers often grapple with computational challenges. Methods reliant on Riemannian optimization frequently exhibit sluggishness, stemming from the increased computational demands of operations on Riemannian manifolds. In response to these challenges, we present hyperDT, a novel extension of decision tree algorithms into hyperbolic space. Crucially, hyperDT eliminates the need for computationally intensive Riemannian optimization, numerically unstable exponential and logarithmic maps, or pairwise comparisons between points by leveraging inner products to adapt Euclidean decision tree algorithms to hyperbolic space. Our approach is conceptually straightforward and maintains constant-time decision complexity while mitigating the scalability issues inherent in high-dimensional Euclidean spaces. Building upon hyperDT we introduce hyperRF, a hyperbolic random forest model. Extensive benchmarking across diverse datasets underscores the superior performance of these models, providing a swift, precise, accurate, and user-friendly toolkit for hyperbolic data analysis.
Hyperbolic Diffusion Embedding and Distance for Hierarchical Representation Learning
Finding meaningful representations and distances of hierarchical data is important in many fields. This paper presents a new method for hierarchical data embedding and distance. Our method relies on combining diffusion geometry, a central approach to manifold learning, and hyperbolic geometry. Specifically, using diffusion geometry, we build multi-scale densities on the data, aimed to reveal their hierarchical structure, and then embed them into a product of hyperbolic spaces. We show theoretically that our embedding and distance recover the underlying hierarchical structure. In addition, we demonstrate the efficacy of the proposed method and its advantages compared to existing methods on graph embedding benchmarks and hierarchical datasets.
Generative Modeling on Manifolds Through Mixture of Riemannian Diffusion Processes
Learning the distribution of data on Riemannian manifolds is crucial for modeling data from non-Euclidean space, which is required by many applications in diverse scientific fields. Yet, existing generative models on manifolds suffer from expensive divergence computation or rely on approximations of heat kernel. These limitations restrict their applicability to simple geometries and hinder scalability to high dimensions. In this work, we introduce the Riemannian Diffusion Mixture, a principled framework for building a generative diffusion process on manifolds. Instead of following the denoising approach of previous diffusion models, we construct a diffusion process using a mixture of bridge processes derived on general manifolds without requiring heat kernel estimations. We develop a geometric understanding of the mixture process, deriving the drift as a weighted mean of tangent directions to the data points that guides the process toward the data distribution. We further propose a scalable training objective for learning the mixture process that readily applies to general manifolds. Our method achieves superior performance on diverse manifolds with dramatically reduced number of in-training simulation steps for general manifolds.
Intrinsic Sliced Wasserstein Distances for Comparing Collections of Probability Distributions on Manifolds and Graphs
Collections of probability distributions arise in a variety of applications ranging from user activity pattern analysis to brain connectomics. In practice these distributions can be defined over diverse domain types including finite intervals, circles, cylinders, spheres, other manifolds, and graphs. This paper introduces an approach for detecting differences between two collections of distributions over such general domains. To this end, we propose the intrinsic slicing construction that yields a novel class of Wasserstein distances on manifolds and graphs. These distances are Hilbert embeddable, allowing us to reduce the distribution collection comparison problem to a more familiar mean testing problem in a Hilbert space. We provide two testing procedures one based on resampling and another on combining p-values from coordinate-wise tests. Our experiments in various synthetic and real data settings show that the resulting tests are powerful and the p-values are well-calibrated.
Adaptive Topological Feature via Persistent Homology: Filtration Learning for Point Clouds
Machine learning for point clouds has been attracting much attention, with many applications in various fields, such as shape recognition and material science. For enhancing the accuracy of such machine learning methods, it is often effective to incorporate global topological features, which are typically extracted by persistent homology. In the calculation of persistent homology for a point cloud, we choose a filtration for the point cloud, an increasing sequence of spaces. Since the performance of machine learning methods combined with persistent homology is highly affected by the choice of a filtration, we need to tune it depending on data and tasks. In this paper, we propose a framework that learns a filtration adaptively with the use of neural networks. In order to make the resulting persistent homology isometry-invariant, we develop a neural network architecture with such invariance. Additionally, we show a theoretical result on a finite-dimensional approximation of filtration functions, which justifies the proposed network architecture. Experimental results demonstrated the efficacy of our framework in several classification tasks.
Geometry of Sample Spaces
In statistics, independent, identically distributed random samples do not carry a natural ordering, and their statistics are typically invariant with respect to permutations of their order. Thus, an n-sample in a space M can be considered as an element of the quotient space of M^n modulo the permutation group. The present paper takes this definition of sample space and the related concept of orbit types as a starting point for developing a geometric perspective on statistics. We aim at deriving a general mathematical setting for studying the behavior of empirical and population means in spaces ranging from smooth Riemannian manifolds to general stratified spaces. We fully describe the orbifold and path-metric structure of the sample space when M is a manifold or path-metric space, respectively. These results are non-trivial even when M is Euclidean. We show that the infinite sample space exists in a Gromov-Hausdorff type sense and coincides with the Wasserstein space of probability distributions on M. We exhibit Fr\'echet means and k-means as metric projections onto 1-skeleta or k-skeleta in Wasserstein space, and we define a new and more general notion of polymeans. This geometric characterization via metric projections applies equally to sample and population means, and we use it to establish asymptotic properties of polymeans such as consistency and asymptotic normality.
Smooth ECE: Principled Reliability Diagrams via Kernel Smoothing
Calibration measures and reliability diagrams are two fundamental tools for measuring and interpreting the calibration of probabilistic predictors. Calibration measures quantify the degree of miscalibration, and reliability diagrams visualize the structure of this miscalibration. However, the most common constructions of reliability diagrams and calibration measures -- binning and ECE -- both suffer from well-known flaws (e.g. discontinuity). We show that a simple modification fixes both constructions: first smooth the observations using an RBF kernel, then compute the Expected Calibration Error (ECE) of this smoothed function. We prove that with a careful choice of bandwidth, this method yields a calibration measure that is well-behaved in the sense of (B{\l}asiok, Gopalan, Hu, and Nakkiran 2023a) -- a consistent calibration measure. We call this measure the SmoothECE. Moreover, the reliability diagram obtained from this smoothed function visually encodes the SmoothECE, just as binned reliability diagrams encode the BinnedECE. We also provide a Python package with simple, hyperparameter-free methods for measuring and plotting calibration: `pip install relplot\`.
Interpolation for Robust Learning: Data Augmentation on Geodesics
We propose to study and promote the robustness of a model as per its performance through the interpolation of training data distributions. Specifically, (1) we augment the data by finding the worst-case Wasserstein barycenter on the geodesic connecting subpopulation distributions of different categories. (2) We regularize the model for smoother performance on the continuous geodesic path connecting subpopulation distributions. (3) Additionally, we provide a theoretical guarantee of robustness improvement and investigate how the geodesic location and the sample size contribute, respectively. Experimental validations of the proposed strategy on four datasets, including CIFAR-100 and ImageNet, establish the efficacy of our method, e.g., our method improves the baselines' certifiable robustness on CIFAR10 up to 7.7%, with 16.8% on empirical robustness on CIFAR-100. Our work provides a new perspective of model robustness through the lens of Wasserstein geodesic-based interpolation with a practical off-the-shelf strategy that can be combined with existing robust training methods.
Improving Diffusion Models for Inverse Problems using Manifold Constraints
Recently, diffusion models have been used to solve various inverse problems in an unsupervised manner with appropriate modifications to the sampling process. However, the current solvers, which recursively apply a reverse diffusion step followed by a projection-based measurement consistency step, often produce suboptimal results. By studying the generative sampling path, here we show that current solvers throw the sample path off the data manifold, and hence the error accumulates. To address this, we propose an additional correction term inspired by the manifold constraint, which can be used synergistically with the previous solvers to make the iterations close to the manifold. The proposed manifold constraint is straightforward to implement within a few lines of code, yet boosts the performance by a surprisingly large margin. With extensive experiments, we show that our method is superior to the previous methods both theoretically and empirically, producing promising results in many applications such as image inpainting, colorization, and sparse-view computed tomography. Code available https://github.com/HJ-harry/MCG_diffusion
On weakly Einstein Kähler surfaces
Riemannian four-manifolds in which the triple contraction of the curvature tensor against itself yields a functional multiple of the metric are called weakly Einstein. We focus on weakly Einstein K\"ahler surfaces. We provide several conditions characterizing those K\"ahler surfaces which are weakly Einstein, classify weakly Einstein K\"ahler surfaces having some specific additional properties, and construct new examples.
First Integrals of Geodesic Flows on Cones
In this paper we study the behavior of geodesics on cones over arbitrary C^3-smooth closed Riemannian manifolds. We show that the geodesic flow on such cones admits first integrals whose values uniquely determine almost all geodesics except for cone generatrices. This investigation is inspired by our results on billiards inside cones over manifolds where similar results hold true.
Private and Reliable Neural Network Inference
Reliable neural networks (NNs) provide important inference-time reliability guarantees such as fairness and robustness. Complementarily, privacy-preserving NN inference protects the privacy of client data. So far these two emerging areas have been largely disconnected, yet their combination will be increasingly important. In this work, we present the first system which enables privacy-preserving inference on reliable NNs. Our key idea is to design efficient fully homomorphic encryption (FHE) counterparts for the core algorithmic building blocks of randomized smoothing, a state-of-the-art technique for obtaining reliable models. The lack of required control flow in FHE makes this a demanding task, as na\"ive solutions lead to unacceptable runtime. We employ these building blocks to enable privacy-preserving NN inference with robustness and fairness guarantees in a system called Phoenix. Experimentally, we demonstrate that Phoenix achieves its goals without incurring prohibitive latencies. To our knowledge, this is the first work which bridges the areas of client data privacy and reliability guarantees for NNs.
Cusps and Commensurability Classes of Hyperbolic 4-Manifolds
There are six orientable, compact, flat 3-manifolds that can occur as cusp cross-sections of hyperbolic 4-manifolds. This paper provides criteria for exactly when a given commensurability class of arithmetic hyperbolic 4-manifolds contains a representative with a given cusp type. In particular, for three of the six cusp types, we provide infinitely many examples of commensurability classes that contain no manifolds with cusps of the given type; no such examples were previously known for any cusp type.
