Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeRelative Representations of Latent Spaces enable Efficient Semantic Channel Equalization
In multi-user semantic communication, language mismatche poses a significant challenge when independently trained agents interact. We present a novel semantic equalization algorithm that enables communication between agents with different languages without additional retraining. Our algorithm is based on relative representations, a framework that enables different agents employing different neural network models to have unified representation. It proceeds by projecting the latent vectors of different models into a common space defined relative to a set of data samples called anchors, whose number equals the dimension of the resulting space. A communication between different agents translates to a communication of semantic symbols sampled from this relative space. This approach, in addition to aligning the semantic representations of different agents, allows compressing the amount of information being exchanged, by appropriately selecting the number of anchors. Eventually, we introduce a novel anchor selection strategy, which advantageously determines prototypical anchors, capturing the most relevant information for the downstream task. Our numerical results show the effectiveness of the proposed approach allowing seamless communication between agents with radically different models, including differences in terms of neural network architecture and datasets used for initial training.
Relative representations enable zero-shot latent space communication
Neural networks embed the geometric structure of a data manifold lying in a high-dimensional space into latent representations. Ideally, the distribution of the data points in the latent space should depend only on the task, the data, the loss, and other architecture-specific constraints. However, factors such as the random weights initialization, training hyperparameters, or other sources of randomness in the training phase may induce incoherent latent spaces that hinder any form of reuse. Nevertheless, we empirically observe that, under the same data and modeling choices, the angles between the encodings within distinct latent spaces do not change. In this work, we propose the latent similarity between each sample and a fixed set of anchors as an alternative data representation, demonstrating that it can enforce the desired invariances without any additional training. We show how neural architectures can leverage these relative representations to guarantee, in practice, invariance to latent isometries and rescalings, effectively enabling latent space communication: from zero-shot model stitching to latent space comparison between diverse settings. We extensively validate the generalization capability of our approach on different datasets, spanning various modalities (images, text, graphs), tasks (e.g., classification, reconstruction) and architectures (e.g., CNNs, GCNs, transformers).
Mapping distributional to model-theoretic semantic spaces: a baseline
Word embeddings have been shown to be useful across state-of-the-art systems in many natural language processing tasks, ranging from question answering systems to dependency parsing. (Herbelot and Vecchi, 2015) explored word embeddings and their utility for modeling language semantics. In particular, they presented an approach to automatically map a standard distributional semantic space onto a set-theoretic model using partial least squares regression. We show in this paper that a simple baseline achieves a +51% relative improvement compared to their model on one of the two datasets they used, and yields competitive results on the second dataset.
Latent Space Translation via Inverse Relative Projection
The emergence of similar representations between independently trained neural models has sparked significant interest in the representation learning community, leading to the development of various methods to obtain communication between latent spaces. "Latent space communication" can be achieved in two ways: i) by independently mapping the original spaces to a shared or relative one; ii) by directly estimating a transformation from a source latent space to a target one. In this work, we combine the two into a novel method to obtain latent space translation through the relative space. By formalizing the invertibility of angle-preserving relative representations and assuming the scale invariance of decoder modules in neural models, we can effectively use the relative space as an intermediary, independently projecting onto and from other semantically similar spaces. Extensive experiments over various architectures and datasets validate our scale invariance assumption and demonstrate the high accuracy of our method in latent space translation. We also apply our method to zero-shot stitching between arbitrary pre-trained text and image encoders and their classifiers, even across modalities. Our method has significant potential for facilitating the reuse of models in a practical manner via compositionality.
SSM Meets Video Diffusion Models: Efficient Video Generation with Structured State Spaces
Given the remarkable achievements in image generation through diffusion models, the research community has shown increasing interest in extending these models to video generation. Recent diffusion models for video generation have predominantly utilized attention layers to extract temporal features. However, attention layers are limited by their memory consumption, which increases quadratically with the length of the sequence. This limitation presents significant challenges when attempting to generate longer video sequences using diffusion models. To overcome this challenge, we propose leveraging state-space models (SSMs). SSMs have recently gained attention as viable alternatives due to their linear memory consumption relative to sequence length. In the experiments, we first evaluate our SSM-based model with UCF101, a standard benchmark of video generation. In addition, to investigate the potential of SSMs for longer video generation, we perform an experiment using the MineRL Navigate dataset, varying the number of frames to 64 and 150. In these settings, our SSM-based model can considerably save memory consumption for longer sequences, while maintaining competitive FVD scores to the attention-based models. Our codes are available at https://github.com/shim0114/SSM-Meets-Video-Diffusion-Models.
Properties of several metric spaces of fuzzy sets
This paper discusses the properties the spaces of fuzzy sets in a metric space equipped with the endograph metric and the sendograph metric, respectively. We first give some relations among the endograph metric, the sendograph metric and the Gamma-convergence, and then investigate the level characterizations of the endograph metric and the Gamma-convergence. By using the above results, we give some relations among the endograph metric, the sendograph metric, the supremum metric and the d_p^* metric, pgeq 1. On the basis of the above results, we present the characterizations of total boundedness, relative compactness and compactness in the space of fuzzy sets whose alpha-cuts are compact when alpha>0 equipped with the endograph metric, and in the space of compact support fuzzy sets equipped with the sendograph metric, respectively. Furthermore, we give completions of these metric spaces, respectively.
Effectively Modeling Time Series with Simple Discrete State Spaces
Time series modeling is a well-established problem, which often requires that methods (1) expressively represent complicated dependencies, (2) forecast long horizons, and (3) efficiently train over long sequences. State-space models (SSMs) are classical models for time series, and prior works combine SSMs with deep learning layers for efficient sequence modeling. However, we find fundamental limitations with these prior approaches, proving their SSM representations cannot express autoregressive time series processes. We thus introduce SpaceTime, a new state-space time series architecture that improves all three criteria. For expressivity, we propose a new SSM parameterization based on the companion matrix -- a canonical representation for discrete-time processes -- which enables SpaceTime's SSM layers to learn desirable autoregressive processes. For long horizon forecasting, we introduce a "closed-loop" variation of the companion SSM, which enables SpaceTime to predict many future time-steps by generating its own layer-wise inputs. For efficient training and inference, we introduce an algorithm that reduces the memory and compute of a forward pass with the companion matrix. With sequence length ell and state-space size d, we go from O(d ell) na\"ively to O(d + ell). In experiments, our contributions lead to state-of-the-art results on extensive and diverse benchmarks, with best or second-best AUROC on 6 / 7 ECG and speech time series classification, and best MSE on 14 / 16 Informer forecasting tasks. Furthermore, we find SpaceTime (1) fits AR(p) processes that prior deep SSMs fail on, (2) forecasts notably more accurately on longer horizons than prior state-of-the-art, and (3) speeds up training on real-world ETTh1 data by 73% and 80% relative wall-clock time over Transformers and LSTMs.
Off-Policy Evaluation for Large Action Spaces via Conjunct Effect Modeling
We study off-policy evaluation (OPE) of contextual bandit policies for large discrete action spaces where conventional importance-weighting approaches suffer from excessive variance. To circumvent this variance issue, we propose a new estimator, called OffCEM, that is based on the conjunct effect model (CEM), a novel decomposition of the causal effect into a cluster effect and a residual effect. OffCEM applies importance weighting only to action clusters and addresses the residual causal effect through model-based reward estimation. We show that the proposed estimator is unbiased under a new condition, called local correctness, which only requires that the residual-effect model preserves the relative expected reward differences of the actions within each cluster. To best leverage the CEM and local correctness, we also propose a new two-step procedure for performing model-based estimation that minimizes bias in the first step and variance in the second step. We find that the resulting OffCEM estimator substantially improves bias and variance compared to a range of conventional estimators. Experiments demonstrate that OffCEM provides substantial improvements in OPE especially in the presence of many actions.
Reliable Measures of Spread in High Dimensional Latent Spaces
Understanding geometric properties of natural language processing models' latent spaces allows the manipulation of these properties for improved performance on downstream tasks. One such property is the amount of data spread in a model's latent space, or how fully the available latent space is being used. In this work, we define data spread and demonstrate that the commonly used measures of data spread, Average Cosine Similarity and a partition function min/max ratio I(V), do not provide reliable metrics to compare the use of latent space across models. We propose and examine eight alternative measures of data spread, all but one of which improve over these current metrics when applied to seven synthetic data distributions. Of our proposed measures, we recommend one principal component-based measure and one entropy-based measure that provide reliable, relative measures of spread and can be used to compare models of different sizes and dimensionalities.
ArenaRL: Scaling RL for Open-Ended Agents via Tournament-based Relative Ranking
Reinforcement learning has substantially improved the performance of LLM agents on tasks with verifiable outcomes, but it still struggles on open-ended agent tasks with vast solution spaces (e.g., complex travel planning). Due to the absence of objective ground-truth for these tasks, current RL algorithms largely rely on reward models that assign scalar scores to individual responses. We contend that such pointwise scoring suffers from an inherent discrimination collapse: the reward model struggles to distinguish subtle advantages among different trajectories, resulting in scores within a group being compressed into a narrow range. Consequently, the effective reward signal becomes dominated by noise from the reward model, leading to optimization stagnation. To address this, we propose ArenaRL, a reinforcement learning paradigm that shifts from pointwise scalar scoring to intra-group relative ranking. ArenaRL introduces a process-aware pairwise evaluation mechanism, employing multi-level rubrics to assign fine-grained relative scores to trajectories. Additionally, we construct an intra-group adversarial arena and devise a tournament-based ranking scheme to obtain stable advantage signals. Empirical results confirm that the built seeded single-elimination scheme achieves nearly equivalent advantage estimation accuracy to full pairwise comparisons with O(N^2) complexity, while operating with only O(N) complexity, striking an optimal balance between efficiency and precision. Furthermore, to address the lack of full-cycle benchmarks for open-ended agents, we build Open-Travel and Open-DeepResearch, two high-quality benchmarks featuring a comprehensive pipeline covering SFT, RL training, and multi-dimensional evaluation. Extensive experiments show that ArenaRL substantially outperforms standard RL baselines, enabling LLM agents to generate more robust solutions for complex real-world tasks.
Who Said Neural Networks Aren't Linear?
Neural networks are famously nonlinear. However, linearity is defined relative to a pair of vector spaces, f:XtoY. Is it possible to identify a pair of non-standard vector spaces for which a conventionally nonlinear function is, in fact, linear? This paper introduces a method that makes such vector spaces explicit by construction. We find that if we sandwich a linear operator A between two invertible neural networks, f(x)=g_y^{-1}(A g_x(x)), then the corresponding vector spaces X and Y are induced by newly defined addition and scaling actions derived from g_x and g_y. We term this kind of architecture a Linearizer. This framework makes the entire arsenal of linear algebra, including SVD, pseudo-inverse, orthogonal projection and more, applicable to nonlinear mappings. Furthermore, we show that the composition of two Linearizers that share a neural network is also a Linearizer. We leverage this property and demonstrate that training diffusion models using our architecture makes the hundreds of sampling steps collapse into a single step. We further utilize our framework to enforce idempotency (i.e. f(f(x))=f(x)) on networks leading to a globally projective generative model and to demonstrate modular style transfer.
NAS evaluation is frustratingly hard
Neural Architecture Search (NAS) is an exciting new field which promises to be as much as a game-changer as Convolutional Neural Networks were in 2012. Despite many great works leading to substantial improvements on a variety of tasks, comparison between different methods is still very much an open issue. While most algorithms are tested on the same datasets, there is no shared experimental protocol followed by all. As such, and due to the under-use of ablation studies, there is a lack of clarity regarding why certain methods are more effective than others. Our first contribution is a benchmark of 8 NAS methods on 5 datasets. To overcome the hurdle of comparing methods with different search spaces, we propose using a method's relative improvement over the randomly sampled average architecture, which effectively removes advantages arising from expertly engineered search spaces or training protocols. Surprisingly, we find that many NAS techniques struggle to significantly beat the average architecture baseline. We perform further experiments with the commonly used DARTS search space in order to understand the contribution of each component in the NAS pipeline. These experiments highlight that: (i) the use of tricks in the evaluation protocol has a predominant impact on the reported performance of architectures; (ii) the cell-based search space has a very narrow accuracy range, such that the seed has a considerable impact on architecture rankings; (iii) the hand-designed macro-structure (cells) is more important than the searched micro-structure (operations); and (iv) the depth-gap is a real phenomenon, evidenced by the change in rankings between 8 and 20 cell architectures. To conclude, we suggest best practices, that we hope will prove useful for the community and help mitigate current NAS pitfalls. The code used is available at https://github.com/antoyang/NAS-Benchmark.
Open3DVQA: A Benchmark for Comprehensive Spatial Reasoning with Multimodal Large Language Model in Open Space
Spatial reasoning is a fundamental capability of embodied agents and has garnered widespread attention in the field of multimodal large language models (MLLMs). In this work, we propose a novel benchmark, Open3DVQA, to comprehensively evaluate the spatial reasoning capacities of current state-of-the-art (SOTA) foundation models in open 3D space. Open3DVQA consists of 9k VQA samples, collected using an efficient semi-automated tool in a high-fidelity urban simulator. We evaluate several SOTA MLLMs across various aspects of spatial reasoning, such as relative and absolute spatial relationships, situational reasoning, and object-centric spatial attributes. Our results reveal that: 1) MLLMs perform better at answering questions regarding relative spatial relationships than absolute spatial relationships, 2) MLLMs demonstrate similar spatial reasoning abilities for both egocentric and allocentric perspectives, and 3) Fine-tuning large models significantly improves their performance across different spatial reasoning tasks. We believe that our open-source data collection tools and in-depth analyses will inspire further research on MLLM spatial reasoning capabilities. The benchmark is available at https://github.com/WeichenZh/Open3DVQA.