Manifold Learning by Mixture Models of VAEs for Inverse Problems
Representing a manifold of very high-dimensional data with generative models has been shown to be computationally efficient in practice. However, this requires that the data manifold admits a global parameterization. In order to represent manifolds of arbitrary topology, we propose to learn a mixture model of variational autoencoders. Here, every encoder-decoder pair represents one chart of a manifold. We propose a loss function for maximum likelihood estimation of the model weights and choose an architecture that provides us the analytical expression of the charts and of their inverses. Once the manifold is learned, we use it for solving inverse problems by minimizing a data fidelity term restricted to the learned manifold. To solve the arising minimization problem we propose a Riemannian gradient descent algorithm on the learned manifold. We demonstrate the performance of our method for low-dimensional toy examples as well as for deblurring and electrical impedance tomography on certain image manifolds.
Flagfolds
By interpreting the product of the Principal Component Analysis, that is the covariance matrix, as a sequence of nested subspaces naturally coming with weights according to the level of approximation they provide, we are able to embed all d--dimensional Grassmannians into a stratified space of covariance matrices. We observe that Grassmannians constitute the lowest dimensional skeleton of the stratification while it is possible to define a Riemaniann metric on the highest dimensional and dense stratum, such a metric being compatible with the global stratification. With such a Riemaniann metric at hand, it is possible to look for geodesics between two linear subspaces of different dimensions that do not go through higher dimensional linear subspaces as would euclidean geodesics. Building upon the proposed embedding of Grassmannians into the stratified space of covariance matrices, we generalize the concept of varifolds to what we call flagfolds in order to model multi-dimensional shapes.
Deformable Surface Reconstruction via Riemannian Metric Preservation
Estimating the pose of an object from a monocular image is an inverse problem fundamental in computer vision. The ill-posed nature of this problem requires incorporating deformation priors to solve it. In practice, many materials do not perceptibly shrink or extend when manipulated, constituting a powerful and well-known prior. Mathematically, this translates to the preservation of the Riemannian metric. Neural networks offer the perfect playground to solve the surface reconstruction problem as they can approximate surfaces with arbitrary precision and allow the computation of differential geometry quantities. This paper presents an approach to inferring continuous deformable surfaces from a sequence of images, which is benchmarked against several techniques and obtains state-of-the-art performance without the need for offline training.
Topological Point Cloud Clustering
We present Topological Point Cloud Clustering (TPCC), a new method to cluster points in an arbitrary point cloud based on their contribution to global topological features. TPCC synthesizes desirable features from spectral clustering and topological data analysis and is based on considering the spectral properties of a simplicial complex associated to the considered point cloud. As it is based on considering sparse eigenvector computations, TPCC is similarly easy to interpret and implement as spectral clustering. However, by focusing not just on a single matrix associated to a graph created from the point cloud data, but on a whole set of Hodge-Laplacians associated to an appropriately constructed simplicial complex, we can leverage a far richer set of topological features to characterize the data points within the point cloud and benefit from the relative robustness of topological techniques against noise. We test the performance of TPCC on both synthetic and real-world data and compare it with classical spectral clustering.
FlowMM: Generating Materials with Riemannian Flow Matching
Crystalline materials are a fundamental component in next-generation technologies, yet modeling their distribution presents unique computational challenges. Of the plausible arrangements of atoms in a periodic lattice only a vanishingly small percentage are thermodynamically stable, which is a key indicator of the materials that can be experimentally realized. Two fundamental tasks in this area are to (a) predict the stable crystal structure of a known composition of elements and (b) propose novel compositions along with their stable structures. We present FlowMM, a pair of generative models that achieve state-of-the-art performance on both tasks while being more efficient and more flexible than competing methods. We generalize Riemannian Flow Matching to suit the symmetries inherent to crystals: translation, rotation, permutation, and periodic boundary conditions. Our framework enables the freedom to choose the flow base distributions, drastically simplifying the problem of learning crystal structures compared with diffusion models. In addition to standard benchmarks, we validate FlowMM's generated structures with quantum chemistry calculations, demonstrating that it is about 3x more efficient, in terms of integration steps, at finding stable materials compared to previous open methods.
Back to Basics: Let Denoising Generative Models Denoise
Today's denoising diffusion models do not "denoise" in the classical sense, i.e., they do not directly predict clean images. Rather, the neural networks predict noise or a noised quantity. In this paper, we suggest that predicting clean data and predicting noised quantities are fundamentally different. According to the manifold assumption, natural data should lie on a low-dimensional manifold, whereas noised quantities do not. With this assumption, we advocate for models that directly predict clean data, which allows apparently under-capacity networks to operate effectively in very high-dimensional spaces. We show that simple, large-patch Transformers on pixels can be strong generative models: using no tokenizer, no pre-training, and no extra loss. Our approach is conceptually nothing more than "Just image Transformers", or JiT, as we call it. We report competitive results using JiT with large patch sizes of 16 and 32 on ImageNet at resolutions of 256 and 512, where predicting high-dimensional noised quantities can fail catastrophically. With our networks mapping back to the basics of the manifold, our research goes back to basics and pursues a self-contained paradigm for Transformer-based diffusion on raw natural data.
Align Your Tangent: Training Better Consistency Models via Manifold-Aligned Tangents
With diffusion and flow matching models achieving state-of-the-art generating performance, the interest of the community now turned to reducing the inference time without sacrificing sample quality. Consistency Models (CMs), which are trained to be consistent on diffusion or probability flow ordinary differential equation (PF-ODE) trajectories, enable one or two-step flow or diffusion sampling. However, CMs typically require prolonged training with large batch sizes to obtain competitive sample quality. In this paper, we examine the training dynamics of CMs near convergence and discover that CM tangents -- CM output update directions -- are quite oscillatory, in the sense that they move parallel to the data manifold, not towards the manifold. To mitigate oscillatory tangents, we propose a new loss function, called the manifold feature distance (MFD), which provides manifold-aligned tangents that point toward the data manifold. Consequently, our method -- dubbed Align Your Tangent (AYT) -- can accelerate CM training by orders of magnitude and even out-perform the learned perceptual image patch similarity metric (LPIPS). Furthermore, we find that our loss enables training with extremely small batch sizes without compromising sample quality. Code: https://github.com/1202kbs/AYT
Fast, Stable and Efficient Approximation of Multi-parameter Persistence Modules with MMA
In this article, we introduce a new parameterized family of topological invariants, taking the form of candidate decompositions, for multi-parameter persistence modules. We prove that our candidate decompositions are controllable approximations: when restricting to modules that can be decomposed into interval summands, we establish theoretical results about the approximation error between our candidate decompositions and the true underlying module in terms of the standard interleaving and bottleneck distances. Moreover, even when the underlying module does not admit such a decomposition, our candidate decompositions are nonetheless stable invariants; small perturbations in the underlying module lead to small perturbations in the candidate decomposition. Then, we introduce MMA (Multipersistence Module Approximation): an algorithm for computing stable instances of such invariants, which is based on fibered barcodes and exact matchings, two constructions that stem from the theory of single-parameter persistence. By design, MMA can handle an arbitrary number of filtrations, and has bounded complexity and running time. Finally, we present empirical evidence validating the generalization capabilities and running time speed-ups of MMA on several data sets.
Effects of Data Geometry in Early Deep Learning
Deep neural networks can approximate functions on different types of data, from images to graphs, with varied underlying structure. This underlying structure can be viewed as the geometry of the data manifold. By extending recent advances in the theoretical understanding of neural networks, we study how a randomly initialized neural network with piece-wise linear activation splits the data manifold into regions where the neural network behaves as a linear function. We derive bounds on the density of boundary of linear regions and the distance to these boundaries on the data manifold. This leads to insights into the expressivity of randomly initialized deep neural networks on non-Euclidean data sets. We empirically corroborate our theoretical results using a toy supervised learning problem. Our experiments demonstrate that number of linear regions varies across manifolds and the results hold with changing neural network architectures. We further demonstrate how the complexity of linear regions is different on the low dimensional manifold of images as compared to the Euclidean space, using the MetFaces dataset.
Towards Reliable Neural Specifications
Having reliable specifications is an unavoidable challenge in achieving verifiable correctness, robustness, and interpretability of AI systems. Existing specifications for neural networks are in the paradigm of data as specification. That is, the local neighborhood centering around a reference input is considered to be correct (or robust). While existing specifications contribute to verifying adversarial robustness, a significant problem in many research domains, our empirical study shows that those verified regions are somewhat tight, and thus fail to allow verification of test set inputs, making them impractical for some real-world applications. To this end, we propose a new family of specifications called neural representation as specification, which uses the intrinsic information of neural networks - neural activation patterns (NAPs), rather than input data to specify the correctness and/or robustness of neural network predictions. We present a simple statistical approach to mining neural activation patterns. To show the effectiveness of discovered NAPs, we formally verify several important properties, such as various types of misclassifications will never happen for a given NAP, and there is no ambiguity between different NAPs. We show that by using NAP, we can verify a significant region of the input space, while still recalling 84% of the data on MNIST. Moreover, we can push the verifiable bound to 10 times larger on the CIFAR10 benchmark. Thus, we argue that NAPs can potentially be used as a more reliable and extensible specification for neural network verification.
Learning to Normalize on the SPD Manifold under Bures-Wasserstein Geometry
Covariance matrices have proven highly effective across many scientific fields. Since these matrices lie within the Symmetric Positive Definite (SPD) manifold - a Riemannian space with intrinsic non-Euclidean geometry, the primary challenge in representation learning is to respect this underlying geometric structure. Drawing inspiration from the success of Euclidean deep learning, researchers have developed neural networks on the SPD manifolds for more faithful covariance embedding learning. A notable advancement in this area is the implementation of Riemannian batch normalization (RBN), which has been shown to improve the performance of SPD network models. Nonetheless, the Riemannian metric beneath the existing RBN might fail to effectively deal with the ill-conditioned SPD matrices (ICSM), undermining the effectiveness of RBN. In contrast, the Bures-Wasserstein metric (BWM) demonstrates superior performance for ill-conditioning. In addition, the recently introduced Generalized BWM (GBWM) parameterizes the vanilla BWM via an SPD matrix, allowing for a more nuanced representation of vibrant geometries of the SPD manifold. Therefore, we propose a novel RBN algorithm based on the GBW geometry, incorporating a learnable metric parameter. Moreover, the deformation of GBWM by matrix power is also introduced to further enhance the representational capacity of GBWM-based RBN. Experimental results on different datasets validate the effectiveness of our proposed method.
Idempotent Generative Network
We propose a new approach for generative modeling based on training a neural network to be idempotent. An idempotent operator is one that can be applied sequentially without changing the result beyond the initial application, namely f(f(z))=f(z). The proposed model f is trained to map a source distribution (e.g, Gaussian noise) to a target distribution (e.g. realistic images) using the following objectives: (1) Instances from the target distribution should map to themselves, namely f(x)=x. We define the target manifold as the set of all instances that f maps to themselves. (2) Instances that form the source distribution should map onto the defined target manifold. This is achieved by optimizing the idempotence term, f(f(z))=f(z) which encourages the range of f(z) to be on the target manifold. Under ideal assumptions such a process provably converges to the target distribution. This strategy results in a model capable of generating an output in one step, maintaining a consistent latent space, while also allowing sequential applications for refinement. Additionally, we find that by processing inputs from both target and source distributions, the model adeptly projects corrupted or modified data back to the target manifold. This work is a first step towards a ``global projector'' that enables projecting any input into a target data distribution.
Riemannian Score-Based Generative Modelling
Score-based generative models (SGMs) are a powerful class of generative models that exhibit remarkable empirical performance. Score-based generative modelling (SGM) consists of a ``noising'' stage, whereby a diffusion is used to gradually add Gaussian noise to data, and a generative model, which entails a ``denoising'' process defined by approximating the time-reversal of the diffusion. Existing SGMs assume that data is supported on a Euclidean space, i.e. a manifold with flat geometry. In many domains such as robotics, geoscience or protein modelling, data is often naturally described by distributions living on Riemannian manifolds and current SGM techniques are not appropriate. We introduce here Riemannian Score-based Generative Models (RSGMs), a class of generative models extending SGMs to Riemannian manifolds. We demonstrate our approach on a variety of manifolds, and in particular with earth and climate science spherical data.
Topologically Attributed Graphs for Shape Discrimination
In this paper we introduce a novel family of attributed graphs for the purpose of shape discrimination. Our graphs typically arise from variations on the Mapper graph construction, which is an approximation of the Reeb graph for point cloud data. Our attributions enrich these constructions with (persistent) homology in ways that are provably stable, thereby recording extra topological information that is typically lost in these graph constructions. We provide experiments which illustrate the use of these invariants for shape representation and classification. In particular, we obtain competitive shape classification results when using our topologically attributed graphs as inputs to a simple graph neural network classifier.
mHC: Manifold-Constrained Hyper-Connections
Recently, studies exemplified by Hyper-Connections (HC) have extended the ubiquitous residual connection paradigm established over the past decade by expanding the residual stream width and diversifying connectivity patterns. While yielding substantial performance gains, this diversification fundamentally compromises the identity mapping property intrinsic to the residual connection, which causes severe training instability and restricted scalability, and additionally incurs notable memory access overhead. To address these challenges, we propose Manifold-Constrained Hyper-Connections (mHC), a general framework that projects the residual connection space of HC onto a specific manifold to restore the identity mapping property, while incorporating rigorous infrastructure optimization to ensure efficiency. Empirical experiments demonstrate that mHC is effective for training at scale, offering tangible performance improvements and superior scalability. We anticipate that mHC, as a flexible and practical extension of HC, will contribute to a deeper understanding of topological architecture design and suggest promising directions for the evolution of foundational models.
Unsupervised Anomaly Detection for Autonomous Robots via Mahalanobis SVDD with Audio-IMU Fusion
Reliable anomaly detection is essential for ensuring the safety of autonomous robots, particularly when conventional detection systems based on vision or LiDAR become unreliable in adverse or unpredictable conditions. In such scenarios, alternative sensing modalities are needed to provide timely and robust feedback. To this end, we explore the use of audio and inertial measurement unit (IMU) sensors to detect underlying anomalies in autonomous mobile robots, such as collisions and internal mechanical faults. Furthermore, to address the challenge of limited labeled anomaly data, we propose an unsupervised anomaly detection framework based on Mahalanobis Support Vector Data Description (M-SVDD). In contrast to conventional SVDD methods that rely on Euclidean distance and assume isotropic feature distributions, our approach employs the Mahalanobis distance to adaptively scale feature dimensions and capture inter-feature correlations, enabling more expressive decision boundaries. In addition, a reconstruction-based auxiliary branch is introduced to preserve feature diversity and prevent representation collapse, further enhancing the robustness of anomaly detection. Extensive experiments on a collected mobile robot dataset and four public datasets demonstrate the effectiveness of the proposed method, as shown in the video https://youtu.be/yh1tn6DDD4A. Code and dataset are available at https://github.com/jamesyang7/M-SVDD.
Manify: A Python Library for Learning Non-Euclidean Representations
We present Manify, an open-source Python library for non-Euclidean representation learning. Leveraging manifold learning techniques, Manify provides tools for learning embeddings in (products of) non-Euclidean spaces, performing classification and regression with data that lives in such spaces, and estimating the curvature of a manifold. Manify aims to advance research and applications in machine learning by offering a comprehensive suite of tools for manifold-based data analysis. Our source code, examples, datasets, results, and documentation are available at https://github.com/pchlenski/manify
RobustSpring: Benchmarking Robustness to Image Corruptions for Optical Flow, Scene Flow and Stereo
Standard benchmarks for optical flow, scene flow, and stereo vision algorithms generally focus on model accuracy rather than robustness to image corruptions like noise or rain. Hence, the resilience of models to such real-world perturbations is largely unquantified. To address this, we present RobustSpring, a comprehensive dataset and benchmark for evaluating robustness to image corruptions for optical flow, scene flow, and stereo models. RobustSpring applies 20 different image corruptions, including noise, blur, color changes, quality degradations, and weather distortions, in a time-, stereo-, and depth-consistent manner to the high-resolution Spring dataset, creating a suite of 20,000 corrupted images that reflect challenging conditions. RobustSpring enables comparisons of model robustness via a new corruption robustness metric. Integration with the Spring benchmark enables public two-axis evaluations of both accuracy and robustness. We benchmark a curated selection of initial models, observing that accurate models are not necessarily robust and that robustness varies widely by corruption type. RobustSpring is a new computer vision benchmark that treats robustness as a first-class citizen to foster models that combine accuracy with resilience. It will be available at https://spring-benchmark.org.
Classifying Clustering Schemes
Many clustering schemes are defined by optimizing an objective function defined on the partitions of the underlying set of a finite metric space. In this paper, we construct a framework for studying what happens when we instead impose various structural conditions on the clustering schemes, under the general heading of functoriality. Functoriality refers to the idea that one should be able to compare the results of clustering algorithms as one varies the data set, for example by adding points or by applying functions to it. We show that within this framework, one can prove a theorems analogous to one of J. Kleinberg, in which for example one obtains an existence and uniqueness theorem instead of a non-existence result. We obtain a full classification of all clustering schemes satisfying a condition we refer to as excisiveness. The classification can be changed by varying the notion of maps of finite metric spaces. The conditions occur naturally when one considers clustering as the statistical version of the geometric notion of connected components. By varying the degree of functoriality that one requires from the schemes it is possible to construct richer families of clustering schemes that exhibit sensitivity to density.
Diffusion Variational Autoencoders
A standard Variational Autoencoder, with a Euclidean latent space, is structurally incapable of capturing topological properties of certain datasets. To remove topological obstructions, we introduce Diffusion Variational Autoencoders with arbitrary manifolds as a latent space. A Diffusion Variational Autoencoder uses transition kernels of Brownian motion on the manifold. In particular, it uses properties of the Brownian motion to implement the reparametrization trick and fast approximations to the KL divergence. We show that the Diffusion Variational Autoencoder is capable of capturing topological properties of synthetic datasets. Additionally, we train MNIST on spheres, tori, projective spaces, SO(3), and a torus embedded in R3. Although a natural dataset like MNIST does not have latent variables with a clear-cut topological structure, training it on a manifold can still highlight topological and geometrical properties.
Implicit Gaussian process representation of vector fields over arbitrary latent manifolds
Gaussian processes (GPs) are popular nonparametric statistical models for learning unknown functions and quantifying the spatiotemporal uncertainty in data. Recent works have extended GPs to model scalar and vector quantities distributed over non-Euclidean domains, including smooth manifolds appearing in numerous fields such as computer vision, dynamical systems, and neuroscience. However, these approaches assume that the manifold underlying the data is known, limiting their practical utility. We introduce RVGP, a generalisation of GPs for learning vector signals over latent Riemannian manifolds. Our method uses positional encoding with eigenfunctions of the connection Laplacian, associated with the tangent bundle, readily derived from common graph-based approximation of data. We demonstrate that RVGP possesses global regularity over the manifold, which allows it to super-resolve and inpaint vector fields while preserving singularities. Furthermore, we use RVGP to reconstruct high-density neural dynamics derived from low-density EEG recordings in healthy individuals and Alzheimer's patients. We show that vector field singularities are important disease markers and that their reconstruction leads to a comparable classification accuracy of disease states to high-density recordings. Thus, our method overcomes a significant practical limitation in experimental and clinical applications.
Mesh2Tex: Generating Mesh Textures from Image Queries
Remarkable advances have been achieved recently in learning neural representations that characterize object geometry, while generating textured objects suitable for downstream applications and 3D rendering remains at an early stage. In particular, reconstructing textured geometry from images of real objects is a significant challenge -- reconstructed geometry is often inexact, making realistic texturing a significant challenge. We present Mesh2Tex, which learns a realistic object texture manifold from uncorrelated collections of 3D object geometry and photorealistic RGB images, by leveraging a hybrid mesh-neural-field texture representation. Our texture representation enables compact encoding of high-resolution textures as a neural field in the barycentric coordinate system of the mesh faces. The learned texture manifold enables effective navigation to generate an object texture for a given 3D object geometry that matches to an input RGB image, which maintains robustness even under challenging real-world scenarios where the mesh geometry approximates an inexact match to the underlying geometry in the RGB image. Mesh2Tex can effectively generate realistic object textures for an object mesh to match real images observations towards digitization of real environments, significantly improving over previous state of the art.