Localizing Persona Representations in LLMs
We present a study on how and where personas -- defined by distinct sets of human characteristics, values, and beliefs -- are encoded in the representation space of large language models (LLMs). Using a range of dimension reduction and pattern recognition methods, we first identify the model layers that show the greatest divergence in encoding these representations. We then analyze the activations within a selected layer to examine how specific personas are encoded relative to others, including their shared and distinct embedding spaces. We find that, across multiple pre-trained decoder-only LLMs, the analyzed personas show large differences in representation space only within the final third of the decoder layers. We observe overlapping activations for specific ethical perspectives -- such as moral nihilism and utilitarianism -- suggesting a degree of polysemy. In contrast, political ideologies like conservatism and liberalism appear to be represented in more distinct regions. These findings help to improve our understanding of how LLMs internally represent information and can inform future efforts in refining the modulation of specific human traits in LLM outputs. Warning: This paper includes potentially offensive sample statements.
Further Generalizations of the Jaccard Index
Quantifying the similarity between two mathematical structures or datasets constitutes a particularly interesting and useful operation in several theoretical and applied problems. Aimed at this specific objective, the Jaccard index has been extensively used in the most diverse types of problems, also motivating some respective generalizations. The present work addresses further generalizations of this index, including its modification into a coincidence index capable of accounting also for the level of relative interiority between the two compared entities, as well as respective extensions for sets in continuous vector spaces, the generalization to multiset addition, densities and generic scalar fields, as well as a means to quantify the joint interdependence between two random variables. The also interesting possibility to take into account more than two sets has also been addressed, including the description of an index capable of quantifying the level of chaining between three structures. Several of the described and suggested eneralizations have been illustrated with respect to numeric case examples. It is also posited that these indices can play an important role while analyzing and integrating datasets in modeling approaches and pattern recognition activities, including as a measurement of clusters similarity or separation and as a resource for representing and analyzing complex networks.
Approximating the Convex Hull via Metric Space Magnitude
Magnitude of a finite metric space and the related notion of magnitude functions on metric spaces is an active area of research in algebraic topology. Magnitude originally arose in the context of biology, where it represents the number of effective species in an environment; when applied to a one-parameter family of metric spaces tX with scale parameter t, the magnitude captures much of the underlying geometry of the space. Prior work has mostly focussed on properties of magnitude in a global sense; in this paper we restrict the sets to finite subsets of Euclidean space and investigate its individual components. We give an explicit formula for the corrected inclusion-exclusion principle, and define a quantity associated with each point, called the moment which gives an intrinsic ordering to the points. We exploit this in order to form an algorithm which approximates the convex hull.
Concrete Sentence Spaces for Compositional Distributional Models of Meaning
Coecke, Sadrzadeh, and Clark (arXiv:1003.4394v1 [cs.CL]) developed a compositional model of meaning for distributional semantics, in which each word in a sentence has a meaning vector and the distributional meaning of the sentence is a function of the tensor products of the word vectors. Abstractly speaking, this function is the morphism corresponding to the grammatical structure of the sentence in the category of finite dimensional vector spaces. In this paper, we provide a concrete method for implementing this linear meaning map, by constructing a corpus-based vector space for the type of sentence. Our construction method is based on structured vector spaces whereby meaning vectors of all sentences, regardless of their grammatical structure, live in the same vector space. Our proposed sentence space is the tensor product of two noun spaces, in which the basis vectors are pairs of words each augmented with a grammatical role. This enables us to compare meanings of sentences by simply taking the inner product of their vectors.
Your other Left! Vision-Language Models Fail to Identify Relative Positions in Medical Images
Clinical decision-making relies heavily on understanding relative positions of anatomical structures and anomalies. Therefore, for Vision-Language Models (VLMs) to be applicable in clinical practice, the ability to accurately determine relative positions on medical images is a fundamental prerequisite. Despite its importance, this capability remains highly underexplored. To address this gap, we evaluate the ability of state-of-the-art VLMs, GPT-4o, Llama3.2, Pixtral, and JanusPro, and find that all models fail at this fundamental task. Inspired by successful approaches in computer vision, we investigate whether visual prompts, such as alphanumeric or colored markers placed on anatomical structures, can enhance performance. While these markers provide moderate improvements, results remain significantly lower on medical images compared to observations made on natural images. Our evaluations suggest that, in medical imaging, VLMs rely more on prior anatomical knowledge than on actual image content for answering relative position questions, often leading to incorrect conclusions. To facilitate further research in this area, we introduce the MIRP , Medical Imaging Relative Positioning, benchmark dataset, designed to systematically evaluate the capability to identify relative positions in medical images.
Exploring Transformer Extrapolation
Length extrapolation has attracted considerable attention recently since it allows transformers to be tested on longer sequences than those used in training. Previous research has shown that this property can be attained by using carefully designed Relative Positional Encodings (RPEs). While these methods perform well on a variety of corpora, the conditions for length extrapolation have yet to be investigated. This paper attempts to determine what types of RPEs allow for length extrapolation through a thorough mathematical and empirical analysis. We discover that a transformer is certain to possess this property as long as the series that corresponds to the RPE's exponential converges. Two practices are derived from the conditions and examined in language modeling tasks on a variety of corpora. As a bonus from the conditions, we derive a new Theoretical Receptive Field (TRF) to measure the receptive field of RPEs without taking any training steps. Extensive experiments are conducted on the Wikitext-103, Books, Github, and WikiBook datasets to demonstrate the viability of our discovered conditions. We also compare TRF to Empirical Receptive Field (ERF) across different models, showing consistently matched trends on the aforementioned datasets. The code is available at https://github.com/OpenNLPLab/Rpe.
KERPLE: Kernelized Relative Positional Embedding for Length Extrapolation
Relative positional embeddings (RPE) have received considerable attention since RPEs effectively model the relative distance among tokens and enable length extrapolation. We propose KERPLE, a framework that generalizes relative position embedding for extrapolation by kernelizing positional differences. We achieve this goal using conditionally positive definite (CPD) kernels, a class of functions known for generalizing distance metrics. To maintain the inner product interpretation of self-attention, we show that a CPD kernel can be transformed into a PD kernel by adding a constant offset. This offset is implicitly absorbed in the Softmax normalization during self-attention. The diversity of CPD kernels allows us to derive various RPEs that enable length extrapolation in a principled way. Experiments demonstrate that the logarithmic variant achieves excellent extrapolation performance on three large language modeling datasets. Our implementation and pretrained checkpoints are released at https://github.com/chijames/KERPLE.git.
Rethinking and Improving Relative Position Encoding for Vision Transformer
Relative position encoding (RPE) is important for transformer to capture sequence ordering of input tokens. General efficacy has been proven in natural language processing. However, in computer vision, its efficacy is not well studied and even remains controversial, e.g., whether relative position encoding can work equally well as absolute position? In order to clarify this, we first review existing relative position encoding methods and analyze their pros and cons when applied in vision transformers. We then propose new relative position encoding methods dedicated to 2D images, called image RPE (iRPE). Our methods consider directional relative distance modeling as well as the interactions between queries and relative position embeddings in self-attention mechanism. The proposed iRPE methods are simple and lightweight. They can be easily plugged into transformer blocks. Experiments demonstrate that solely due to the proposed encoding methods, DeiT and DETR obtain up to 1.5% (top-1 Acc) and 1.3% (mAP) stable improvements over their original versions on ImageNet and COCO respectively, without tuning any extra hyperparameters such as learning rate and weight decay. Our ablation and analysis also yield interesting findings, some of which run counter to previous understanding. Code and models are open-sourced at https://github.com/microsoft/Cream/tree/main/iRPE.
Operational Latent Spaces
We investigate the construction of latent spaces through self-supervised learning to support semantically meaningful operations. Analogous to operational amplifiers, these "operational latent spaces" (OpLaS) not only demonstrate semantic structure such as clustering but also support common transformational operations with inherent semantic meaning. Some operational latent spaces are found to have arisen "unintentionally" in the progress toward some (other) self-supervised learning objective, in which unintended but still useful properties are discovered among the relationships of points in the space. Other spaces may be constructed "intentionally" by developers stipulating certain kinds of clustering or transformations intended to produce the desired structure. We focus on the intentional creation of operational latent spaces via self-supervised learning, including the introduction of rotation operators via a novel "FiLMR" layer, which can be used to enable ring-like symmetries found in some musical constructions.
Domain and Function: A Dual-Space Model of Semantic Relations and Compositions
Given appropriate representations of the semantic relations between carpenter and wood and between mason and stone (for example, vectors in a vector space model), a suitable algorithm should be able to recognize that these relations are highly similar (carpenter is to wood as mason is to stone; the relations are analogous). Likewise, with representations of dog, house, and kennel, an algorithm should be able to recognize that the semantic composition of dog and house, dog house, is highly similar to kennel (dog house and kennel are synonymous). It seems that these two tasks, recognizing relations and compositions, are closely connected. However, up to now, the best models for relations are significantly different from the best models for compositions. In this paper, we introduce a dual-space model that unifies these two tasks. This model matches the performance of the best previous models for relations and compositions. The dual-space model consists of a space for measuring domain similarity and a space for measuring function similarity. Carpenter and wood share the same domain, the domain of carpentry. Mason and stone share the same domain, the domain of masonry. Carpenter and mason share the same function, the function of artisans. Wood and stone share the same function, the function of materials. In the composition dog house, kennel has some domain overlap with both dog and house (the domains of pets and buildings). The function of kennel is similar to the function of house (the function of shelters). By combining domain and function similarities in various ways, we can model relations, compositions, and other aspects of semantics.
Practical applications of metric space magnitude and weighting vectors
Metric space magnitude, an active subject of research in algebraic topology, originally arose in the context of biology, where it was used to represent the effective number of distinct species in an environment. In a more general setting, the magnitude of a metric space is a real number that aims to quantify the effective number of distinct points in the space. The contribution of each point to a metric space's global magnitude, which is encoded by the {\em weighting vector}, captures much of the underlying geometry of the original metric space. Surprisingly, when the metric space is Euclidean, the weighting vector also serves as an effective tool for boundary detection. This allows the weighting vector to serve as the foundation of novel algorithms for classic machine learning tasks such as classification, outlier detection and active learning. We demonstrate, using experiments and comparisons on classic benchmark datasets, the promise of the proposed magnitude and weighting vector-based approaches.
Monotonic Location Attention for Length Generalization
We explore different ways to utilize position-based cross-attention in seq2seq networks to enable length generalization in algorithmic tasks. We show that a simple approach of interpolating the original and reversed encoded representations combined with relative attention allows near-perfect length generalization for both forward and reverse lookup tasks or copy tasks that had been generally hard to tackle. We also devise harder diagnostic tasks where the relative distance of the ideal attention position varies with timestep. In such settings, the simple interpolation trick with relative attention is not sufficient. We introduce novel variants of location attention building on top of Dubois et al. (2020) to address the new diagnostic tasks. We also show the benefits of our approaches for length generalization in SCAN (Lake & Baroni, 2018) and CFQ (Keysers et al., 2020). Our code is available on GitHub.
ZoeDepth: Zero-shot Transfer by Combining Relative and Metric Depth
This paper tackles the problem of depth estimation from a single image. Existing work either focuses on generalization performance disregarding metric scale, i.e. relative depth estimation, or state-of-the-art results on specific datasets, i.e. metric depth estimation. We propose the first approach that combines both worlds, leading to a model with excellent generalization performance while maintaining metric scale. Our flagship model, ZoeD-M12-NK, is pre-trained on 12 datasets using relative depth and fine-tuned on two datasets using metric depth. We use a lightweight head with a novel bin adjustment design called metric bins module for each domain. During inference, each input image is automatically routed to the appropriate head using a latent classifier. Our framework admits multiple configurations depending on the datasets used for relative depth pre-training and metric fine-tuning. Without pre-training, we can already significantly improve the state of the art (SOTA) on the NYU Depth v2 indoor dataset. Pre-training on twelve datasets and fine-tuning on the NYU Depth v2 indoor dataset, we can further improve SOTA for a total of 21% in terms of relative absolute error (REL). Finally, ZoeD-M12-NK is the first model that can jointly train on multiple datasets (NYU Depth v2 and KITTI) without a significant drop in performance and achieve unprecedented zero-shot generalization performance to eight unseen datasets from both indoor and outdoor domains. The code and pre-trained models are publicly available at https://github.com/isl-org/ZoeDepth .
Hyperbolic Category Discovery
Generalized Category Discovery (GCD) is an intriguing open-world problem that has garnered increasing attention. Given a dataset that includes both labelled and unlabelled images, GCD aims to categorize all images in the unlabelled subset, regardless of whether they belong to known or unknown classes. In GCD, the common practice typically involves applying a spherical projection operator at the end of the self-supervised pretrained backbone, operating within Euclidean or spherical space. However, both of these spaces have been shown to be suboptimal for encoding samples that possesses hierarchical structures. In contrast, hyperbolic space exhibits exponential volume growth relative to radius, making it inherently strong at capturing the hierarchical structure of samples from both seen and unseen categories. Therefore, we propose to tackle the category discovery challenge in the hyperbolic space. We introduce HypCD, a simple Hyperbolic framework for learning hierarchy-aware representations and classifiers for generalized Category Discovery. HypCD first transforms the Euclidean embedding space of the backbone network into hyperbolic space, facilitating subsequent representation and classification learning by considering both hyperbolic distance and the angle between samples. This approach is particularly helpful for knowledge transfer from known to unknown categories in GCD. We thoroughly evaluate HypCD on public GCD benchmarks, by applying it to various baseline and state-of-the-art methods, consistently achieving significant improvements.
Joint Khmer Word Segmentation and Part-of-Speech Tagging Using Deep Learning
Khmer text is written from left to right with optional space. Space is not served as a word boundary but instead, it is used for readability or other functional purposes. Word segmentation is a prior step for downstream tasks such as part-of-speech (POS) tagging and thus, the robustness of POS tagging highly depends on word segmentation. The conventional Khmer POS tagging is a two-stage process that begins with word segmentation and then actual tagging of each word, afterward. In this work, a joint word segmentation and POS tagging approach using a single deep learning model is proposed so that word segmentation and POS tagging can be performed spontaneously. The proposed model was trained and tested using the publicly available Khmer POS dataset. The validation suggested that the performance of the joint model is on par with the conventional two-stage POS tagging.