Compact Einstein-type manifolds with parallel Ricci tensor
In this paper, we deduce a Bochner-type identity for compact gradient Einstein-type manifolds with boundary. As consequence, we are able to show a rigidity result for Einstein-type manifolds assuming the parallel Ricci curvature condition. Moreover, we provide a condition on the norm of the gradient of the potential function in order to classify such structures.
Diffusion Nets
Non-linear manifold learning enables high-dimensional data analysis, but requires out-of-sample-extension methods to process new data points. In this paper, we propose a manifold learning algorithm based on deep learning to create an encoder, which maps a high-dimensional dataset and its low-dimensional embedding, and a decoder, which takes the embedded data back to the high-dimensional space. Stacking the encoder and decoder together constructs an autoencoder, which we term a diffusion net, that performs out-of-sample-extension as well as outlier detection. We introduce new neural net constraints for the encoder, which preserves the local geometry of the points, and we prove rates of convergence for the encoder. Also, our approach is efficient in both computational complexity and memory requirements, as opposed to previous methods that require storage of all training points in both the high-dimensional and the low-dimensional spaces to calculate the out-of-sample-extension and the pre-image.
Measuring the Intrinsic Dimension of Objective Landscapes
Many recently trained neural networks employ large numbers of parameters to achieve good performance. One may intuitively use the number of parameters required as a rough gauge of the difficulty of a problem. But how accurate are such notions? How many parameters are really needed? In this paper we attempt to answer this question by training networks not in their native parameter space, but instead in a smaller, randomly oriented subspace. We slowly increase the dimension of this subspace, note at which dimension solutions first appear, and define this to be the intrinsic dimension of the objective landscape. The approach is simple to implement, computationally tractable, and produces several suggestive conclusions. Many problems have smaller intrinsic dimensions than one might suspect, and the intrinsic dimension for a given dataset varies little across a family of models with vastly different sizes. This latter result has the profound implication that once a parameter space is large enough to solve a problem, extra parameters serve directly to increase the dimensionality of the solution manifold. Intrinsic dimension allows some quantitative comparison of problem difficulty across supervised, reinforcement, and other types of learning where we conclude, for example, that solving the inverted pendulum problem is 100 times easier than classifying digits from MNIST, and playing Atari Pong from pixels is about as hard as classifying CIFAR-10. In addition to providing new cartography of the objective landscapes wandered by parameterized models, the method is a simple technique for constructively obtaining an upper bound on the minimum description length of a solution. A byproduct of this construction is a simple approach for compressing networks, in some cases by more than 100 times.
Learning Globally Smooth Functions on Manifolds
Smoothness and low dimensional structures play central roles in improving generalization and stability in learning and statistics. This work combines techniques from semi-infinite constrained learning and manifold regularization to learn representations that are globally smooth on a manifold. To do so, it shows that under typical conditions the problem of learning a Lipschitz continuous function on a manifold is equivalent to a dynamically weighted manifold regularization problem. This observation leads to a practical algorithm based on a weighted Laplacian penalty whose weights are adapted using stochastic gradient techniques. It is shown that under mild conditions, this method estimates the Lipschitz constant of the solution, learning a globally smooth solution as a byproduct. Experiments on real world data illustrate the advantages of the proposed method relative to existing alternatives.
UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction
UMAP (Uniform Manifold Approximation and Projection) is a novel manifold learning technique for dimension reduction. UMAP is constructed from a theoretical framework based in Riemannian geometry and algebraic topology. The result is a practical scalable algorithm that applies to real world data. The UMAP algorithm is competitive with t-SNE for visualization quality, and arguably preserves more of the global structure with superior run time performance. Furthermore, UMAP has no computational restrictions on embedding dimension, making it viable as a general purpose dimension reduction technique for machine learning.
ReliableEval: A Recipe for Stochastic LLM Evaluation via Method of Moments
LLMs are highly sensitive to prompt phrasing, yet standard benchmarks typically report performance using a single prompt, raising concerns about the reliability of such evaluations. In this work, we argue for a stochastic method of moments evaluation over the space of meaning-preserving prompt perturbations. We introduce a formal definition of reliable evaluation that accounts for prompt sensitivity, and suggest ReliableEval - a method for estimating the number of prompt resamplings needed to obtain meaningful results. Using our framework, we stochastically evaluate five frontier LLMs and find that even top-performing models like GPT-4o and Claude-3.7-Sonnet exhibit substantial prompt sensitivity. Our approach is model-, task-, and metric-agnostic, offering a recipe for meaningful and robust LLM evaluation.
mHC-lite: You Don't Need 20 Sinkhorn-Knopp Iterations
Hyper-Connections (HC) generalizes residual connections by introducing dynamic residual matrices that mix information across multiple residual streams, accelerating convergence in deep neural networks. However, unconstrained residual matrices can compromise training stability. To address this, DeepSeek's Manifold-Constrained Hyper-Connections (mHC) approximately projects these matrices onto the Birkhoff polytope via iterative Sinkhorn--Knopp (SK) normalization. We identify two limitations of this approach: (i) finite SK iterations do not guarantee exact doubly stochasticity, leaving an approximation gap that can accumulate through network depth and undermine stability; (ii) efficient SK implementation requires highly specialized CUDA kernels, raising engineering barriers and reducing portability. Motivated by the Birkhoff--von Neumann theorem, we propose mHC-lite, a simple reparameterization that explicitly constructs doubly stochastic matrices as convex combinations of permutation matrices. This approach guarantees exact doubly stochasticity by construction and can be implemented using only native matrix operations. Extensive experiments demonstrate that mHC-lite matches or exceeds mHC in performance while achieving higher training throughput with a naive implementation and eliminating the residual instabilities observed in both HC and mHC. The code is publicly available at https://github.com/FFTYYY/mhc-lite.
A catalogue of complex radio sources in the Rapid ASKAP Continuum Survey created using a Self-Organising Map
Next generations of radio surveys are expected to identify tens of millions of new sources, and identifying and classifying their morphologies will require novel and more efficient methods. Self-Organising Maps (SOMs), a type of unsupervised machine learning, can be used to address this problem. We map 251,259 multi-Gaussian sources from Rapid ASKAP Continuum Survey (RACS) onto a SOM with discrete neurons. Similarity metrics, such as Euclidean distances, can be used to identify the best-matching neuron or unit (BMU) for each input image. We establish a reliability threshold by visually inspecting a subset of input images and their corresponding BMU. We label the individual neurons based on observed morphologies and these labels are included in our value-added catalogue of RACS sources. Sources for which the Euclidean distance to their BMU is lesssim 5 (accounting for approximately 79% of sources) have an estimated >90% reliability for their SOM-derived morphological labels. This reliability falls to less than 70% at Euclidean distances gtrsim 7. Beyond this threshold it is unlikely that the morphological label will accurately describe a given source. Our catalogue of complex radio sources from RACS with their SOM-derived morphological labels from this work will be made publicly available.
UMERegRobust - Universal Manifold Embedding Compatible Features for Robust Point Cloud Registration
In this paper, we adopt the Universal Manifold Embedding (UME) framework for the estimation of rigid transformations and extend it, so that it can accommodate scenarios involving partial overlap and differently sampled point clouds. UME is a methodology designed for mapping observations of the same object, related by rigid transformations, into a single low-dimensional linear subspace. This process yields a transformation-invariant representation of the observations, with its matrix form representation being covariant (i.e. equivariant) with the transformation. We extend the UME framework by introducing a UME-compatible feature extraction method augmented with a unique UME contrastive loss and a sampling equalizer. These components are integrated into a comprehensive and robust registration pipeline, named UMERegRobust. We propose the RotKITTI registration benchmark, specifically tailored to evaluate registration methods for scenarios involving large rotations. UMERegRobust achieves better than state-of-the-art performance on the KITTI benchmark, especially when strict precision of (1{\deg}, 10cm) is considered (with an average gain of +9%), and notably outperform SOTA methods on the RotKITTI benchmark (with +45% gain compared the most recent SOTA method).
Hyperbolic Neural Networks
Hyperbolic spaces have recently gained momentum in the context of machine learning due to their high capacity and tree-likeliness properties. However, the representational power of hyperbolic geometry is not yet on par with Euclidean geometry, mostly because of the absence of corresponding hyperbolic neural network layers. This makes it hard to use hyperbolic embeddings in downstream tasks. Here, we bridge this gap in a principled manner by combining the formalism of Möbius gyrovector spaces with the Riemannian geometry of the Poincaré model of hyperbolic spaces. As a result, we derive hyperbolic versions of important deep learning tools: multinomial logistic regression, feed-forward and recurrent neural networks such as gated recurrent units. This allows to embed sequential data and perform classification in the hyperbolic space. Empirically, we show that, even if hyperbolic optimization tools are limited, hyperbolic sentence embeddings either outperform or are on par with their Euclidean variants on textual entailment and noisy-prefix recognition tasks.
Monolith: Real Time Recommendation System With Collisionless Embedding Table
Building a scalable and real-time recommendation system is vital for many businesses driven by time-sensitive customer feedback, such as short-videos ranking or online ads. Despite the ubiquitous adoption of production-scale deep learning frameworks like TensorFlow or PyTorch, these general-purpose frameworks fall short of business demands in recommendation scenarios for various reasons: on one hand, tweaking systems based on static parameters and dense computations for recommendation with dynamic and sparse features is detrimental to model quality; on the other hand, such frameworks are designed with batch-training stage and serving stage completely separated, preventing the model from interacting with customer feedback in real-time. These issues led us to reexamine traditional approaches and explore radically different design choices. In this paper, we present Monolith, a system tailored for online training. Our design has been driven by observations of our application workloads and production environment that reflects a marked departure from other recommendations systems. Our contributions are manifold: first, we crafted a collisionless embedding table with optimizations such as expirable embeddings and frequency filtering to reduce its memory footprint; second, we provide an production-ready online training architecture with high fault-tolerance; finally, we proved that system reliability could be traded-off for real-time learning. Monolith has successfully landed in the BytePlus Recommend product.