Fast Similarity Sketching
We consider the Similarity Sketching problem: Given a universe [u] = {0,ldots, u-1} we want a random function S mapping subsets Asubseteq [u] into vectors S(A) of size t, such that the Jaccard similarity J(A,B) = |Acap B|/|Acup B| between sets A and B is preserved. More precisely, define X_i = [S(A)[i] = S(B)[i]] and X = sum_{iin [t]} X_i. We want E[X_i]=J(A,B), and we want X to be strongly concentrated around E[X] = t cdot J(A,B) (i.e. Chernoff-style bounds). This is a fundamental problem which has found numerous applications in data mining, large-scale classification, computer vision, similarity search, etc. via the classic MinHash algorithm. The vectors S(A) are also called sketches. Strong concentration is critical, for often we want to sketch many sets B_1,ldots,B_n so that we later, for a query set A, can find (one of) the most similar B_i. It is then critical that no B_i looks much more similar to A due to errors in the sketch. The seminal ttimesMinHash algorithm uses t random hash functions h_1,ldots, h_t, and stores left ( min_{ain A} h_1(A),ldots, min_{ain A} h_t(A) right ) as the sketch of A. The main drawback of MinHash is, however, its O(tcdot |A|) running time, and finding a sketch with similar properties and faster running time has been the subject of several papers. (continued...)
Contrastive Vicinal Space for Unsupervised Domain Adaptation
Recent unsupervised domain adaptation methods have utilized vicinal space between the source and target domains. However, the equilibrium collapse of labels, a problem where the source labels are dominant over the target labels in the predictions of vicinal instances, has never been addressed. In this paper, we propose an instance-wise minimax strategy that minimizes the entropy of high uncertainty instances in the vicinal space to tackle the stated problem. We divide the vicinal space into two subspaces through the solution of the minimax problem: contrastive space and consensus space. In the contrastive space, inter-domain discrepancy is mitigated by constraining instances to have contrastive views and labels, and the consensus space reduces the confusion between intra-domain categories. The effectiveness of our method is demonstrated on public benchmarks, including Office-31, Office-Home, and VisDA-C, achieving state-of-the-art performances. We further show that our method outperforms the current state-of-the-art methods on PACS, which indicates that our instance-wise approach works well for multi-source domain adaptation as well. Code is available at https://github.com/NaJaeMin92/CoVi.
Geometry of Sample Spaces
In statistics, independent, identically distributed random samples do not carry a natural ordering, and their statistics are typically invariant with respect to permutations of their order. Thus, an n-sample in a space M can be considered as an element of the quotient space of M^n modulo the permutation group. The present paper takes this definition of sample space and the related concept of orbit types as a starting point for developing a geometric perspective on statistics. We aim at deriving a general mathematical setting for studying the behavior of empirical and population means in spaces ranging from smooth Riemannian manifolds to general stratified spaces. We fully describe the orbifold and path-metric structure of the sample space when M is a manifold or path-metric space, respectively. These results are non-trivial even when M is Euclidean. We show that the infinite sample space exists in a Gromov-Hausdorff type sense and coincides with the Wasserstein space of probability distributions on M. We exhibit Fr\'echet means and k-means as metric projections onto 1-skeleta or k-skeleta in Wasserstein space, and we define a new and more general notion of polymeans. This geometric characterization via metric projections applies equally to sample and population means, and we use it to establish asymptotic properties of polymeans such as consistency and asymptotic normality.
A picture of the space of typical learnable tasks
We develop information geometric techniques to understand the representations learned by deep networks when they are trained on different tasks using supervised, meta-, semi-supervised and contrastive learning. We shed light on the following phenomena that relate to the structure of the space of tasks: (1) the manifold of probabilistic models trained on different tasks using different representation learning methods is effectively low-dimensional; (2) supervised learning on one task results in a surprising amount of progress even on seemingly dissimilar tasks; progress on other tasks is larger if the training task has diverse classes; (3) the structure of the space of tasks indicated by our analysis is consistent with parts of the Wordnet phylogenetic tree; (4) episodic meta-learning algorithms and supervised learning traverse different trajectories during training but they fit similar models eventually; (5) contrastive and semi-supervised learning methods traverse trajectories similar to those of supervised learning. We use classification tasks constructed from the CIFAR-10 and Imagenet datasets to study these phenomena.
LaT: Latent Translation with Cycle-Consistency for Video-Text Retrieval
Video-text retrieval is a class of cross-modal representation learning problems, where the goal is to select the video which corresponds to the text query between a given text query and a pool of candidate videos. The contrastive paradigm of vision-language pretraining has shown promising success with large-scale datasets and unified transformer architecture, and demonstrated the power of a joint latent space. Despite this, the intrinsic divergence between the visual domain and textual domain is still far from being eliminated, and projecting different modalities into a joint latent space might result in the distorting of the information inside the single modality. To overcome the above issue, we present a novel mechanism for learning the translation relationship from a source modality space S to a target modality space T without the need for a joint latent space, which bridges the gap between visual and textual domains. Furthermore, to keep cycle consistency between translations, we adopt a cycle loss involving both forward translations from S to the predicted target space T', and backward translations from T' back to S. Extensive experiments conducted on MSR-VTT, MSVD, and DiDeMo datasets demonstrate the superiority and effectiveness of our LaT approach compared with vanilla state-of-the-art methods.
Does Spatial Cognition Emerge in Frontier Models?
Not yet. We present SPACE, a benchmark that systematically evaluates spatial cognition in frontier models. Our benchmark builds on decades of research in cognitive science. It evaluates large-scale mapping abilities that are brought to bear when an organism traverses physical environments, smaller-scale reasoning about object shapes and layouts, and cognitive infrastructure such as spatial attention and memory. For many tasks, we instantiate parallel presentations via text and images, allowing us to benchmark both large language models and large multimodal models. Results suggest that contemporary frontier models fall short of the spatial intelligence of animals, performing near chance level on a number of classic tests of animal cognition.
Direction-Oriented Visual-semantic Embedding Model for Remote Sensing Image-text Retrieval
Image-text retrieval has developed rapidly in recent years. However, it is still a challenge in remote sensing due to visual-semantic imbalance, which leads to incorrect matching of non-semantic visual and textual features. To solve this problem, we propose a novel Direction-Oriented Visual-semantic Embedding Model (DOVE) to mine the relationship between vision and language. Our highlight is to conduct visual and textual representations in latent space, directing them as close as possible to a redundancy-free regional visual representation. Concretely, a Regional-Oriented Attention Module (ROAM) adaptively adjusts the distance between the final visual and textual embeddings in the latent semantic space, oriented by regional visual features. Meanwhile, a lightweight Digging Text Genome Assistant (DTGA) is designed to expand the range of tractable textual representation and enhance global word-level semantic connections using less attention operations. Ultimately, we exploit a global visual-semantic constraint to reduce single visual dependency and serve as an external constraint for the final visual and textual representations. The effectiveness and superiority of our method are verified by extensive experiments including parameter evaluation, quantitative comparison, ablation studies and visual analysis, on two benchmark datasets, RSICD and RSITMD.
Weighting vectors for machine learning: numerical harmonic analysis applied to boundary detection
Metric space magnitude, an active field of research in algebraic topology, is a scalar quantity that summarizes the effective number of distinct points that live in a general metric space. The {\em weighting vector} is a closely-related concept that captures, in a nontrivial way, much of the underlying geometry of the original metric space. Recent work has demonstrated that when the metric space is Euclidean, the weighting vector serves as an effective tool for boundary detection. We recast this result and show the weighting vector may be viewed as a solution to a kernelized SVM. As one consequence, we apply this new insight to the task of outlier detection, and we demonstrate performance that is competitive or exceeds performance of state-of-the-art techniques on benchmark data sets. Under mild assumptions, we show the weighting vector, which has computational cost of matrix inversion, can be efficiently approximated in linear time. We show how nearest neighbor methods can approximate solutions to the minimization problems defined by SVMs.
Latent Compass: Creation by Navigation
In Marius von Senden's Space and Sight, a newly sighted blind patient describes the experience of a corner as lemon-like, because corners "prick" sight like lemons prick the tongue. Prickliness, here, is a dimension in the feature space of sensory experience, an effect of the perceived on the perceiver that arises where the two interact. In the account of the newly sighted, an effect familiar from one interaction translates to a novel context. Perception serves as the vehicle for generalization, in that an effect shared across different experiences produces a concrete abstraction grounded in those experiences. Cezanne and the post-impressionists, fluent in the language of experience translation, realized that the way to paint a concrete form that best reflected reality was to paint not what they saw, but what it was like to see. We envision a future of creation using AI where what it is like to see is replicable, transferrable, manipulable - part of the artist's palette that is both grounded in a particular context, and generalizable beyond it. An active line of research maps human-interpretable features onto directions in GAN latent space. Supervised and self-supervised approaches that search for anticipated directions or use off-the-shelf classifiers to drive image manipulation in embedding space are limited in the variety of features they can uncover. Unsupervised approaches that discover useful new directions show that the space of perceptually meaningful directions is nowhere close to being fully mapped. As this space is broad and full of creative potential, we want tools for direction discovery that capture the richness and generalizability of human perception. Our approach puts creators in the discovery loop during real-time tool use, in order to identify directions that are perceptually meaningful to them, and generate interpretable image translations along those directions.
IsoScore: Measuring the Uniformity of Embedding Space Utilization
The recent success of distributed word representations has led to an increased interest in analyzing the properties of their spatial distribution. Several studies have suggested that contextualized word embedding models do not isotropically project tokens into vector space. However, current methods designed to measure isotropy, such as average random cosine similarity and the partition score, have not been thoroughly analyzed and are not appropriate for measuring isotropy. We propose IsoScore: a novel tool that quantifies the degree to which a point cloud uniformly utilizes the ambient vector space. Using rigorously designed tests, we demonstrate that IsoScore is the only tool available in the literature that accurately measures how uniformly distributed variance is across dimensions in vector space. Additionally, we use IsoScore to challenge a number of recent conclusions in the NLP literature that have been derived using brittle metrics of isotropy. We caution future studies from using existing tools to measure isotropy in contextualized embedding space as resulting conclusions will be misleading or altogether inaccurate.
Learning Embeddings that Capture Spatial Semantics for Indoor Navigation
Incorporating domain-specific priors in search and navigation tasks has shown promising results in improving generalization and sample complexity over end-to-end trained policies. In this work, we study how object embeddings that capture spatial semantic priors can guide search and navigation tasks in a structured environment. We know that humans can search for an object like a book, or a plate in an unseen house, based on the spatial semantics of bigger objects detected. For example, a book is likely to be on a bookshelf or a table, whereas a plate is likely to be in a cupboard or dishwasher. We propose a method to incorporate such spatial semantic awareness in robots by leveraging pre-trained language models and multi-relational knowledge bases as object embeddings. We demonstrate using these object embeddings to search a query object in an unseen indoor environment. We measure the performance of these embeddings in an indoor simulator (AI2Thor). We further evaluate different pre-trained embedding onSuccess Rate(SR) and success weighted by Path Length(SPL).
Hubness Reduction Improves Sentence-BERT Semantic Spaces
Semantic representations of text, i.e. representations of natural language which capture meaning by geometry, are essential for areas such as information retrieval and document grouping. High-dimensional trained dense vectors have received much attention in recent years as such representations. We investigate the structure of semantic spaces that arise from embeddings made with Sentence-BERT and find that the representations suffer from a well-known problem in high dimensions called hubness. Hubness results in asymmetric neighborhood relations, such that some texts (the hubs) are neighbours of many other texts while most texts (so-called anti-hubs), are neighbours of few or no other texts. We quantify the semantic quality of the embeddings using hubness scores and error rate of a neighbourhood based classifier. We find that when hubness is high, we can reduce error rate and hubness using hubness reduction methods. We identify a combination of two methods as resulting in the best reduction. For example, on one of the tested pretrained models, this combined method can reduce hubness by about 75% and error rate by about 9%. Thus, we argue that mitigating hubness in the embedding space provides better semantic representations of text.
Representation Tradeoffs for Hyperbolic Embeddings
Hyperbolic embeddings offer excellent quality with few dimensions when embedding hierarchical data structures like synonym or type hierarchies. Given a tree, we give a combinatorial construction that embeds the tree in hyperbolic space with arbitrarily low distortion without using optimization. On WordNet, our combinatorial embedding obtains a mean-average-precision of 0.989 with only two dimensions, while Nickel et al.'s recent construction obtains 0.87 using 200 dimensions. We provide upper and lower bounds that allow us to characterize the precision-dimensionality tradeoff inherent in any hyperbolic embedding. To embed general metric spaces, we propose a hyperbolic generalization of multidimensional scaling (h-MDS). We show how to perform exact recovery of hyperbolic points from distances, provide a perturbation analysis, and give a recovery result that allows us to reduce dimensionality. The h-MDS approach offers consistently low distortion even with few dimensions across several datasets. Finally, we extract lessons from the algorithms and theory above to design a PyTorch-based implementation that can handle incomplete information and is scalable.