Evaluating the Robustness of Interpretability Methods through Explanation Invariance and Equivariance
Interpretability methods are valuable only if their explanations faithfully describe the explained model. In this work, we consider neural networks whose predictions are invariant under a specific symmetry group. This includes popular architectures, ranging from convolutional to graph neural networks. Any explanation that faithfully explains this type of model needs to be in agreement with this invariance property. We formalize this intuition through the notion of explanation invariance and equivariance by leveraging the formalism from geometric deep learning. Through this rigorous formalism, we derive (1) two metrics to measure the robustness of any interpretability method with respect to the model symmetry group; (2) theoretical robustness guarantees for some popular interpretability methods and (3) a systematic approach to increase the invariance of any interpretability method with respect to a symmetry group. By empirically measuring our metrics for explanations of models associated with various modalities and symmetry groups, we derive a set of 5 guidelines to allow users and developers of interpretability methods to produce robust explanations.
Spatially and Spectrally Consistent Deep Functional Maps
Cycle consistency has long been exploited as a powerful prior for jointly optimizing maps within a collection of shapes. In this paper, we investigate its utility in the approaches of Deep Functional Maps, which are considered state-of-the-art in non-rigid shape matching. We first justify that under certain conditions, the learned maps, when represented in the spectral domain, are already cycle consistent. Furthermore, we identify the discrepancy that spectrally consistent maps are not necessarily spatially, or point-wise, consistent. In light of this, we present a novel design of unsupervised Deep Functional Maps, which effectively enforces the harmony of learned maps under the spectral and the point-wise representation. By taking advantage of cycle consistency, our framework produces state-of-the-art results in mapping shapes even under significant distortions. Beyond that, by independently estimating maps in both spectral and spatial domains, our method naturally alleviates over-fitting in network training, yielding superior generalization performance and accuracy within an array of challenging tests for both near-isometric and non-isometric datasets. Codes are available at https://github.com/rqhuang88/Spatiallyand-Spectrally-Consistent-Deep-Functional-Maps.
Simplifying Momentum-based Positive-definite Submanifold Optimization with Applications to Deep Learning
Riemannian submanifold optimization with momentum is computationally challenging because, to ensure that the iterates remain on the submanifold, we often need to solve difficult differential equations. Here, we simplify such difficulties for a class of structured symmetric positive-definite matrices with the affine-invariant metric. We do so by proposing a generalized version of the Riemannian normal coordinates that dynamically orthonormalizes the metric and locally converts the problem into an unconstrained problem in the Euclidean space. We use our approach to simplify existing approaches for structured covariances and develop matrix-inverse-free 2^nd-order optimizers for deep learning in low precision settings. Code: https://github.com/yorkerlin/StructuredNGD-DL
Constructing Invariant and Equivariant Operations by Symmetric Tensor Network
Design of neural networks that incorporate symmetry is crucial for geometric deep learning. Central to this effort is the development of invariant and equivariant operations. This works presents a systematic method for constructing valid invariant and equivariant operations. It can handle inputs and outputs in the form of Cartesian tensors with different rank, as well as spherical tensors with different types. In addition, our method features a graphical representation utilizing the symmetric tensor network, which simplifies both the proofs and constructions related to invariant and equivariant functions. We also apply this approach to design the equivariant interaction message for the geometry graph neural network, and equivariant machine learning model to learn the constitutive law of materials.
The Flaw of Averages: Quantifying Uniformity of Performance on Benchmarks
Benchmarks shape scientific conclusions about model capabilities and steer model development. This creates a feedback loop: stronger benchmarks drive better models, and better models demand more discriminative benchmarks. Ensuring benchmark reliability is therefore essential for trustworthy evaluation and meaningful progress. In this work, we study benchmark reliability from a distributional perspective and introduce benchmark harmony, which measures how uniformly a model's performance is distributed across the subdomains of a benchmark. We posit that high harmony is a desirable benchmark property, indicating that the aggregate metric reflects uniform competence across subdomains. Across 19 multiple-choice benchmarks and five model families, we map each benchmark onto a mean-variance plane of harmony computed across models, where high mean and low variance signal more reliable evaluation. Our analysis shows that less harmonious benchmarks can give misleading results, since overall accuracy may be disproportionately influenced by specific subdomains. For instance, ARC-Easy is overwhelmed by questions on Biological Concepts, overshadowing other critical subdomains such as Geography, Physics, Chemistry, and Environmental Science. By recommending that harmony should be reported alongside accuracy, we reframe evaluation from simple performance averages to a more robust, distributionally reliable measurement of performance.
Learning Eigenstructures of Unstructured Data Manifolds
We introduce a novel framework that directly learns a spectral basis for shape and manifold analysis from unstructured data, eliminating the need for traditional operator selection, discretization, and eigensolvers. Grounded in optimal-approximation theory, we train a network to decompose an implicit approximation operator by minimizing the reconstruction error in the learned basis over a chosen distribution of probe functions. For suitable distributions, they can be seen as an approximation of the Laplacian operator and its eigendecomposition, which are fundamental in geometry processing. Furthermore, our method recovers in a unified manner not only the spectral basis, but also the implicit metric's sampling density and the eigenvalues of the underlying operator. Notably, our unsupervised method makes no assumption on the data manifold, such as meshing or manifold dimensionality, allowing it to scale to arbitrary datasets of any dimension. On point clouds lying on surfaces in 3D and high-dimensional image manifolds, our approach yields meaningful spectral bases, that can resemble those of the Laplacian, without explicit construction of an operator. By replacing the traditional operator selection, construction, and eigendecomposition with a learning-based approach, our framework offers a principled, data-driven alternative to conventional pipelines. This opens new possibilities in geometry processing for unstructured data, particularly in high-dimensional spaces.
TrueGL: A Truthful, Reliable, and Unified Engine for Grounded Learning in Full-Stack Search
In the age of open and free information, a concerning trend of reliance on AI is emerging. However, existing AI tools struggle to evaluate the credibility of information and to justify their assessments. Hence, there is a growing need for systems that can help users evaluate the trustworthiness of online information. Although major search engines incorporate AI features, they often lack clear reliability indicators. We present TrueGL, a model that makes trustworthy search results more accessible. The model is a fine-tuned version of IBM's Granite-1B, trained on the custom dataset and integrated into a search engine with a reliability scoring system. We evaluate the system using prompt engineering and assigning each statement a continuous reliability score from 0.1 to 1, then instructing the model to return a textual explanation alongside the score. Each model's predicted scores are measured against real scores using standard evaluation metrics. TrueGL consistently outperforms other small-scale LLMs and rule-based approaches across all experiments on key evaluation metrics, including MAE, RMSE, and R2. The model's high accuracy, broad content coverage, and ease of use make trustworthy information more accessible and help reduce the spread of false or misleading content online. Our code is publicly available at https://github.com/AlgazinovAleksandr/TrueGL, and our model is publicly released at https://huggingface.co/JoydeepC/trueGL.
Visualizing Large-scale and High-dimensional Data
We study the problem of visualizing large-scale and high-dimensional data in a low-dimensional (typically 2D or 3D) space. Much success has been reported recently by techniques that first compute a similarity structure of the data points and then project them into a low-dimensional space with the structure preserved. These two steps suffer from considerable computational costs, preventing the state-of-the-art methods such as the t-SNE from scaling to large-scale and high-dimensional data (e.g., millions of data points and hundreds of dimensions). We propose the LargeVis, a technique that first constructs an accurately approximated K-nearest neighbor graph from the data and then layouts the graph in the low-dimensional space. Comparing to t-SNE, LargeVis significantly reduces the computational cost of the graph construction step and employs a principled probabilistic model for the visualization step, the objective of which can be effectively optimized through asynchronous stochastic gradient descent with a linear time complexity. The whole procedure thus easily scales to millions of high-dimensional data points. Experimental results on real-world data sets demonstrate that the LargeVis outperforms the state-of-the-art methods in both efficiency and effectiveness. The hyper-parameters of LargeVis are also much more stable over different data sets.
Learning on the Manifold: Unlocking Standard Diffusion Transformers with Representation Encoders
Leveraging representation encoders for generative modeling offers a path for efficient, high-fidelity synthesis. However, standard diffusion transformers fail to converge on these representations directly. While recent work attributes this to a capacity bottleneck proposing computationally expensive width scaling of diffusion transformers we demonstrate that the failure is fundamentally geometric. We identify Geometric Interference as the root cause: standard Euclidean flow matching forces probability paths through the low-density interior of the hyperspherical feature space of representation encoders, rather than following the manifold surface. To resolve this, we propose Riemannian Flow Matching with Jacobi Regularization (RJF). By constraining the generative process to the manifold geodesics and correcting for curvature-induced error propagation, RJF enables standard Diffusion Transformer architectures to converge without width scaling. Our method RJF enables the standard DiT-B architecture (131M parameters) to converge effectively, achieving an FID of 3.37 where prior methods fail to converge. Code: https://github.com/amandpkr/RJF
Using Unreliable Pseudo-Labels for Label-Efficient Semantic Segmentation
The crux of label-efficient semantic segmentation is to produce high-quality pseudo-labels to leverage a large amount of unlabeled or weakly labeled data. A common practice is to select the highly confident predictions as the pseudo-ground-truths for each pixel, but it leads to a problem that most pixels may be left unused due to their unreliability. However, we argue that every pixel matters to the model training, even those unreliable and ambiguous pixels. Intuitively, an unreliable prediction may get confused among the top classes, however, it should be confident about the pixel not belonging to the remaining classes. Hence, such a pixel can be convincingly treated as a negative key to those most unlikely categories. Therefore, we develop an effective pipeline to make sufficient use of unlabeled data. Concretely, we separate reliable and unreliable pixels via the entropy of predictions, push each unreliable pixel to a category-wise queue that consists of negative keys, and manage to train the model with all candidate pixels. Considering the training evolution, we adaptively adjust the threshold for the reliable-unreliable partition. Experimental results on various benchmarks and training settings demonstrate the superiority of our approach over the state-of-the-art alternatives.