ScaleDepth: Decomposing Metric Depth Estimation into Scale Prediction and Relative Depth Estimation
Estimating depth from a single image is a challenging visual task. Compared to relative depth estimation, metric depth estimation attracts more attention due to its practical physical significance and critical applications in real-life scenarios. However, existing metric depth estimation methods are typically trained on specific datasets with similar scenes, facing challenges in generalizing across scenes with significant scale variations. To address this challenge, we propose a novel monocular depth estimation method called ScaleDepth. Our method decomposes metric depth into scene scale and relative depth, and predicts them through a semantic-aware scale prediction (SASP) module and an adaptive relative depth estimation (ARDE) module, respectively. The proposed ScaleDepth enjoys several merits. First, the SASP module can implicitly combine structural and semantic features of the images to predict precise scene scales. Second, the ARDE module can adaptively estimate the relative depth distribution of each image within a normalized depth space. Third, our method achieves metric depth estimation for both indoor and outdoor scenes in a unified framework, without the need for setting the depth range or fine-tuning model. Extensive experiments demonstrate that our method attains state-of-the-art performance across indoor, outdoor, unconstrained, and unseen scenes. Project page: https://ruijiezhu94.github.io/ScaleDepth
Interpreting Embedding Spaces by Conceptualization
One of the main methods for computational interpretation of a text is mapping it into a vector in some embedding space. Such vectors can then be used for a variety of textual processing tasks. Recently, most embedding spaces are a product of training large language models (LLMs). One major drawback of this type of representation is their incomprehensibility to humans. Understanding the embedding space is crucial for several important needs, including the need to debug the embedding method and compare it to alternatives, and the need to detect biases hidden in the model. In this paper, we present a novel method of understanding embeddings by transforming a latent embedding space into a comprehensible conceptual space. We present an algorithm for deriving a conceptual space with dynamic on-demand granularity. We devise a new evaluation method, using either human rater or LLM-based raters, to show that the conceptualized vectors indeed represent the semantics of the original latent ones. We show the use of our method for various tasks, including comparing the semantics of alternative models and tracing the layers of the LLM. The code is available online https://github.com/adiSimhi/Interpreting-Embedding-Spaces-by-Conceptualization.
Approximate Nearest Neighbor Search with Window Filters
We define and investigate the problem of c-approximate window search: approximate nearest neighbor search where each point in the dataset has a numeric label, and the goal is to find nearest neighbors to queries within arbitrary label ranges. Many semantic search problems, such as image and document search with timestamp filters, or product search with cost filters, are natural examples of this problem. We propose and theoretically analyze a modular tree-based framework for transforming an index that solves the traditional c-approximate nearest neighbor problem into a data structure that solves window search. On standard nearest neighbor benchmark datasets equipped with random label values, adversarially constructed embeddings, and image search embeddings with real timestamps, we obtain up to a 75times speedup over existing solutions at the same level of recall.
Nomic Embed Vision: Expanding the Latent Space
This technical report describes the training of nomic-embed-vision, a highly performant, open-code, open-weights image embedding model that shares the same latent space as nomic-embed-text. Together, nomic-embed-vision and nomic-embed-text form the first unified latent space to achieve high performance across vision, language, and multimodal tasks.
Geometry-Aware Adaptation for Pretrained Models
Machine learning models -- including prominent zero-shot models -- are often trained on datasets whose labels are only a small proportion of a larger label space. Such spaces are commonly equipped with a metric that relates the labels via distances between them. We propose a simple approach to exploit this information to adapt the trained model to reliably predict new classes -- or, in the case of zero-shot prediction, to improve its performance -- without any additional training. Our technique is a drop-in replacement of the standard prediction rule, swapping argmax with the Fr\'echet mean. We provide a comprehensive theoretical analysis for this approach, studying (i) learning-theoretic results trading off label space diameter, sample complexity, and model dimension, (ii) characterizations of the full range of scenarios in which it is possible to predict any unobserved class, and (iii) an optimal active learning-like next class selection procedure to obtain optimal training classes for when it is not possible to predict the entire range of unobserved classes. Empirically, using easily-available external metrics, our proposed approach, Loki, gains up to 29.7% relative improvement over SimCLR on ImageNet and scales to hundreds of thousands of classes. When no such metric is available, Loki can use self-derived metrics from class embeddings and obtains a 10.5% improvement on pretrained zero-shot models such as CLIP.
Weatherproofing Retrieval for Localization with Generative AI and Geometric Consistency
State-of-the-art visual localization approaches generally rely on a first image retrieval step whose role is crucial. Yet, retrieval often struggles when facing varying conditions, due to e.g. weather or time of day, with dramatic consequences on the visual localization accuracy. In this paper, we improve this retrieval step and tailor it to the final localization task. Among the several changes we advocate for, we propose to synthesize variants of the training set images, obtained from generative text-to-image models, in order to automatically expand the training set towards a number of nameable variations that particularly hurt visual localization. After expanding the training set, we propose a training approach that leverages the specificities and the underlying geometry of this mix of real and synthetic images. We experimentally show that those changes translate into large improvements for the most challenging visual localization datasets. Project page: https://europe.naverlabs.com/ret4loc
Seurat: From Moving Points to Depth
Accurate depth estimation from monocular videos remains challenging due to ambiguities inherent in single-view geometry, as crucial depth cues like stereopsis are absent. However, humans often perceive relative depth intuitively by observing variations in the size and spacing of objects as they move. Inspired by this, we propose a novel method that infers relative depth by examining the spatial relationships and temporal evolution of a set of tracked 2D trajectories. Specifically, we use off-the-shelf point tracking models to capture 2D trajectories. Then, our approach employs spatial and temporal transformers to process these trajectories and directly infer depth changes over time. Evaluated on the TAPVid-3D benchmark, our method demonstrates robust zero-shot performance, generalizing effectively from synthetic to real-world datasets. Results indicate that our approach achieves temporally smooth, high-accuracy depth predictions across diverse domains.
Review of Unsupervised POS Tagging and Its Implications on Language Acquisition
An ability that underlies human syntactic knowledge is determining which words can appear in the similar structures (i.e. grouping words by their syntactic categories). These groupings enable humans to combine structures in order to communicate complex meanings. A foundational question is how do children acquire this ability underlying syntactic knowledge. In exploring this process, we will review various engineering approaches whose goal is similar to that of a child's -- without prior syntactic knowledge, correctly identify the parts of speech (POS) of the words in a sample of text. In reviewing these unsupervised tagging efforts, we will discuss common themes that support the advances in the models and their relevance for language acquisition. For example, we discuss how each model judges success (evaluation metrics), the "additional information" that constrains the POS learning (such as orthographic information), and the context used to determine POS (only previous word, words before and after the target, etc). The identified themes pave the way for future investigations into the cognitive processes that underpin the acquisition of syntactic categories and provide a useful layout of current state of the art unsupervised POS tagging models.
Hyperbolic Image-Text Representations
Visual and linguistic concepts naturally organize themselves in a hierarchy, where a textual concept ``dog'' entails all images that contain dogs. Despite being intuitive, current large-scale vision and language models such as CLIP do not explicitly capture such hierarchy. We propose MERU, a contrastive model that yields hyperbolic representations of images and text. Hyperbolic spaces have suitable geometric properties to embed tree-like data, so MERU can better capture the underlying hierarchy in image-text data. Our results show that MERU learns a highly interpretable representation space while being competitive with CLIP's performance on multi-modal tasks like image classification and image-text retrieval.
TR2M: Transferring Monocular Relative Depth to Metric Depth with Language Descriptions and Scale-Oriented Contrast
This work presents a generalizable framework to transfer relative depth to metric depth. Current monocular depth estimation methods are mainly divided into metric depth estimation (MMDE) and relative depth estimation (MRDE). MMDEs estimate depth in metric scale but are often limited to a specific domain. MRDEs generalize well across different domains, but with uncertain scales which hinders downstream applications. To this end, we aim to build up a framework to solve scale uncertainty and transfer relative depth to metric depth. Previous methods used language as input and estimated two factors for conducting rescaling. Our approach, TR2M, utilizes both text description and image as inputs and estimates two rescale maps to transfer relative depth to metric depth at pixel level. Features from two modalities are fused with a cross-modality attention module to better capture scale information. A strategy is designed to construct and filter confident pseudo metric depth for more comprehensive supervision. We also develop scale-oriented contrastive learning to utilize depth distribution as guidance to enforce the model learning about intrinsic knowledge aligning with the scale distribution. TR2M only exploits a small number of trainable parameters to train on datasets in various domains and experiments not only demonstrate TR2M's great performance in seen datasets but also reveal superior zero-shot capabilities on five unseen datasets. We show the huge potential in pixel-wise transferring relative depth to metric depth with language assistance. (Code is available at: https://github.com/BeileiCui/TR2M)
Self-Attention with Relative Position Representations
Relying entirely on an attention mechanism, the Transformer introduced by Vaswani et al. (2017) achieves state-of-the-art results for machine translation. In contrast to recurrent and convolutional neural networks, it does not explicitly model relative or absolute position information in its structure. Instead, it requires adding representations of absolute positions to its inputs. In this work we present an alternative approach, extending the self-attention mechanism to efficiently consider representations of the relative positions, or distances between sequence elements. On the WMT 2014 English-to-German and English-to-French translation tasks, this approach yields improvements of 1.3 BLEU and 0.3 BLEU over absolute position representations, respectively. Notably, we observe that combining relative and absolute position representations yields no further improvement in translation quality. We describe an efficient implementation of our method and cast it as an instance of relation-aware self-attention mechanisms that can generalize to arbitrary graph-labeled inputs.
Fine-tuning a Subtle Parsing Distinction Using a Probabilistic Decision Tree: the Case of Postnominal "that" in Noun Complement Clauses vs. Relative Clauses
In this paper we investigated two different methods to parse relative and noun complement clauses in English and resorted to distinct tags for their corresponding that as a relative pronoun and as a complementizer. We used an algorithm to relabel a corpus parsed with the GUM Treebank using Universal Dependency. Our second experiment consisted in using TreeTagger, a Probabilistic Decision Tree, to learn the distinction between the two complement and relative uses of postnominal "that". We investigated the effect of the training set size on TreeTagger accuracy and how representative the GUM Treebank files are for the two structures under scrutiny. We discussed some of the linguistic and structural tenets of the learnability of this distinction.
A Neural Space-Time Representation for Text-to-Image Personalization
A key aspect of text-to-image personalization methods is the manner in which the target concept is represented within the generative process. This choice greatly affects the visual fidelity, downstream editability, and disk space needed to store the learned concept. In this paper, we explore a new text-conditioning space that is dependent on both the denoising process timestep (time) and the denoising U-Net layers (space) and showcase its compelling properties. A single concept in the space-time representation is composed of hundreds of vectors, one for each combination of time and space, making this space challenging to optimize directly. Instead, we propose to implicitly represent a concept in this space by optimizing a small neural mapper that receives the current time and space parameters and outputs the matching token embedding. In doing so, the entire personalized concept is represented by the parameters of the learned mapper, resulting in a compact, yet expressive, representation. Similarly to other personalization methods, the output of our neural mapper resides in the input space of the text encoder. We observe that one can significantly improve the convergence and visual fidelity of the concept by introducing a textual bypass, where our neural mapper additionally outputs a residual that is added to the output of the text encoder. Finally, we show how one can impose an importance-based ordering over our implicit representation, providing users control over the reconstruction and editability of the learned concept using a single trained model. We demonstrate the effectiveness of our approach over a range of concepts and prompts, showing our method's ability to generate high-quality and controllable compositions without fine-tuning any parameters of the generative model itself.
Imagination is All You Need! Curved Contrastive Learning for Abstract Sequence Modeling Utilized on Long Short-Term Dialogue Planning
Inspired by the curvature of space-time (Einstein, 1921), we introduce Curved Contrastive Learning (CCL), a novel representation learning technique for learning the relative turn distance between utterance pairs in multi-turn dialogues. The resulting bi-encoder models can guide transformers as a response ranking model towards a goal in a zero-shot fashion by projecting the goal utterance and the corresponding reply candidates into a latent space. Here the cosine similarity indicates the distance/reachability of a candidate utterance toward the corresponding goal. Furthermore, we explore how these forward-entailing language representations can be utilized for assessing the likelihood of sequences by the entailment strength i.e. through the cosine similarity of its individual members (encoded separately) as an emergent property in the curved space. These non-local properties allow us to imagine the likelihood of future patterns in dialogues, specifically by ordering/identifying future goal utterances that are multiple turns away, given a dialogue context. As part of our analysis, we investigate characteristics that make conversations (un)plannable and find strong evidence of planning capability over multiple turns (in 61.56% over 3 turns) in conversations from the DailyDialog (Li et al., 2017) dataset. Finally, we show how we achieve higher efficiency in sequence modeling tasks compared to previous work thanks to our relativistic approach, where only the last utterance needs to be encoded and computed during inference.
The Linear Representation Hypothesis and the Geometry of Large Language Models
Informally, the 'linear representation hypothesis' is the idea that high-level concepts are represented linearly as directions in some representation space. In this paper, we address two closely related questions: What does "linear representation" actually mean? And, how do we make sense of geometric notions (e.g., cosine similarity or projection) in the representation space? To answer these, we use the language of counterfactuals to give two formalizations of "linear representation", one in the output (word) representation space, and one in the input (sentence) space. We then prove these connect to linear probing and model steering, respectively. To make sense of geometric notions, we use the formalization to identify a particular (non-Euclidean) inner product that respects language structure in a sense we make precise. Using this causal inner product, we show how to unify all notions of linear representation. In particular, this allows the construction of probes and steering vectors using counterfactual pairs. Experiments with LLaMA-2 demonstrate the existence of linear representations of concepts, the connection to interpretation and control, and the fundamental role of the choice of inner product.
The Impact of Positional Encoding on Length Generalization in Transformers
Length generalization, the ability to generalize from small training context sizes to larger ones, is a critical challenge in the development of Transformer-based language models. Positional encoding (PE) has been identified as a major factor influencing length generalization, but the exact impact of different PE schemes on extrapolation in downstream tasks remains unclear. In this paper, we conduct a systematic empirical study comparing the length generalization performance of decoder-only Transformers with five different position encoding approaches including Absolute Position Embedding (APE), T5's Relative PE, ALiBi, and Rotary, in addition to Transformers without positional encoding (NoPE). Our evaluation encompasses a battery of reasoning and mathematical tasks. Our findings reveal that the most commonly used positional encoding methods, such as ALiBi, Rotary, and APE, are not well suited for length generalization in downstream tasks. More importantly, NoPE outperforms other explicit positional encoding methods while requiring no additional computation. We theoretically demonstrate that NoPE can represent both absolute and relative PEs, but when trained with SGD, it mostly resembles T5's relative PE attention patterns. Finally, we find that scratchpad is not always helpful to solve length generalization and its format highly impacts the model's performance. Overall, our work suggests that explicit position embeddings are not essential for decoder-only Transformers to generalize well to longer sequences.
Composed Image Retrieval for Training-Free Domain Conversion
This work addresses composed image retrieval in the context of domain conversion, where the content of a query image is retrieved in the domain specified by the query text. We show that a strong vision-language model provides sufficient descriptive power without additional training. The query image is mapped to the text input space using textual inversion. Unlike common practice that invert in the continuous space of text tokens, we use the discrete word space via a nearest-neighbor search in a text vocabulary. With this inversion, the image is softly mapped across the vocabulary and is made more robust using retrieval-based augmentation. Database images are retrieved by a weighted ensemble of text queries combining mapped words with the domain text. Our method outperforms prior art by a large margin on standard and newly introduced benchmarks. Code: https://github.com/NikosEfth/freedom
Learning a Deep Embedding Model for Zero-Shot Learning
Zero-shot learning (ZSL) models rely on learning a joint embedding space where both textual/semantic description of object classes and visual representation of object images can be projected to for nearest neighbour search. Despite the success of deep neural networks that learn an end-to-end model between text and images in other vision problems such as image captioning, very few deep ZSL model exists and they show little advantage over ZSL models that utilise deep feature representations but do not learn an end-to-end embedding. In this paper we argue that the key to make deep ZSL models succeed is to choose the right embedding space. Instead of embedding into a semantic space or an intermediate space, we propose to use the visual space as the embedding space. This is because that in this space, the subsequent nearest neighbour search would suffer much less from the hubness problem and thus become more effective. This model design also provides a natural mechanism for multiple semantic modalities (e.g., attributes and sentence descriptions) to be fused and optimised jointly in an end-to-end manner. Extensive experiments on four benchmarks show that our model significantly outperforms the existing models. Code is available at https://github.com/lzrobots/DeepEmbeddingModel_ZSL
SESA: Supervised Explicit Semantic Analysis
In recent years supervised representation learning has provided state of the art or close to the state of the art results in semantic analysis tasks including ranking and information retrieval. The core idea is to learn how to embed items into a latent space such that they optimize a supervised objective in that latent space. The dimensions of the latent space have no clear semantics, and this reduces the interpretability of the system. For example, in personalization models, it is hard to explain why a particular item is ranked high for a given user profile. We propose a novel model of representation learning called Supervised Explicit Semantic Analysis (SESA) that is trained in a supervised fashion to embed items to a set of dimensions with explicit semantics. The model learns to compare two objects by representing them in this explicit space, where each dimension corresponds to a concept from a knowledge base. This work extends Explicit Semantic Analysis (ESA) with a supervised model for ranking problems. We apply this model to the task of Job-Profile relevance in LinkedIn in which a set of skills defines our explicit dimensions of the space. Every profile and job are encoded to this set of skills their similarity is calculated in this space. We use RNNs to embed text input into this space. In addition to interpretability, our model makes use of the web-scale collaborative skills data that is provided by users for each LinkedIn profile. Our model provides state of the art result while it remains interpretable.
BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents
Key information extraction (KIE) from document images requires understanding the contextual and spatial semantics of texts in two-dimensional (2D) space. Many recent studies try to solve the task by developing pre-trained language models focusing on combining visual features from document images with texts and their layout. On the other hand, this paper tackles the problem by going back to the basic: effective combination of text and layout. Specifically, we propose a pre-trained language model, named BROS (BERT Relying On Spatiality), that encodes relative positions of texts in 2D space and learns from unlabeled documents with area-masking strategy. With this optimized training scheme for understanding texts in 2D space, BROS shows comparable or better performance compared to previous methods on four KIE benchmarks (FUNSD, SROIE*, CORD, and SciTSR) without relying on visual features. This paper also reveals two real-world challenges in KIE tasks-(1) minimizing the error from incorrect text ordering and (2) efficient learning from fewer downstream examples-and demonstrates the superiority of BROS over previous methods. Code is available at https://github.com/clovaai/bros.
Discovering Failure Modes of Text-guided Diffusion Models via Adversarial Search
Text-guided diffusion models (TDMs) are widely applied but can fail unexpectedly. Common failures include: (i) natural-looking text prompts generating images with the wrong content, or (ii) different random samples of the latent variables that generate vastly different, and even unrelated, outputs despite being conditioned on the same text prompt. In this work, we aim to study and understand the failure modes of TDMs in more detail. To achieve this, we propose SAGE, the first adversarial search method on TDMs that systematically explores the discrete prompt space and the high-dimensional latent space, to automatically discover undesirable behaviors and failure cases in image generation. We use image classifiers as surrogate loss functions during searching, and employ human inspections to validate the identified failures. For the first time, our method enables efficient exploration of both the discrete and intricate human language space and the challenging latent space, overcoming the gradient vanishing problem. Then, we demonstrate the effectiveness of SAGE on five widely used generative models and reveal four typical failure modes: (1) We find a variety of natural text prompts that generate images failing to capture the semantics of input texts. We further discuss the underlying causes and potential solutions based on the results. (2) We find regions in the latent space that lead to distorted images independent of the text prompt, suggesting that parts of the latent space are not well-structured. (3) We also find latent samples that result in natural-looking images unrelated to the text prompt, implying a possible misalignment between the latent and prompt spaces. (4) By appending a single adversarial token embedding to any input prompts, we can generate a variety of specified target objects. Project page: https://sage-diffusion.github.io/
Explainable Semantic Space by Grounding Language to Vision with Cross-Modal Contrastive Learning
In natural language processing, most models try to learn semantic representations merely from texts. The learned representations encode the distributional semantics but fail to connect to any knowledge about the physical world. In contrast, humans learn language by grounding concepts in perception and action and the brain encodes grounded semantics for cognition. Inspired by this notion and recent work in vision-language learning, we design a two-stream model for grounding language learning in vision. The model includes a VGG-based visual stream and a Bert-based language stream. The two streams merge into a joint representational space. Through cross-modal contrastive learning, the model first learns to align visual and language representations with the MS COCO dataset. The model further learns to retrieve visual objects with language queries through a cross-modal attention module and to infer the visual relations between the retrieved objects through a bilinear operator with the Visual Genome dataset. After training, the language stream of this model is a stand-alone language model capable of embedding concepts in a visually grounded semantic space. This semantic space manifests principal dimensions explainable with human intuition and neurobiological knowledge. Word embeddings in this semantic space are predictive of human-defined norms of semantic features and are segregated into perceptually distinctive clusters. Furthermore, the visually grounded language model also enables compositional language understanding based on visual knowledge and multimodal image search with queries based on images, texts, or their combinations.
On resolvability, connectedness and pseudocompactness
We prove that: I. If L is a T_1 space, |L|>1 and d(L) leq kappa geq omega, then there is a submaximal dense subspace X of L^{2^kappa} such that |X|=Delta(X)=kappa; II. If cleqkappa=kappa^omega<lambda and 2^kappa=2^lambda, then there is a Tychonoff pseudocompact globally and locally connected space X such that |X|=Delta(X)=lambda and X is not kappa^+-resolvable; III. If omega_1leqkappa<lambda and 2^kappa=2^lambda, then there is a regular space X such that |X|=Delta(X)=lambda, all continuous real-valued functions on X are constant (so X is pseudocompact and connected) and X is not kappa^+-resolvable.
Your Transformer May Not be as Powerful as You Expect
Relative Positional Encoding (RPE), which encodes the relative distance between any pair of tokens, is one of the most successful modifications to the original Transformer. As far as we know, theoretical understanding of the RPE-based Transformers is largely unexplored. In this work, we mathematically analyze the power of RPE-based Transformers regarding whether the model is capable of approximating any continuous sequence-to-sequence functions. One may naturally assume the answer is in the affirmative -- RPE-based Transformers are universal function approximators. However, we present a negative result by showing there exist continuous sequence-to-sequence functions that RPE-based Transformers cannot approximate no matter how deep and wide the neural network is. One key reason lies in that most RPEs are placed in the softmax attention that always generates a right stochastic matrix. This restricts the network from capturing positional information in the RPEs and limits its capacity. To overcome the problem and make the model more powerful, we first present sufficient conditions for RPE-based Transformers to achieve universal function approximation. With the theoretical guidance, we develop a novel attention module, called Universal RPE-based (URPE) Attention, which satisfies the conditions. Therefore, the corresponding URPE-based Transformers become universal function approximators. Extensive experiments covering typical architectures and tasks demonstrate that our model is parameter-efficient and can achieve superior performance to strong baselines in a wide range of applications. The code will be made publicly available at https://github.com/lsj2408/URPE.
GriSPy: A Python package for Fixed-Radius Nearest Neighbors Search
We present a new regular grid search algorithm for quick fixed-radius nearest-neighbor lookup developed in Python. This module indexes a set of k-dimensional points in a regular grid, with optional periodic conditions, providing a fast approach for nearest neighbors queries. In this first installment we provide three types of queries: bubble, shell and the nth-nearest; as well as three different metrics of interest in astronomy: the euclidean and two distance functions in spherical coordinates of varying precision, haversine and Vincenty; and the possibility of providing a custom distance function. This package results particularly useful for large datasets where a brute-force search turns impractical.
How Do Language Models Compose Functions?
While large language models (LLMs) appear to be increasingly capable of solving compositional tasks, it is an open question whether they do so using compositional mechanisms. In this work, we investigate how feedforward LLMs solve two-hop factual recall tasks, which can be expressed compositionally as g(f(x)). We first confirm that modern LLMs continue to suffer from the "compositionality gap": i.e. their ability to compute both z = f(x) and y = g(z) does not entail their ability to compute the composition y = g(f(x)). Then, using logit lens on their residual stream activations, we identify two processing mechanisms, one which solves tasks compositionally, computing f(x) along the way to computing g(f(x)), and one which solves them directly, without any detectable signature of the intermediate variable f(x). Finally, we find that which mechanism is employed appears to be related to the embedding space geometry, with the idiomatic mechanism being dominant in cases where there exists a linear mapping from x to g(f(x)) in the embedding spaces. We fully release our data and code at: https://github.com/apoorvkh/composing-functions .
PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space
Few prior works study deep learning on point sets. PointNet by Qi et al. is a pioneer in this direction. However, by design PointNet does not capture local structures induced by the metric space points live in, limiting its ability to recognize fine-grained patterns and generalizability to complex scenes. In this work, we introduce a hierarchical neural network that applies PointNet recursively on a nested partitioning of the input point set. By exploiting metric space distances, our network is able to learn local features with increasing contextual scales. With further observation that point sets are usually sampled with varying densities, which results in greatly decreased performance for networks trained on uniform densities, we propose novel set learning layers to adaptively combine features from multiple scales. Experiments show that our network called PointNet++ is able to learn deep point set features efficiently and robustly. In particular, results significantly better than state-of-the-art have been obtained on challenging benchmarks of 3D point clouds.
Contrastive Loss is All You Need to Recover Analogies as Parallel Lines
While static word embedding models are known to represent linguistic analogies as parallel lines in high-dimensional space, the underlying mechanism as to why they result in such geometric structures remains obscure. We find that an elementary contrastive-style method employed over distributional information performs competitively with popular word embedding models on analogy recovery tasks, while achieving dramatic speedups in training time. Further, we demonstrate that a contrastive loss is sufficient to create these parallel structures in word embeddings, and establish a precise relationship between the co-occurrence statistics and the geometric structure of the resulting word embeddings.
A Length-Extrapolatable Transformer
Position modeling plays a critical role in Transformers. In this paper, we focus on length extrapolation, i.e., training on short texts while evaluating longer sequences. We define attention resolution as an indicator of extrapolation. Then we propose two designs to improve the above metric of Transformers. Specifically, we introduce a relative position embedding to explicitly maximize attention resolution. Moreover, we use blockwise causal attention during inference for better resolution. We evaluate different Transformer variants with language modeling. Experimental results show that our model achieves strong performance in both interpolation and extrapolation settings. The code will be available at https://aka.ms/LeX-Transformer.
Magnitude: A Fast, Efficient Universal Vector Embedding Utility Package
Vector space embedding models like word2vec, GloVe, fastText, and ELMo are extremely popular representations in natural language processing (NLP) applications. We present Magnitude, a fast, lightweight tool for utilizing and processing embeddings. Magnitude is an open source Python package with a compact vector storage file format that allows for efficient manipulation of huge numbers of embeddings. Magnitude performs common operations up to 60 to 6,000 times faster than Gensim. Magnitude introduces several novel features for improved robustness like out-of-vocabulary lookups.
Foundations of Vector Retrieval
Vectors are universal mathematical objects that can represent text, images, speech, or a mix of these data modalities. That happens regardless of whether data is represented by hand-crafted features or learnt embeddings. Collect a large enough quantity of such vectors and the question of retrieval becomes urgently relevant: Finding vectors that are more similar to a query vector. This monograph is concerned with the question above and covers fundamental concepts along with advanced data structures and algorithms for vector retrieval. In doing so, it recaps this fascinating topic and lowers barriers of entry into this rich area of research.
Encapsulating Textual Contents into a MOC data Structure for Advanced Applications
Context. The Multi-Order Coverage map (MOC) is a widely adopted standard promoted by the International Virtual Observatory Alliance (IVOA) to support data sharing and interoperability within the Virtual Observatory (VO) ecosystem. This hierarchical data structure efficiently encodes and visualizes irregularly shaped regions of the sky, enabling applications such as cross-matching large astronomical catalogs. Aims. This study aims to explore potential enhancements to the MOC data structure by encapsulating textual descriptions and semantic embeddings into sky regions. Specifically, we introduce "Textual MOCs", in which textual content is encapsulated, and "Semantic MOCs" that transform textual content into semantic embeddings. These enhancements are designed to enable advanced operations such as similarity searches and complex queries and to integrate with generative artificial intelligence (GenAI) tools. Method. We experimented with Textual MOCs by annotating detailed descriptions directly into the MOC sky regions, enriching the maps with contextual information suitable for interactive learning tools. For Semantic MOCs, we converted the textual content into semantic embeddings, numerical representations capturing textual meanings in multidimensional spaces, and stored them in high-dimensional vector databases optimized for efficient retrieval. Results. The implementation of Textual MOCs enhances user engagement by providing meaningful descriptions within sky regions. Semantic MOCs enable sophisticated query capabilities, such as similarity-based searches and context-aware data retrieval. Integration with multimodal generative AI systems allows for more accurate and contextually relevant interactions supporting both spatial, semantic and visual operations for advancing astronomical data analysis capabilities.