Predicting Time-Dependent Flow Over Complex Geometries Using Operator Networks
Fast, geometry-generalizing surrogates for unsteady flow remain challenging. We present a time-dependent, geometry-aware Deep Operator Network that predicts velocity fields for moderate-Re flows around parametric and non-parametric shapes. The model encodes geometry via a signed distance field (SDF) trunk and flow history via a CNN branch, trained on 841 high-fidelity simulations. On held-out shapes, it attains sim 5% relative L2 single-step error and up to 1000X speedups over CFD. We provide physics-centric rollout diagnostics, including phase error at probes and divergence norms, to quantify long-horizon fidelity. These reveal accurate near-term transients but error accumulation in fine-scale wakes, most pronounced for sharp-cornered geometries. We analyze failure modes and outline practical mitigations. Code, splits, and scripts are openly released at: https://github.com/baskargroup/TimeDependent-DeepONet to support reproducibility and benchmarking.
Data Representations' Study of Latent Image Manifolds
Deep neural networks have been demonstrated to achieve phenomenal success in many domains, and yet their inner mechanisms are not well understood. In this paper, we investigate the curvature of image manifolds, i.e., the manifold deviation from being flat in its principal directions. We find that state-of-the-art trained convolutional neural networks for image classification have a characteristic curvature profile along layers: an initial steep increase, followed by a long phase of a plateau, and followed by another increase. In contrast, this behavior does not appear in untrained networks in which the curvature flattens. We also show that the curvature gap between the last two layers has a strong correlation with the generalization capability of the network. Moreover, we find that the intrinsic dimension of latent codes is not necessarily indicative of curvature. Finally, we observe that common regularization methods such as mixup yield flatter representations when compared to other methods. Our experiments show consistent results over a variety of deep learning architectures and multiple data sets. Our code is publicly available at https://github.com/azencot-group/CRLM
Towards Saner Deep Image Registration
With recent advances in computing hardware and surges of deep-learning architectures, learning-based deep image registration methods have surpassed their traditional counterparts, in terms of metric performance and inference time. However, these methods focus on improving performance measurements such as Dice, resulting in less attention given to model behaviors that are equally desirable for registrations, especially for medical imaging. This paper investigates these behaviors for popular learning-based deep registrations under a sanity-checking microscope. We find that most existing registrations suffer from low inverse consistency and nondiscrimination of identical pairs due to overly optimized image similarities. To rectify these behaviors, we propose a novel regularization-based sanity-enforcer method that imposes two sanity checks on the deep model to reduce its inverse consistency errors and increase its discriminative power simultaneously. Moreover, we derive a set of theoretical guarantees for our sanity-checked image registration method, with experimental results supporting our theoretical findings and their effectiveness in increasing the sanity of models without sacrificing any performance. Our code and models are available at https://github.com/tuffr5/Saner-deep-registration.
Riemannian generative decoder
Riemannian representation learning typically relies on approximating densities on chosen manifolds. This involves optimizing difficult objectives, potentially harming models. To completely circumvent this issue, we introduce the Riemannian generative decoder which finds manifold-valued maximum likelihood latents with a Riemannian optimizer while training a decoder network. By discarding the encoder, we vastly simplify the manifold constraint compared to current approaches which often only handle few specific manifolds. We validate our approach on three case studies -- a synthetic branching diffusion process, human migrations inferred from mitochondrial DNA, and cells undergoing a cell division cycle -- each showing that learned representations respect the prescribed geometry and capture intrinsic non-Euclidean structure. Our method requires only a decoder, is compatible with existing architectures, and yields interpretable latent spaces aligned with data geometry.
Manifold Preserving Guided Diffusion
Despite the recent advancements, conditional image generation still faces challenges of cost, generalizability, and the need for task-specific training. In this paper, we propose Manifold Preserving Guided Diffusion (MPGD), a training-free conditional generation framework that leverages pretrained diffusion models and off-the-shelf neural networks with minimal additional inference cost for a broad range of tasks. Specifically, we leverage the manifold hypothesis to refine the guided diffusion steps and introduce a shortcut algorithm in the process. We then propose two methods for on-manifold training-free guidance using pre-trained autoencoders and demonstrate that our shortcut inherently preserves the manifolds when applied to latent diffusion models. Our experiments show that MPGD is efficient and effective for solving a variety of conditional generation applications in low-compute settings, and can consistently offer up to 3.8x speed-ups with the same number of diffusion steps while maintaining high sample quality compared to the baselines.
Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels
The crux of semi-supervised semantic segmentation is to assign adequate pseudo-labels to the pixels of unlabeled images. A common practice is to select the highly confident predictions as the pseudo ground-truth, but it leads to a problem that most pixels may be left unused due to their unreliability. We argue that every pixel matters to the model training, even its prediction is ambiguous. Intuitively, an unreliable prediction may get confused among the top classes (i.e., those with the highest probabilities), however, it should be confident about the pixel not belonging to the remaining classes. Hence, such a pixel can be convincingly treated as a negative sample to those most unlikely categories. Based on this insight, we develop an effective pipeline to make sufficient use of unlabeled data. Concretely, we separate reliable and unreliable pixels via the entropy of predictions, push each unreliable pixel to a category-wise queue that consists of negative samples, and manage to train the model with all candidate pixels. Considering the training evolution, where the prediction becomes more and more accurate, we adaptively adjust the threshold for the reliable-unreliable partition. Experimental results on various benchmarks and training settings demonstrate the superiority of our approach over the state-of-the-art alternatives.
Augmented Sliced Wasserstein Distances
While theoretically appealing, the application of the Wasserstein distance to large-scale machine learning problems has been hampered by its prohibitive computational cost. The sliced Wasserstein distance and its variants improve the computational efficiency through the random projection, yet they suffer from low accuracy if the number of projections is not sufficiently large, because the majority of projections result in trivially small values. In this work, we propose a new family of distance metrics, called augmented sliced Wasserstein distances (ASWDs), constructed by first mapping samples to higher-dimensional hypersurfaces parameterized by neural networks. It is derived from a key observation that (random) linear projections of samples residing on these hypersurfaces would translate to much more flexible nonlinear projections in the original sample space, so they can capture complex structures of the data distribution. We show that the hypersurfaces can be optimized by gradient ascent efficiently. We provide the condition under which the ASWD is a valid metric and show that this can be obtained by an injective neural network architecture. Numerical results demonstrate that the ASWD significantly outperforms other Wasserstein variants for both synthetic and real-world problems.
The Effect of Data Dimensionality on Neural Network Prunability
Practitioners prune neural networks for efficiency gains and generalization improvements, but few scrutinize the factors determining the prunability of a neural network the maximum fraction of weights that pruning can remove without compromising the model's test accuracy. In this work, we study the properties of input data that may contribute to the prunability of a neural network. For high dimensional input data such as images, text, and audio, the manifold hypothesis suggests that these high dimensional inputs approximately lie on or near a significantly lower dimensional manifold. Prior work demonstrates that the underlying low dimensional structure of the input data may affect the sample efficiency of learning. In this paper, we investigate whether the low dimensional structure of the input data affects the prunability of a neural network.
StableNormal: Reducing Diffusion Variance for Stable and Sharp Normal
This work addresses the challenge of high-quality surface normal estimation from monocular colored inputs (i.e., images and videos), a field which has recently been revolutionized by repurposing diffusion priors. However, previous attempts still struggle with stochastic inference, conflicting with the deterministic nature of the Image2Normal task, and costly ensembling step, which slows down the estimation process. Our method, StableNormal, mitigates the stochasticity of the diffusion process by reducing inference variance, thus producing "Stable-and-Sharp" normal estimates without any additional ensembling process. StableNormal works robustly under challenging imaging conditions, such as extreme lighting, blurring, and low quality. It is also robust against transparent and reflective surfaces, as well as cluttered scenes with numerous objects. Specifically, StableNormal employs a coarse-to-fine strategy, which starts with a one-step normal estimator (YOSO) to derive an initial normal guess, that is relatively coarse but reliable, then followed by a semantic-guided refinement process (SG-DRN) that refines the normals to recover geometric details. The effectiveness of StableNormal is demonstrated through competitive performance in standard datasets such as DIODE-indoor, iBims, ScannetV2 and NYUv2, and also in various downstream tasks, such as surface reconstruction and normal enhancement. These results evidence that StableNormal retains both the "stability" and "sharpness" for accurate normal estimation. StableNormal represents a baby attempt to repurpose diffusion priors for deterministic estimation. To democratize this, code and models have been publicly available in hf.co/Stable-X
Learning Efficient Coding of Natural Images with Maximum Manifold Capacity Representations
The efficient coding hypothesis proposes that the response properties of sensory systems are adapted to the statistics of their inputs such that they capture maximal information about the environment, subject to biological constraints. While elegant, information theoretic properties are notoriously difficult to measure in practical settings or to employ as objective functions in optimization. This difficulty has necessitated that computational models designed to test the hypothesis employ several different information metrics ranging from approximations and lower bounds to proxy measures like reconstruction error. Recent theoretical advances have characterized a novel and ecologically relevant efficiency metric, the manifold capacity, which is the number of object categories that may be represented in a linearly separable fashion. However, calculating manifold capacity is a computationally intensive iterative procedure that until now has precluded its use as an objective. Here we outline the simplifying assumptions that allow manifold capacity to be optimized directly, yielding Maximum Manifold Capacity Representations (MMCR). The resulting method is closely related to and inspired by advances in the field of self supervised learning (SSL), and we demonstrate that MMCRs are competitive with state of the art results on standard SSL benchmarks. Empirical analyses reveal differences between MMCRs and representations learned by other SSL frameworks, and suggest a mechanism by which manifold compression gives rise to class separability. Finally we evaluate a set of SSL methods on a suite of neural predictivity benchmarks, and find MMCRs are higly competitive as models of the ventral stream.
On the Stability of Expressive Positional Encodings for Graph Neural Networks
Designing effective positional encodings for graphs is key to building powerful graph transformers and enhancing message-passing graph neural networks. Although widespread, using Laplacian eigenvectors as positional encodings faces two fundamental challenges: (1) Non-uniqueness: there are many different eigendecompositions of the same Laplacian, and (2) Instability: small perturbations to the Laplacian could result in completely different eigenspaces, leading to unpredictable changes in positional encoding. Despite many attempts to address non-uniqueness, most methods overlook stability, leading to poor generalization on unseen graph structures. We identify the cause of instability to be a "hard partition" of eigenspaces. Hence, we introduce Stable and Expressive Positional Encodings (SPE), an architecture for processing eigenvectors that uses eigenvalues to "softly partition" eigenspaces. SPE is the first architecture that is (1) provably stable, and (2) universally expressive for basis invariant functions whilst respecting all symmetries of eigenvectors. Besides guaranteed stability, we prove that SPE is at least as expressive as existing methods, and highly capable of counting graph structures. Finally, we evaluate the effectiveness of our method on molecular property prediction, and out-of-distribution generalization tasks, finding improved generalization compared to existing positional encoding methods.