Shadow Cones: A Generalized Framework for Partial Order Embeddings
Hyperbolic space has proven to be well-suited for capturing hierarchical relations in data, such as trees and directed acyclic graphs. Prior work introduced the concept of entailment cones, which uses partial orders defined by nested cones in the Poincar\'e ball to model hierarchies. Here, we introduce the ``shadow cones" framework, a physics-inspired entailment cone construction. Specifically, we model partial orders as subset relations between shadows formed by a light source and opaque objects in hyperbolic space. The shadow cones framework generalizes entailment cones to a broad class of formulations and hyperbolic space models beyond the Poincar\'e ball. This results in clear advantages over existing constructions: for example, shadow cones possess better optimization properties over constructions limited to the Poincar\'e ball. Our experiments on datasets of various sizes and hierarchical structures show that shadow cones consistently and significantly outperform existing entailment cone constructions. These results indicate that shadow cones are an effective way to model partial orders in hyperbolic space, offering physically intuitive and novel insights about the nature of such structures.
End-to-End Retrieval in Continuous Space
Most text-based information retrieval (IR) systems index objects by words or phrases. These discrete systems have been augmented by models that use embeddings to measure similarity in continuous space. But continuous-space models are typically used just to re-rank the top candidates. We consider the problem of end-to-end continuous retrieval, where standard approximate nearest neighbor (ANN) search replaces the usual discrete inverted index, and rely entirely on distances between learned embeddings. By training simple models specifically for retrieval, with an appropriate model architecture, we improve on a discrete baseline by 8% and 26% (MAP) on two similar-question retrieval tasks. We also discuss the problem of evaluation for retrieval systems, and show how to modify existing pairwise similarity datasets for this purpose.
Length Generalization in Arithmetic Transformers
We examine how transformers cope with two challenges: learning basic integer arithmetic, and generalizing to longer sequences than seen during training. We find that relative position embeddings enable length generalization for simple tasks, such as addition: models trained on 5-digit numbers can perform 15-digit sums. However, this method fails for multiplication, and we propose train set priming: adding a few (10 to 50) long sequences to the training set. We show that priming allows models trained on 5-digit times 3-digit multiplications to generalize to 35times 3 examples. We also show that models can be primed for different generalization lengths, and that the priming sample size scales as the logarithm of the training set size. Finally, we discuss potential applications of priming beyond arithmetic.
From Occlusion to Insight: Object Search in Semantic Shelves using Large Language Models
How can a robot efficiently extract a desired object from a shelf when it is fully occluded by other objects? Prior works propose geometric approaches for this problem but do not consider object semantics. Shelves in pharmacies, restaurant kitchens, and grocery stores are often organized such that semantically similar objects are placed close to one another. Can large language models (LLMs) serve as semantic knowledge sources to accelerate robotic mechanical search in semantically arranged environments? With Semantic Spatial Search on Shelves (S^4), we use LLMs to generate affinity matrices, where entries correspond to semantic likelihood of physical proximity between objects. We derive semantic spatial distributions by synthesizing semantics with learned geometric constraints. S^4 incorporates Optical Character Recognition (OCR) and semantic refinement with predictions from ViLD, an open-vocabulary object detection model. Simulation experiments suggest that semantic spatial search reduces the search time relative to pure spatial search by an average of 24% across three domains: pharmacy, kitchen, and office shelves. A manually collected dataset of 100 semantic scenes suggests that OCR and semantic refinement improve object detection accuracy by 35%. Lastly, physical experiments in a pharmacy shelf suggest 47.1% improvement over pure spatial search. Supplementary material can be found at https://sites.google.com/view/s4-rss/home.
Constrained Graphic Layout Generation via Latent Optimization
It is common in graphic design humans visually arrange various elements according to their design intent and semantics. For example, a title text almost always appears on top of other elements in a document. In this work, we generate graphic layouts that can flexibly incorporate such design semantics, either specified implicitly or explicitly by a user. We optimize using the latent space of an off-the-shelf layout generation model, allowing our approach to be complementary to and used with existing layout generation models. Our approach builds on a generative layout model based on a Transformer architecture, and formulates the layout generation as a constrained optimization problem where design constraints are used for element alignment, overlap avoidance, or any other user-specified relationship. We show in the experiments that our approach is capable of generating realistic layouts in both constrained and unconstrained generation tasks with a single model. The code is available at https://github.com/ktrk115/const_layout .
Finsler Metric Clustering in Weighted Projective Spaces
This paper develops a hierarchical clustering algorithm for weighted projective spaces P_{q}, utilizing a Finsler metric d_F([z], [w]) and its rational analogue d_{F,Q}([z], [w]) to define distances that preserve the non-Euclidean geometry of these quotient manifolds. Defined via geodesic integrals of a scaling invariant Finsler norm weighted by the grades q = (q_0, q_1, dots, q_n), these metrics satisfy true metric properties including the triangle inequality, overcoming the limitations of the non-metric dissimilarity measure from prior work.
Generating Visual Spatial Description via Holistic 3D Scene Understanding
Visual spatial description (VSD) aims to generate texts that describe the spatial relations of the given objects within images. Existing VSD work merely models the 2D geometrical vision features, thus inevitably falling prey to the problem of skewed spatial understanding of target objects. In this work, we investigate the incorporation of 3D scene features for VSD. With an external 3D scene extractor, we obtain the 3D objects and scene features for input images, based on which we construct a target object-centered 3D spatial scene graph (Go3D-S2G), such that we model the spatial semantics of target objects within the holistic 3D scenes. Besides, we propose a scene subgraph selecting mechanism, sampling topologically-diverse subgraphs from Go3D-S2G, where the diverse local structure features are navigated to yield spatially-diversified text generation. Experimental results on two VSD datasets demonstrate that our framework outperforms the baselines significantly, especially improving on the cases with complex visual spatial relations. Meanwhile, our method can produce more spatially-diversified generation. Code is available at https://github.com/zhaoyucs/VSD.
A Concept-Centric Approach to Multi-Modality Learning
In an effort to create a more efficient AI system, we introduce a new multi-modality learning framework that leverages a modality-agnostic concept space possessing abstract knowledge and a set of modality-specific projection models tailored to process distinct modality inputs and map them onto the concept space. Decoupled from specific modalities and their associated projection models, the concept space focuses on learning abstract knowledge that is universally applicable across modalities. Subsequently, the knowledge embedded into the concept space streamlines the learning processes of modality-specific projection models. We evaluate our framework on two popular tasks: Image-Text Matching and Visual Question Answering. Our framework achieves performance on par with benchmark models while demonstrating more efficient learning curves.
The magnitude vector of images
The magnitude of a finite metric space has recently emerged as a novel invariant quantity, allowing to measure the effective size of a metric space. Despite encouraging first results demonstrating the descriptive abilities of the magnitude, such as being able to detect the boundary of a metric space, the potential use cases of magnitude remain under-explored. In this work, we investigate the properties of the magnitude on images, an important data modality in many machine learning applications. By endowing each individual images with its own metric space, we are able to define the concept of magnitude on images and analyse the individual contribution of each pixel with the magnitude vector. In particular, we theoretically show that the previously known properties of boundary detection translate to edge detection abilities in images. Furthermore, we demonstrate practical use cases of magnitude for machine learning applications and propose a novel magnitude model that consists of a computationally efficient magnitude computation and a learnable metric. By doing so, we address the computational hurdle that used to make magnitude impractical for many applications and open the way for the adoption of magnitude in machine learning research.
Poincaré Embeddings for Learning Hierarchical Representations
Representation learning has become an invaluable approach for learning from symbolic data such as text and graphs. However, while complex symbolic datasets often exhibit a latent hierarchical structure, state-of-the-art methods typically learn embeddings in Euclidean vector spaces, which do not account for this property. For this purpose, we introduce a new approach for learning hierarchical representations of symbolic data by embedding them into hyperbolic space -- or more precisely into an n-dimensional Poincar\'e ball. Due to the underlying hyperbolic geometry, this allows us to learn parsimonious representations of symbolic data by simultaneously capturing hierarchy and similarity. We introduce an efficient algorithm to learn the embeddings based on Riemannian optimization and show experimentally that Poincar\'e embeddings outperform Euclidean embeddings significantly on data with latent hierarchies, both in terms of representation capacity and in terms of generalization ability.
The Numerical Stability of Hyperbolic Representation Learning
Given the exponential growth of the volume of the ball w.r.t. its radius, the hyperbolic space is capable of embedding trees with arbitrarily small distortion and hence has received wide attention for representing hierarchical datasets. However, this exponential growth property comes at a price of numerical instability such that training hyperbolic learning models will sometimes lead to catastrophic NaN problems, encountering unrepresentable values in floating point arithmetic. In this work, we carefully analyze the limitation of two popular models for the hyperbolic space, namely, the Poincar\'e ball and the Lorentz model. We first show that, under the 64 bit arithmetic system, the Poincar\'e ball has a relatively larger capacity than the Lorentz model for correctly representing points. Then, we theoretically validate the superiority of the Lorentz model over the Poincar\'e ball from the perspective of optimization. Given the numerical limitations of both models, we identify one Euclidean parametrization of the hyperbolic space which can alleviate these limitations. We further extend this Euclidean parametrization to hyperbolic hyperplanes and exhibits its ability in improving the performance of hyperbolic SVM.
Visual Spatial Reasoning
Spatial relations are a basic part of human cognition. However, they are expressed in natural language in a variety of ways, and previous work has suggested that current vision-and-language models (VLMs) struggle to capture relational information. In this paper, we present Visual Spatial Reasoning (VSR), a dataset containing more than 10k natural text-image pairs with 65 types of spatial relations in English (such as: under, in front of, and facing). While using a seemingly simple annotation format, we show how the dataset includes challenging linguistic phenomena, such as varying reference frames. We demonstrate a large gap between human and model performance: the human ceiling is above 95%, while state-of-the-art models only achieve around 70%. We observe that VLMs' by-relation performances have little correlation with the number of training examples and the tested models are in general incapable of recognising relations concerning the orientations of objects.
Joint 2D-3D-Semantic Data for Indoor Scene Understanding
We present a dataset of large-scale indoor spaces that provides a variety of mutually registered modalities from 2D, 2.5D and 3D domains, with instance-level semantic and geometric annotations. The dataset covers over 6,000m2 and contains over 70,000 RGB images, along with the corresponding depths, surface normals, semantic annotations, global XYZ images (all in forms of both regular and 360{\deg} equirectangular images) as well as camera information. It also includes registered raw and semantically annotated 3D meshes and point clouds. The dataset enables development of joint and cross-modal learning models and potentially unsupervised approaches utilizing the regularities present in large-scale indoor spaces. The dataset is available here: http://3Dsemantics.stanford.edu/
Grounding Referring Expressions in Images by Variational Context
We focus on grounding (i.e., localizing or linking) referring expressions in images, e.g., "largest elephant standing behind baby elephant". This is a general yet challenging vision-language task since it does not only require the localization of objects, but also the multimodal comprehension of context --- visual attributes (e.g., "largest", "baby") and relationships (e.g., "behind") that help to distinguish the referent from other objects, especially those of the same category. Due to the exponential complexity involved in modeling the context associated with multiple image regions, existing work oversimplifies this task to pairwise region modeling by multiple instance learning. In this paper, we propose a variational Bayesian method, called Variational Context, to solve the problem of complex context modeling in referring expression grounding. Our model exploits the reciprocal relation between the referent and context, i.e., either of them influences the estimation of the posterior distribution of the other, and thereby the search space of context can be greatly reduced, resulting in better localization of referent. We develop a novel cue-specific language-vision embedding network that learns this reciprocity model end-to-end. We also extend the model to the unsupervised setting where no annotation for the referent is available. Extensive experiments on various benchmarks show consistent improvement over state-of-the-art methods in both supervised and unsupervised settings.
Knowledge Graph Embedding: A Survey from the Perspective of Representation Spaces
Knowledge graph embedding (KGE) is an increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.
RepBERT: Contextualized Text Embeddings for First-Stage Retrieval
Although exact term match between queries and documents is the dominant method to perform first-stage retrieval, we propose a different approach, called RepBERT, to represent documents and queries with fixed-length contextualized embeddings. The inner products of query and document embeddings are regarded as relevance scores. On MS MARCO Passage Ranking task, RepBERT achieves state-of-the-art results among all initial retrieval techniques. And its efficiency is comparable to bag-of-words methods.
Unveiling the Latent Space Geometry of Push-Forward Generative Models
Many deep generative models are defined as a push-forward of a Gaussian measure by a continuous generator, such as Generative Adversarial Networks (GANs) or Variational Auto-Encoders (VAEs). This work explores the latent space of such deep generative models. A key issue with these models is their tendency to output samples outside of the support of the target distribution when learning disconnected distributions. We investigate the relationship between the performance of these models and the geometry of their latent space. Building on recent developments in geometric measure theory, we prove a sufficient condition for optimality in the case where the dimension of the latent space is larger than the number of modes. Through experiments on GANs, we demonstrate the validity of our theoretical results and gain new insights into the latent space geometry of these models. Additionally, we propose a truncation method that enforces a simplicial cluster structure in the latent space and improves the performance of GANs.