Temporal Alignment Guidance: On-Manifold Sampling in Diffusion Models
Diffusion models have achieved remarkable success as generative models. However, even a well-trained model can accumulate errors throughout the generation process. These errors become particularly problematic when arbitrary guidance is applied to steer samples toward desired properties, which often breaks sample fidelity. In this paper, we propose a general solution to address the off-manifold phenomenon observed in diffusion models. Our approach leverages a time predictor to estimate deviations from the desired data manifold at each timestep, identifying that a larger time gap is associated with reduced generation quality. We then design a novel guidance mechanism, `Temporal Alignment Guidance' (TAG), attracting the samples back to the desired manifold at every timestep during generation. Through extensive experiments, we demonstrate that TAG consistently produces samples closely aligned with the desired manifold at each timestep, leading to significant improvements in generation quality across various downstream tasks.
Topological Autoencoders
We propose a novel approach for preserving topological structures of the input space in latent representations of autoencoders. Using persistent homology, a technique from topological data analysis, we calculate topological signatures of both the input and latent space to derive a topological loss term. Under weak theoretical assumptions, we construct this loss in a differentiable manner, such that the encoding learns to retain multi-scale connectivity information. We show that our approach is theoretically well-founded and that it exhibits favourable latent representations on a synthetic manifold as well as on real-world image data sets, while preserving low reconstruction errors.
Representation Tradeoffs for Hyperbolic Embeddings
Hyperbolic embeddings offer excellent quality with few dimensions when embedding hierarchical data structures like synonym or type hierarchies. Given a tree, we give a combinatorial construction that embeds the tree in hyperbolic space with arbitrarily low distortion without using optimization. On WordNet, our combinatorial embedding obtains a mean-average-precision of 0.989 with only two dimensions, while Nickel et al.'s recent construction obtains 0.87 using 200 dimensions. We provide upper and lower bounds that allow us to characterize the precision-dimensionality tradeoff inherent in any hyperbolic embedding. To embed general metric spaces, we propose a hyperbolic generalization of multidimensional scaling (h-MDS). We show how to perform exact recovery of hyperbolic points from distances, provide a perturbation analysis, and give a recovery result that allows us to reduce dimensionality. The h-MDS approach offers consistently low distortion even with few dimensions across several datasets. Finally, we extract lessons from the algorithms and theory above to design a PyTorch-based implementation that can handle incomplete information and is scalable.
Lie Group Decompositions for Equivariant Neural Networks
Invariance and equivariance to geometrical transformations have proven to be very useful inductive biases when training (convolutional) neural network models, especially in the low-data regime. Much work has focused on the case where the symmetry group employed is compact or abelian, or both. Recent work has explored enlarging the class of transformations used to the case of Lie groups, principally through the use of their Lie algebra, as well as the group exponential and logarithm maps. The applicability of such methods to larger transformation groups is limited by the fact that depending on the group of interest G, the exponential map may not be surjective. Further limitations are encountered when G is neither compact nor abelian. Using the structure and geometry of Lie groups and their homogeneous spaces, we present a framework by which it is possible to work with such groups primarily focusing on the Lie groups G = GL^{+}(n, R) and G = SL(n, R), as well as their representation as affine transformations R^{n} rtimes G. Invariant integration as well as a global parametrization is realized by decomposing the `larger` groups into subgroups and submanifolds which can be handled individually. Under this framework, we show how convolution kernels can be parametrized to build models equivariant with respect to affine transformations. We evaluate the robustness and out-of-distribution generalisation capability of our model on the standard affine-invariant benchmark classification task, where we outperform all previous equivariant models as well as all Capsule Network proposals.
State Representation Learning Using an Unbalanced Atlas
The manifold hypothesis posits that high-dimensional data often lies on a lower-dimensional manifold and that utilizing this manifold as the target space yields more efficient representations. While numerous traditional manifold-based techniques exist for dimensionality reduction, their application in self-supervised learning has witnessed slow progress. The recent MSimCLR method combines manifold encoding with SimCLR but requires extremely low target encoding dimensions to outperform SimCLR, limiting its applicability. This paper introduces a novel learning paradigm using an unbalanced atlas (UA), capable of surpassing state-of-the-art self-supervised learning approaches. We investigated and engineered the DeepInfomax with an unbalanced atlas (DIM-UA) method by adapting the Spatiotemporal DeepInfomax (ST-DIM) framework to align with our proposed UA paradigm. The efficacy of DIM-UA is demonstrated through training and evaluation on the Atari Annotated RAM Interface (AtariARI) benchmark, a modified version of the Atari 2600 framework that produces annotated image samples for representation learning. The UA paradigm improves existing algorithms significantly as the number of target encoding dimensions grows. For instance, the mean F1 score averaged over categories of DIM-UA is ~75% compared to ~70% of ST-DIM when using 16384 hidden units.
REMA: A Unified Reasoning Manifold Framework for Interpreting Large Language Model
Understanding how Large Language Models (LLMs) perform complex reasoning and their failure mechanisms is a challenge in interpretability research. To provide a measurable geometric analysis perspective, we define the concept of the Reasoning Manifold, a latent low-dimensional geometric structure formed by the internal representations corresponding to all correctly reasoned generations. This structure can be conceptualized as the embodiment of the effective thinking paths that the model has learned to successfully solve a given task. Based on this concept, we build REMA, a framework that explains the origins of failures by quantitatively comparing the spatial relationships of internal model representations corresponding to both erroneous and correct reasoning samples. Specifically, REMA first quantifies the geometric deviation of each erroneous representation by calculating its k-nearest neighbors distance to the approximated manifold formed by correct representations, thereby providing a unified failure signal. It then localizes the divergence points where these deviations first become significant by tracking this deviation metric across the model's layers and comparing it against a baseline of internal fluctuations from correct representations, thus identifying where the reasoning chain begins to go off-track. Our extensive experiments on diverse language and multimodal models and tasks demonstrate the low-dimensional nature of the reasoning manifold and the high separability between erroneous and correct reasoning representations. The results also validate the effectiveness of the REMA framework in analyzing the origins of reasoning failures. This research connects abstract reasoning failures to measurable geometric deviations in representations, providing new avenues for in-depth understanding and diagnosis of the internal computational processes of black-box models.
Distributional Autoencoders Know the Score
The Distributional Principal Autoencoder (DPA) combines distributionally correct reconstruction with principal-component-like interpretability of the encodings. In this work, we provide exact theoretical guarantees on both fronts. First, we derive a closed-form relation linking each optimal level-set geometry to the data-distribution score. This result explains DPA's empirical ability to disentangle factors of variation of the data, as well as allows the score to be recovered directly from samples. When the data follows the Boltzmann distribution, we demonstrate that this relation yields an approximation of the minimum free-energy path for the Mueller-Brown potential in a single fit. Second, we prove that if the data lies on a manifold that can be approximated by the encoder, latent components beyond the manifold dimension are conditionally independent of the data distribution - carrying no additional information - and thus reveal the intrinsic dimension. Together, these results show that a single model can learn the data distribution and its intrinsic dimension with exact guarantees simultaneously, unifying two longstanding goals of unsupervised learning.
Transferable Foundation Models for Geometric Tasks on Point Cloud Representations: Geometric Neural Operators
We introduce methods for obtaining pretrained Geometric Neural Operators (GNPs) that can serve as basal foundation models for use in obtaining geometric features. These can be used within data processing pipelines for machine learning tasks and numerical methods. We show how our GNPs can be trained to learn robust latent representations for the differential geometry of point-clouds to provide estimates of metric, curvature, and other shape-related features. We demonstrate how our pre-trained GNPs can be used (i) to estimate the geometric properties of surfaces of arbitrary shape and topologies with robustness in the presence of noise, (ii) to approximate solutions of geometric partial differential equations (PDEs) on manifolds, and (iii) to solve equations for shape deformations such as curvature driven flows. We release codes and weights for using GNPs in the package geo_neural_op. This allows for incorporating our pre-trained GNPs as components for reuse within existing and new data processing pipelines. The GNPs also can be used as part of numerical solvers involving geometry or as part of methods for performing inference and other geometric tasks.
Robust Learning with Jacobian Regularization
Design of reliable systems must guarantee stability against input perturbations. In machine learning, such guarantee entails preventing overfitting and ensuring robustness of models against corruption of input data. In order to maximize stability, we analyze and develop a computationally efficient implementation of Jacobian regularization that increases classification margins of neural networks. The stabilizing effect of the Jacobian regularizer leads to significant improvements in robustness, as measured against both random and adversarial input perturbations, without severely degrading generalization properties on clean data.
On κ-solutions and canonical neighborhoods in 4d Ricci flow
We introduce a classification conjecture for kappa-solutions in 4d Ricci flow. Our conjectured list includes known examples from the literature, but also a new 1-parameter family of Z_2^2times O_3-symmetric bubble-sheet ovals that we construct. We observe that some special cases of the conjecture follow from recent results in the literature. We also introduce a stronger variant of the classification conjecture for ancient asymptotically cylindrical 4d Ricci flows, which does not assume smoothness and nonnegative curvature operator a priori. Assuming this stronger variant holds true, we establish a canonical neighborhood theorem for 4d Ricci flow through cylindrical singularities, which shares some elements in common with Perelman's canonical neighborhood theorem for 3d Ricci flow as well as the mean-convex neighborhood theorem for mean curvature flow through neck-singularities. Finally, we argue that quotient-necks lead to new phenomena, and sketch an example of non-uniqueness for 4d Ricci flow through singularities.