A Convenient Category for Higher-Order Probability Theory
Higher-order probabilistic programming languages allow programmers to write sophisticated models in machine learning and statistics in a succinct and structured way, but step outside the standard measure-theoretic formalization of probability theory. Programs may use both higher-order functions and continuous distributions, or even define a probability distribution on functions. But standard probability theory does not handle higher-order functions well: the category of measurable spaces is not cartesian closed. Here we introduce quasi-Borel spaces. We show that these spaces: form a new formalization of probability theory replacing measurable spaces; form a cartesian closed category and so support higher-order functions; form a well-pointed category and so support good proof principles for equational reasoning; and support continuous probability distributions. We demonstrate the use of quasi-Borel spaces for higher-order functions and probability by: showing that a well-known construction of probability theory involving random functions gains a cleaner expression; and generalizing de Finetti's theorem, that is a crucial theorem in probability theory, to quasi-Borel spaces.
SAT: Dynamic Spatial Aptitude Training for Multimodal Language Models
Reasoning about motion and space is a fundamental cognitive capability that is required by multiple real-world applications. While many studies highlight that large multimodal language models (MLMs) struggle to reason about space, they only focus on static spatial relationships, and not dynamic awareness of motion and space, i.e., reasoning about the effect of egocentric and object motions on spatial relationships. Manually annotating such object and camera movements is expensive. Hence, we introduce SAT, a simulated spatial aptitude training dataset comprising both static and dynamic spatial reasoning across 175K question-answer (QA) pairs and 20K scenes. Complementing this, we also construct a small (150 image-QAs) yet challenging dynamic spatial test set using real-world images. Leveraging our SAT datasets and 6 existing static spatial benchmarks, we systematically investigate what improves both static and dynamic spatial awareness. Our results reveal that simulations are surprisingly effective at imparting spatial aptitude to MLMs that translate to real images. We show that perfect annotations in simulation are more effective than existing approaches of pseudo-annotating real images. For instance, SAT training improves a LLaVA-13B model by an average 11% and a LLaVA-Video-7B model by an average 8% on multiple spatial benchmarks, including our real-image dynamic test set and spatial reasoning on long videos -- even outperforming some large proprietary models. While reasoning over static relationships improves with synthetic training data, there is still considerable room for improvement for dynamic reasoning questions.
Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small World graphs
We present a new approach for the approximate K-nearest neighbor search based on navigable small world graphs with controllable hierarchy (Hierarchical NSW, HNSW). The proposed solution is fully graph-based, without any need for additional search structures, which are typically used at the coarse search stage of the most proximity graph techniques. Hierarchical NSW incrementally builds a multi-layer structure consisting from hierarchical set of proximity graphs (layers) for nested subsets of the stored elements. The maximum layer in which an element is present is selected randomly with an exponentially decaying probability distribution. This allows producing graphs similar to the previously studied Navigable Small World (NSW) structures while additionally having the links separated by their characteristic distance scales. Starting search from the upper layer together with utilizing the scale separation boosts the performance compared to NSW and allows a logarithmic complexity scaling. Additional employment of a heuristic for selecting proximity graph neighbors significantly increases performance at high recall and in case of highly clustered data. Performance evaluation has demonstrated that the proposed general metric space search index is able to strongly outperform previous opensource state-of-the-art vector-only approaches. Similarity of the algorithm to the skip list structure allows straightforward balanced distributed implementation.
LM-Infinite: Simple On-the-Fly Length Generalization for Large Language Models
In recent years, there have been remarkable advancements in the performance of Transformer-based Large Language Models (LLMs) across various domains. As these LLMs are deployed for increasingly complex tasks, they often face the needs to conduct longer reasoning processes or understanding larger contexts. In these situations, the length generalization failure of LLMs on long sequences become more prominent. Most pre-training schemes truncate training sequences to a fixed length (such as 2048 for LLaMa). LLMs often struggle to generate fluent texts, let alone carry out downstream tasks, after longer contexts, even with relative positional encoding which is designed to cope with this problem. Common solutions such as finetuning on longer corpora often involves daunting hardware and time costs and requires careful training process design. To more efficiently leverage the generation capacity of existing LLMs, we theoretically and empirically investigate the main out-of-distribution (OOD) factors contributing to this problem. Inspired by this diagnosis, we propose a simple yet effective solution for on-the-fly length generalization, LM-Infinite, which involves only a Lambda-shaped attention mask and a distance limit while requiring no parameter updates or learning. We find it applicable to a variety of LLMs using relative-position encoding methods. LM-Infinite is computational efficient with O(n) time and space, and demonstrates consistent fluency and generation quality to as long as 32k tokens on ArXiv and OpenWebText2 datasets, with 2.72x decoding speedup. On downstream task such as passkey retrieval, it continues to work on inputs much longer than training lengths where vanilla models fail immediately.
How Programming Concepts and Neurons Are Shared in Code Language Models
Several studies have explored the mechanisms of large language models (LLMs) in coding tasks, but most have focused on programming languages (PLs) in a monolingual setting. In this paper, we investigate the relationship between multiple PLs and English in the concept space of LLMs. We perform a few-shot translation task on 21 PL pairs using two Llama-based models. By decoding the embeddings of intermediate layers during this task, we observe that the concept space is closer to English (including PL keywords) and assigns high probabilities to English tokens in the second half of the intermediate layers. We analyze neuron activations for 11 PLs and English, finding that while language-specific neurons are primarily concentrated in the bottom layers, those exclusive to each PL tend to appear in the top layers. For PLs that are highly aligned with multiple other PLs, identifying language-specific neurons is not feasible. These PLs also tend to have a larger keyword set than other PLs and are closer to the model's concept space regardless of the input/output PL in the translation task. Our findings provide insights into how LLMs internally represent PLs, revealing structural patterns in the model's concept space. Code is available at https://github.com/cisnlp/code-specific-neurons.
Referring Expression Instance Retrieval and A Strong End-to-End Baseline
Using natural language to query visual information is a fundamental need in real-world applications. Text-Image Retrieval (TIR) retrieves a target image from a gallery based on an image-level description, while Referring Expression Comprehension (REC) localizes a target object within a given image using an instance-level description. However, real-world applications often present more complex demands. Users typically query an instance-level description across a large gallery and expect to receive both relevant image and the corresponding instance location. In such scenarios, TIR struggles with fine-grained descriptions and object-level localization, while REC is limited in its ability to efficiently search large galleries and lacks an effective ranking mechanism. In this paper, we introduce a new task called Referring Expression Instance Retrieval (REIR), which supports both instance-level retrieval and localization based on fine-grained referring expressions. First, we propose a large-scale benchmark for REIR, named REIRCOCO, constructed by prompting advanced vision-language models to generate high-quality referring expressions for instances in the MSCOCO and RefCOCO datasets. Second, we present a baseline method, Contrastive Language-Instance Alignment with Relation Experts (CLARE), which employs a dual-stream architecture to address REIR in an end-to-end manner. Given a referring expression, the textual branch encodes it into a query embedding. The visual branch detects candidate objects and extracts their instance-level visual features. The most similar candidate to the query is selected for bounding box prediction. CLARE is first trained on object detection and REC datasets to establish initial grounding capabilities, then optimized via Contrastive Language-Instance Alignment (CLIA) for improved retrieval across images. We will release our code and benchmark publicly.
Manify: A Python Library for Learning Non-Euclidean Representations
We present Manify, an open-source Python library for non-Euclidean representation learning. Leveraging manifold learning techniques, Manify provides tools for learning embeddings in (products of) non-Euclidean spaces, performing classification and regression with data that lives in such spaces, and estimating the curvature of a manifold. Manify aims to advance research and applications in machine learning by offering a comprehensive suite of tools for manifold-based data analysis. Our source code, examples, datasets, results, and documentation are available at https://github.com/pchlenski/manify
Can Vision-Language Models be a Good Guesser? Exploring VLMs for Times and Location Reasoning
Vision-Language Models (VLMs) are expected to be capable of reasoning with commonsense knowledge as human beings. One example is that humans can reason where and when an image is taken based on their knowledge. This makes us wonder if, based on visual cues, Vision-Language Models that are pre-trained with large-scale image-text resources can achieve and even outperform human's capability in reasoning times and location. To address this question, we propose a two-stage \recognition\space and \reasoning\space probing task, applied to discriminative and generative VLMs to uncover whether VLMs can recognize times and location-relevant features and further reason about it. To facilitate the investigation, we introduce WikiTiLo, a well-curated image dataset compromising images with rich socio-cultural cues. In the extensive experimental studies, we find that although VLMs can effectively retain relevant features in visual encoders, they still fail to make perfect reasoning. We will release our dataset and codes to facilitate future studies.
Yes, we CANN: Constrained Approximate Nearest Neighbors for local feature-based visual localization
Large-scale visual localization systems continue to rely on 3D point clouds built from image collections using structure-from-motion. While the 3D points in these models are represented using local image features, directly matching a query image's local features against the point cloud is challenging due to the scale of the nearest-neighbor search problem. Many recent approaches to visual localization have thus proposed a hybrid method, where first a global (per image) embedding is used to retrieve a small subset of database images, and local features of the query are matched only against those. It seems to have become common belief that global embeddings are critical for said image-retrieval in visual localization, despite the significant downside of having to compute two feature types for each query image. In this paper, we take a step back from this assumption and propose Constrained Approximate Nearest Neighbors (CANN), a joint solution of k-nearest-neighbors across both the geometry and appearance space using only local features. We first derive the theoretical foundation for k-nearest-neighbor retrieval across multiple metrics and then showcase how CANN improves visual localization. Our experiments on public localization benchmarks demonstrate that our method significantly outperforms both state-of-the-art global feature-based retrieval and approaches using local feature aggregation schemes. Moreover, it is an order of magnitude faster in both index and query time than feature aggregation schemes for these datasets. Code will be released.
Composed Image Retrieval for Remote Sensing
This work introduces composed image retrieval to remote sensing. It allows to query a large image archive by image examples alternated by a textual description, enriching the descriptive power over unimodal queries, either visual or textual. Various attributes can be modified by the textual part, such as shape, color, or context. A novel method fusing image-to-image and text-to-image similarity is introduced. We demonstrate that a vision-language model possesses sufficient descriptive power and no further learning step or training data are necessary. We present a new evaluation benchmark focused on color, context, density, existence, quantity, and shape modifications. Our work not only sets the state-of-the-art for this task, but also serves as a foundational step in addressing a gap in the field of remote sensing image retrieval. Code at: https://github.com/billpsomas/rscir
TIDEE: Tidying Up Novel Rooms using Visuo-Semantic Commonsense Priors
We introduce TIDEE, an embodied agent that tidies up a disordered scene based on learned commonsense object placement and room arrangement priors. TIDEE explores a home environment, detects objects that are out of their natural place, infers plausible object contexts for them, localizes such contexts in the current scene, and repositions the objects. Commonsense priors are encoded in three modules: i) visuo-semantic detectors that detect out-of-place objects, ii) an associative neural graph memory of objects and spatial relations that proposes plausible semantic receptacles and surfaces for object repositions, and iii) a visual search network that guides the agent's exploration for efficiently localizing the receptacle-of-interest in the current scene to reposition the object. We test TIDEE on tidying up disorganized scenes in the AI2THOR simulation environment. TIDEE carries out the task directly from pixel and raw depth input without ever having observed the same room beforehand, relying only on priors learned from a separate set of training houses. Human evaluations on the resulting room reorganizations show TIDEE outperforms ablative versions of the model that do not use one or more of the commonsense priors. On a related room rearrangement benchmark that allows the agent to view the goal state prior to rearrangement, a simplified version of our model significantly outperforms a top-performing method by a large margin. Code and data are available at the project website: https://tidee-agent.github.io/.
SURPRISE3D: A Dataset for Spatial Understanding and Reasoning in Complex 3D Scenes
The integration of language and 3D perception is critical for embodied AI and robotic systems to perceive, understand, and interact with the physical world. Spatial reasoning, a key capability for understanding spatial relationships between objects, remains underexplored in current 3D vision-language research. Existing datasets often mix semantic cues (e.g., object name) with spatial context, leading models to rely on superficial shortcuts rather than genuinely interpreting spatial relationships. To address this gap, we introduce Surprise3D, a novel dataset designed to evaluate language-guided spatial reasoning segmentation in complex 3D scenes. Surprise3D consists of more than 200k vision language pairs across 900+ detailed indoor scenes from ScanNet++ v2, including more than 2.8k unique object classes. The dataset contains 89k+ human-annotated spatial queries deliberately crafted without object name, thereby mitigating shortcut biases in spatial understanding. These queries comprehensively cover various spatial reasoning skills, such as relative position, narrative perspective, parametric perspective, and absolute distance reasoning. Initial benchmarks demonstrate significant challenges for current state-of-the-art expert 3D visual grounding methods and 3D-LLMs, underscoring the necessity of our dataset and the accompanying 3D Spatial Reasoning Segmentation (3D-SRS) benchmark suite. Surprise3D and 3D-SRS aim to facilitate advancements in spatially aware AI, paving the way for effective embodied interaction and robotic planning. The code and datasets can be found in https://github.com/liziwennba/SUPRISE.
Retrofitting Word Vectors to Semantic Lexicons
Vector space word representations are learned from distributional information of words in large corpora. Although such statistics are semantically informative, they disregard the valuable information that is contained in semantic lexicons such as WordNet, FrameNet, and the Paraphrase Database. This paper proposes a method for refining vector space representations using relational information from semantic lexicons by encouraging linked words to have similar vector representations, and it makes no assumptions about how the input vectors were constructed. Evaluated on a battery of standard lexical semantic evaluation tasks in several languages, we obtain substantial improvements starting with a variety of word vector models. Our refinement method outperforms prior techniques for incorporating semantic lexicons into the word vector training algorithms.
Distinct Minkowski Spaces from BMS Supertranslations
This work provides a smooth and everywhere well-defined extension of Bondi-Metzner-Sachs (BMS) supertranslations into the bulk of Minkowski space. The supertranslations lead to physically distinct spacetimes, all isometric to Minkowski space. This construction is in contrast to the often used, non-smooth BMS transformations that appear in a gauge-fixed description of the theory.