Positive Geometries and Canonical Forms
Recent years have seen a surprising connection between the physics of scattering amplitudes and a class of mathematical objects--the positive Grassmannian, positive loop Grassmannians, tree and loop Amplituhedra--which have been loosely referred to as "positive geometries". The connection between the geometry and physics is provided by a unique differential form canonically determined by the property of having logarithmic singularities (only) on all the boundaries of the space, with residues on each boundary given by the canonical form on that boundary. In this paper we initiate an exploration of "positive geometries" and "canonical forms" as objects of study in their own right in a more general mathematical setting. We give a precise definition of positive geometries and canonical forms, introduce general methods for finding forms for more complicated positive geometries from simpler ones, and present numerous examples of positive geometries in projective spaces, Grassmannians, and toric, cluster and flag varieties. We also illustrate a number of strategies for computing canonical forms which yield interesting representations for the forms associated with wide classes of positive geometries, ranging from the simplest Amplituhedra to new expressions for the volume of arbitrary convex polytopes.
Random Walk on Pixel Manifolds for Anomaly Segmentation of Complex Driving Scenes
In anomaly segmentation for complex driving scenes, state-of-the-art approaches utilize anomaly scoring functions to calculate anomaly scores. For these functions, accurately predicting the logits of inlier classes for each pixel is crucial for precisely inferring the anomaly score. However, in real-world driving scenarios, the diversity of scenes often results in distorted manifolds of pixel embeddings in the space. This effect is not conducive to directly using the pixel embeddings for the logit prediction during inference, a concern overlooked by existing methods. To address this problem, we propose a novel method called Random Walk on Pixel Manifolds (RWPM). RWPM utilizes random walks to reveal the intrinsic relationships among pixels to refine the pixel embeddings. The refined pixel embeddings alleviate the distortion of manifolds, improving the accuracy of anomaly scores. Our extensive experiments show that RWPM consistently improve the performance of the existing anomaly segmentation methods and achieve the best results. Code is available at: https://github.com/ZelongZeng/RWPM.
Sliced-Wasserstein on Symmetric Positive Definite Matrices for M/EEG Signals
When dealing with electro or magnetoencephalography records, many supervised prediction tasks are solved by working with covariance matrices to summarize the signals. Learning with these matrices requires using Riemanian geometry to account for their structure. In this paper, we propose a new method to deal with distributions of covariance matrices and demonstrate its computational efficiency on M/EEG multivariate time series. More specifically, we define a Sliced-Wasserstein distance between measures of symmetric positive definite matrices that comes with strong theoretical guarantees. Then, we take advantage of its properties and kernel methods to apply this distance to brain-age prediction from MEG data and compare it to state-of-the-art algorithms based on Riemannian geometry. Finally, we show that it is an efficient surrogate to the Wasserstein distance in domain adaptation for Brain Computer Interface applications.
Simplifying Textured Triangle Meshes in the Wild
This paper introduces a method for simplifying textured surface triangle meshes in the wild while maintaining high visual quality. While previous methods achieve excellent results on manifold meshes by using the quadric error metric, they struggle to produce high-quality outputs for meshes in the wild, which typically contain non-manifold elements and multiple connected components. In this work, we propose a method for simplifying these wild textured triangle meshes. We formulate mesh simplification as a problem of decimating simplicial 2-complexes to handle multiple non-manifold mesh components collectively. Building on the success of quadric error simplification, we iteratively collapse 1-simplices (vertex pairs). Our approach employs a modified quadric error that converges to the original quadric error metric for watertight manifold meshes, while significantly improving the results on wild meshes. For textures, instead of following existing strategies to preserve UVs, we adopt a novel perspective which focuses on computing mesh correspondences throughout the decimation, independent of the UV layout. This combination yields a textured mesh simplification system that is capable of handling arbitrary triangle meshes, achieving to high-quality results on wild inputs without sacrificing the excellent performance on clean inputs. Our method guarantees to avoid common problems in textured mesh simplification, including the prevalent problem of texture bleeding. We extensively evaluate our method on multiple datasets, showing improvements over prior techniques through qualitative, quantitative, and user study evaluations.
Homoclinic Floer homology via direct limits
Let (M omega) be a two dimensional symplectic manifold, phi: M to M a symplectomorphism with hyperbolic fixed point x and transversely intersecting stable and unstable manifolds W^s(phi, x) cap W^u(phi, x)=:H(phi, x). The intersection points are called homoclinic points, and the stable and unstable manifold are in this situation Lagrangian submanifolds. For this Lagrangian intersection problem with its infinite number of intersection points and wild oscillation behavior, we first define a Floer homology generated by finite sets of so-called contractible homoclinic points. This generalizes very significantly the Floer homologies generated by (semi)primary points defined by us in earlier works. Nevertheless these Floer homologies only consider quite `local' aspects of W^s(phi, x) cap W^u(phi, x) since their generator sets are finite, but the number of all contractible homoclinic points is infinite. To overcome this issue, we construct a direct limit of these `local' homoclinic Floer homologies over suitable index sets. These direct limits thus accumulate the information gathered by the finitely generated local' homoclinic Floer homologies.
Best Proximity Point Results for Perimetric Contractions
This paper has two aims, first one is to introduce special kind of proximal contractions guaranteeing a finite number of best proximity points, and second one is to derive best proximity point results for perimetric contractions. To meet these two aims, we introduce two new proximal contractions: perimetric proximal contractions of the first and the second kind, and derive best proximity point results for these mappings. We establish that for these particular mappings, best proximity points are not necessarily unique; however, we provide an upper bound, proving that at most two such points can exist. To establish the validity of our results, we provide illustrative examples demonstrating that these newly defined mappings can possess unique or exactly two best proximity points.
Theoretical and Numerical Analysis of 3D Reconstruction Using Point and Line Incidences
We study the joint image of lines incident to points, meaning the set of image tuples obtained from fixed cameras observing a varying 3D point-line incidence. We prove a formula for the number of complex critical points of the triangulation problem that aims to compute a 3D point-line incidence from noisy images. Our formula works for an arbitrary number of images and measures the intrinsic difficulty of this triangulation. Additionally, we conduct numerical experiments using homotopy continuation methods, comparing different approaches of triangulation of such incidences. In our setup, exploiting the incidence relations gives both a faster point reconstruction and in three views more accurate.
Conformal Risk Control for Pulmonary Nodule Detection
Quantitative tools are increasingly appealing for decision support in healthcare, driven by the growing capabilities of advanced AI systems. However, understanding the predictive uncertainties surrounding a tool's output is crucial for decision-makers to ensure reliable and transparent decisions. In this paper, we present a case study on pulmonary nodule detection for lung cancer screening, enhancing an advanced detection model with an uncertainty quantification technique called conformal risk control (CRC). We demonstrate that prediction sets with conformal guarantees are attractive measures of predictive uncertainty in the safety-critical healthcare domain, allowing end-users to achieve arbitrary validity by trading off false positives and providing formal statistical guarantees on model performance. Among ground-truth nodules annotated by at least three radiologists, our model achieves a sensitivity that is competitive with that generally achieved by individual radiologists, with a slight increase in false positives. Furthermore, we illustrate the risks of using off-the-shelve prediction models when faced with ontological uncertainty, such as when radiologists disagree on what constitutes the ground truth on pulmonary nodules.
Sora Generates Videos with Stunning Geometrical Consistency
The recently developed Sora model [1] has exhibited remarkable capabilities in video generation, sparking intense discussions regarding its ability to simulate real-world phenomena. Despite its growing popularity, there is a lack of established metrics to evaluate its fidelity to real-world physics quantitatively. In this paper, we introduce a new benchmark that assesses the quality of the generated videos based on their adherence to real-world physics principles. We employ a method that transforms the generated videos into 3D models, leveraging the premise that the accuracy of 3D reconstruction is heavily contingent on the video quality. From the perspective of 3D reconstruction, we use the fidelity of the geometric constraints satisfied by the constructed 3D models as a proxy to gauge the extent to which the generated videos conform to real-world physics rules. Project page: https://sora-geometrical-consistency.github.io/
Unsupervised Manifold Linearizing and Clustering
We consider the problem of simultaneously clustering and learning a linear representation of data lying close to a union of low-dimensional manifolds, a fundamental task in machine learning and computer vision. When the manifolds are assumed to be linear subspaces, this reduces to the classical problem of subspace clustering, which has been studied extensively over the past two decades. Unfortunately, many real-world datasets such as natural images can not be well approximated by linear subspaces. On the other hand, numerous works have attempted to learn an appropriate transformation of the data, such that data is mapped from a union of general non-linear manifolds to a union of linear subspaces (with points from the same manifold being mapped to the same subspace). However, many existing works have limitations such as assuming knowledge of the membership of samples to clusters, requiring high sampling density, or being shown theoretically to learn trivial representations. In this paper, we propose to optimize the Maximal Coding Rate Reduction metric with respect to both the data representation and a novel doubly stochastic cluster membership, inspired by state-of-the-art subspace clustering results. We give a parameterization of such a representation and membership, allowing efficient mini-batching and one-shot initialization. Experiments on CIFAR-10, -20, -100, and TinyImageNet-200 datasets show that the proposed method is much more accurate and scalable than state-of-the-art deep clustering methods, and further learns a latent linear representation of the data.
TopoReformer: Mitigating Adversarial Attacks Using Topological Purification in OCR Models
Adversarially perturbed images of text can cause sophisticated OCR systems to produce misleading or incorrect transcriptions from seemingly invisible changes to humans. Some of these perturbations even survive physical capture, posing security risks to high-stakes applications such as document processing, license plate recognition, and automated compliance systems. Existing defenses, such as adversarial training, input preprocessing, or post-recognition correction, are often model-specific, computationally expensive, and affect performance on unperturbed inputs while remaining vulnerable to unseen or adaptive attacks. To address these challenges, TopoReformer is introduced, a model-agnostic reformation pipeline that mitigates adversarial perturbations while preserving the structural integrity of text images. Topology studies properties of shapes and spaces that remain unchanged under continuous deformations, focusing on global structures such as connectivity, holes, and loops rather than exact distance. Leveraging these topological features, TopoReformer employs a topological autoencoder to enforce manifold-level consistency in latent space and improve robustness without explicit gradient regularization. The proposed method is benchmarked on EMNIST, MNIST, against standard adversarial attacks (FGSM, PGD, Carlini-Wagner), adaptive attacks (EOT, BDPA), and an OCR-specific watermark attack (FAWA).