A Comparative Study of Sentence Embedding Models for Assessing Semantic Variation
Analyzing the pattern of semantic variation in long real-world texts such as books or transcripts is interesting from the stylistic, cognitive, and linguistic perspectives. It is also useful for applications such as text segmentation, document summarization, and detection of semantic novelty. The recent emergence of several vector-space methods for sentence embedding has made such analysis feasible. However, this raises the issue of how consistent and meaningful the semantic representations produced by various methods are in themselves. In this paper, we compare several recent sentence embedding methods via time-series of semantic similarity between successive sentences and matrices of pairwise sentence similarity for multiple books of literature. In contrast to previous work using target tasks and curated datasets to compare sentence embedding methods, our approach provides an evaluation of the methods 'in the wild'. We find that most of the sentence embedding methods considered do infer highly correlated patterns of semantic similarity in a given document, but show interesting differences.
P+: Extended Textual Conditioning in Text-to-Image Generation
We introduce an Extended Textual Conditioning space in text-to-image models, referred to as P+. This space consists of multiple textual conditions, derived from per-layer prompts, each corresponding to a layer of the denoising U-net of the diffusion model. We show that the extended space provides greater disentangling and control over image synthesis. We further introduce Extended Textual Inversion (XTI), where the images are inverted into P+, and represented by per-layer tokens. We show that XTI is more expressive and precise, and converges faster than the original Textual Inversion (TI) space. The extended inversion method does not involve any noticeable trade-off between reconstruction and editability and induces more regular inversions. We conduct a series of extensive experiments to analyze and understand the properties of the new space, and to showcase the effectiveness of our method for personalizing text-to-image models. Furthermore, we utilize the unique properties of this space to achieve previously unattainable results in object-style mixing using text-to-image models. Project page: https://prompt-plus.github.io
Template estimation in computational anatomy: Fréchet means in top and quotient spaces are not consistent
In this article, we study the consistency of the template estimation with the Fr\'echet mean in quotient spaces. The Fr\'echet mean in quotient spaces is often used when the observations are deformed or transformed by a group action. We show that in most cases this estimator is actually inconsistent. We exhibit a sufficient condition for this inconsistency, which amounts to the folding of the distribution of the noisy template when it is projected to the quotient space. This condition appears to be fulfilled as soon as the support of the noise is large enough. To quantify this inconsistency we provide lower and upper bounds of the bias as a function of the variability (the noise level). This shows that the consistency bias cannot be neglected when the variability increases.
Radii, masses, and transit-timing variations of the three-planet system orbiting the naked-eye star TOI-396
TOI-396 is an F6V star (Vapprox6.4) orbited by three transiting planets. The orbital periods of the two innermost planets are close to the 5:3 commensurability (P_b sim3.6 d and P_c sim6.0 d). To measure the masses of the three planets, refine their radii, and investigate whether planets b and c are in MMR, we carried out HARPS RV observations and retrieved photometric data from TESS. We extracted the RVs via a skew-normal fit onto the HARPS CCFs and performed an MCMC joint analysis of the Doppler measurements and transit photometry, while employing the breakpoint method to remove stellar activity from the RV time series. We also performed a thorough TTV dynamical analysis of the system. Our analysis confirms that the three planets have similar sizes: R_b=2.004_{-0.047}^{+0.045}R_{oplus}; R_c=1.979_{-0.051}^{+0.054}R_{oplus}; R_d=2.001_{-0.064}^{+0.063}R_{oplus}. For the first time, we have determined the RV masses for TOI-396b and d: M_b=3.55_{-0.96}^{+0.94}M_{oplus} (rho_b=2.44_{-0.68}^{+0.69} g cm^{-3}) and M_d=7.1pm1.6M_{oplus} (rho_d=4.9_{-1.1}^{+1.2} g cm^{-3}). Our results suggest a quite unusual system architecture, with the outermost planet being the densest. The Doppler reflex motion induced by TOI-396c remains undetected in our RV time series, likely due to the proximity of P_c to the star's rotation period (P_{rot}=6.7pm1.3 d). We also discovered that TOI-396b and c display significant TTVs. While the TTV dynamical analysis returns a formally precise mass for TOI-396c (M_{c,dyn}=2.24^{+0.13}_{-0.67}M_{oplus}), the result might not be accurate owing to the poor sampling of the TTV phase. We also conclude that TOI-396b and c are close to but out of the 5:3 MMR. Our numerical simulation suggests TTV semi-amplitudes of up to 5 hours over a temporal baseline of sim5.2 years.
Theoretical analysis and computation of the sample Frechet mean for sets of large graphs based on spectral information
To characterize the location (mean, median) of a set of graphs, one needs a notion of centrality that is adapted to metric spaces, since graph sets are not Euclidean spaces. A standard approach is to consider the Frechet mean. In this work, we equip a set of graphs with the pseudometric defined by the norm between the eigenvalues of their respective adjacency matrix. Unlike the edit distance, this pseudometric reveals structural changes at multiple scales, and is well adapted to studying various statistical problems for graph-valued data. We describe an algorithm to compute an approximation to the sample Frechet mean of a set of undirected unweighted graphs with a fixed size using this pseudometric.
On Coresets for Clustering in Small Dimensional Euclidean Spaces
We consider the problem of constructing small coresets for k-Median in Euclidean spaces. Given a large set of data points Psubset R^d, a coreset is a much smaller set Ssubset R^d, so that the k-Median costs of any k centers w.r.t. P and S are close. Existing literature mainly focuses on the high-dimension case and there has been great success in obtaining dimension-independent bounds, whereas the case for small d is largely unexplored. Considering many applications of Euclidean clustering algorithms are in small dimensions and the lack of systematic studies in the current literature, this paper investigates coresets for k-Median in small dimensions. For small d, a natural question is whether existing near-optimal dimension-independent bounds can be significantly improved. We provide affirmative answers to this question for a range of parameters. Moreover, new lower bound results are also proved, which are the highest for small d. In particular, we completely settle the coreset size bound for 1-d k-Median (up to log factors). Interestingly, our results imply a strong separation between 1-d 1-Median and 1-d 2-Median. As far as we know, this is the first such separation between k=1 and k=2 in any dimension.
Latent Beam Diffusion Models for Decoding Image Sequences
While diffusion models excel at generating high-quality images from text prompts, they struggle with visual consistency in image sequences. Existing methods generate each image independently, leading to disjointed narratives - a challenge further exacerbated in non-linear storytelling, where scenes must connect beyond adjacent frames. We introduce a novel beam search strategy for latent space exploration, enabling conditional generation of full image sequences with beam search decoding. Unlike prior approaches that use fixed latent priors, our method dynamically searches for an optimal sequence of latent representations, ensuring coherent visual transitions. To address beam search's quadratic complexity, we integrate a cross-attention mechanism that efficiently scores search paths and enables pruning, prioritizing alignment with both textual prompts and visual context. Human evaluations confirm that our approach outperforms baseline methods, producing full sequences with superior coherence, visual continuity, and textual alignment. By bridging advances in search optimization and latent space refinement, this work sets a new standard for structured image sequence generation.
Revisit Anything: Visual Place Recognition via Image Segment Retrieval
Accurately recognizing a revisited place is crucial for embodied agents to localize and navigate. This requires visual representations to be distinct, despite strong variations in camera viewpoint and scene appearance. Existing visual place recognition pipelines encode the "whole" image and search for matches. This poses a fundamental challenge in matching two images of the same place captured from different camera viewpoints: "the similarity of what overlaps can be dominated by the dissimilarity of what does not overlap". We address this by encoding and searching for "image segments" instead of the whole images. We propose to use open-set image segmentation to decompose an image into `meaningful' entities (i.e., things and stuff). This enables us to create a novel image representation as a collection of multiple overlapping subgraphs connecting a segment with its neighboring segments, dubbed SuperSegment. Furthermore, to efficiently encode these SuperSegments into compact vector representations, we propose a novel factorized representation of feature aggregation. We show that retrieving these partial representations leads to significantly higher recognition recall than the typical whole image based retrieval. Our segments-based approach, dubbed SegVLAD, sets a new state-of-the-art in place recognition on a diverse selection of benchmark datasets, while being applicable to both generic and task-specialized image encoders. Finally, we demonstrate the potential of our method to ``revisit anything'' by evaluating our method on an object instance retrieval task, which bridges the two disparate areas of research: visual place recognition and object-goal navigation, through their common aim of recognizing goal objects specific to a place. Source code: https://github.com/AnyLoc/Revisit-Anything.
LASER: LAtent SpacE Rendering for 2D Visual Localization
We present LASER, an image-based Monte Carlo Localization (MCL) framework for 2D floor maps. LASER introduces the concept of latent space rendering, where 2D pose hypotheses on the floor map are directly rendered into a geometrically-structured latent space by aggregating viewing ray features. Through a tightly coupled rendering codebook scheme, the viewing ray features are dynamically determined at rendering-time based on their geometries (i.e. length, incident-angle), endowing our representation with view-dependent fine-grain variability. Our codebook scheme effectively disentangles feature encoding from rendering, allowing the latent space rendering to run at speeds above 10KHz. Moreover, through metric learning, our geometrically-structured latent space is common to both pose hypotheses and query images with arbitrary field of views. As a result, LASER achieves state-of-the-art performance on large-scale indoor localization datasets (i.e. ZInD and Structured3D) for both panorama and perspective image queries, while significantly outperforming existing learning-based methods in speed.
Context-aware Biases for Length Extrapolation
Transformers' ability to generalize to longer sequences than they have been trained on, known as length extrapolation, degrades as sequence length increases. Most of Relative Positional Encoding (RPE) methods address this problem by either adding constant linear biases or learning general biases, lacking the ability to specialize for different sequences. In this work, inspired by ALiBi, we propose Context-aware Biases for Length Extrapolation (Cable), that learns token-specific biases for each head in decoder-based transformers. Cable learns adaptive, context-aware biases, overcoming the limitations of fixed patterns by adding dynamic biases specific to each token in the sequence. Results show that when tested on a sequence length of 1024, a GPT-3 Medium (334M parameters) with our positional encoding, trained on a sequence length of 512, achieves better perplexity (-0.65) than a similar network with sinusoidal positional encoding trained on a sequence length of 1024. This is achieved with 48% lower memory usage, and only 3.5% higher training time. Furthermore, our method notably improves the extrapolation ability of existing RPE methods on the Edu-FineWeb10B and WikiText-103 datasets. Code is available at: https://github.com/axiomlab/Cable
On convex decision regions in deep network representations
Current work on human-machine alignment aims at understanding machine-learned latent spaces and their correspondence to human representations. G{\"a}rdenfors' conceptual spaces is a prominent framework for understanding human representations. Convexity of object regions in conceptual spaces is argued to promote generalizability, few-shot learning, and interpersonal alignment. Based on these insights, we investigate the notion of convexity of concept regions in machine-learned latent spaces. We develop a set of tools for measuring convexity in sampled data and evaluate emergent convexity in layered representations of state-of-the-art deep networks. We show that convexity is robust to basic re-parametrization and, hence, meaningful as a quality of machine-learned latent spaces. We find that approximate convexity is pervasive in neural representations in multiple application domains, including models of images, audio, human activity, text, and medical images. Generally, we observe that fine-tuning increases the convexity of label regions. We find evidence that pretraining convexity of class label regions predicts subsequent fine-tuning performance.
Mapping Natural Language Commands to Web Elements
The web provides a rich, open-domain environment with textual, structural, and spatial properties. We propose a new task for grounding language in this environment: given a natural language command (e.g., "click on the second article"), choose the correct element on the web page (e.g., a hyperlink or text box). We collected a dataset of over 50,000 commands that capture various phenomena such as functional references (e.g. "find who made this site"), relational reasoning (e.g. "article by john"), and visual reasoning (e.g. "top-most article"). We also implemented and analyzed three baseline models that capture different phenomena present in the dataset.
SpaCE-10: A Comprehensive Benchmark for Multimodal Large Language Models in Compositional Spatial Intelligence
Multimodal Large Language Models (MLLMs) have achieved remarkable progress in various multimodal tasks. To pursue higher intelligence in space, MLLMs require integrating multiple atomic spatial capabilities to handle complex and dynamic tasks. However, existing benchmarks struggle to comprehensively evaluate the spatial intelligence of common MLLMs from the atomic level to the compositional level. To fill this gap, we present SpaCE-10, a comprehensive benchmark for compositional spatial evaluations. In SpaCE-10, we define 10 atomic spatial capabilities, which are combined to form 8 compositional capabilities. Based on these definitions, we propose a novel hierarchical annotation pipeline to generate high-quality and diverse question-answer (QA) pairs. With over 150+ hours of human expert effort, we obtain over 5k QA pairs for 811 real indoor scenes in SpaCE-10, which covers various evaluation settings like point cloud input and multi-choice QA. We conduct an extensive evaluation of common MLLMs on SpaCE-10 and find that even the most advanced MLLM still lags behind humans by large margins. Through our careful study, we also draw several significant findings that benefit the MLLM community. For example, we reveal that the shortcoming of counting capability greatly limits the compositional spatial capabilities of existing MLLMs. The evaluation code and benchmark datasets are available at https://github.com/Cuzyoung/SpaCE-10.
Transforming Location Retrieval at Airbnb: A Journey from Heuristics to Reinforcement Learning
The Airbnb search system grapples with many unique challenges as it continues to evolve. We oversee a marketplace that is nuanced by geography, diversity of homes, and guests with a variety of preferences. Crafting an efficient search system that can accommodate diverse guest needs, while showcasing relevant homes lies at the heart of Airbnb's success. Airbnb search has many challenges that parallel other recommendation and search systems but it has a unique information retrieval problem, upstream of ranking, called location retrieval. It requires defining a topological map area that is relevant to the searched query for homes listing retrieval. The purpose of this paper is to demonstrate the methodology, challenges, and impact of building a machine learning based location retrieval product from the ground up. Despite the lack of suitable, prevalent machine learning based approaches, we tackle cold start, generalization, differentiation and algorithmic bias. We detail the efficacy of heuristics, statistics, machine learning, and reinforcement learning approaches to solve these challenges, particularly for systems that are often unexplored by current literature.
