- CISSIR: Beam Codebooks with Self-Interference Reduction Guarantees for Integrated Sensing and Communication Beyond 5G We propose a beam codebook design for integrated sensing and communication (ISAC) that reduces self-interference (SI) to alleviate analog distortion. Our optimization framework, which considers either tapered beamforming or phased arrays for both analog and hybrid schemes, modifies given reference codebooks such that a certain SI power level is achieved. In contrast to other low-SI codebooks, which often rely on hardly interpretable optimization parameters, we provide design guidelines to obtain sensing performance guarantees by deriving analytical bounds on saturation and analog-to-digital quantization in relation to the multipath SI level. By selecting standard reference codebooks in our simulations, we show how our method substantially improves the signal-to-noise ratio for sensing with little impact on 5G-NR communication. 4 authors · Feb 14, 2025 1
1 Query-Based Adaptive Aggregation for Multi-Dataset Joint Training Toward Universal Visual Place Recognition Deep learning methods for Visual Place Recognition (VPR) have advanced significantly, largely driven by large-scale datasets. However, most existing approaches are trained on a single dataset, which can introduce dataset-specific inductive biases and limit model generalization. While multi-dataset joint training offers a promising solution for developing universal VPR models, divergences among training datasets can saturate limited information capacity in feature aggregation layers, leading to suboptimal performance. To address these challenges, we propose Query-based Adaptive Aggregation (QAA), a novel feature aggregation technique that leverages learned queries as reference codebooks to effectively enhance information capacity without significant computational or parameter complexity. We show that computing the Cross-query Similarity (CS) between query-level image features and reference codebooks provides a simple yet effective way to generate robust descriptors. Our results demonstrate that QAA outperforms state-of-the-art models, achieving balanced generalization across diverse datasets while maintaining peak performance comparable to dataset-specific models. Ablation studies further explore QAA's mechanisms and scalability. Visualizations reveal that the learned queries exhibit diverse attention patterns across datasets. Code will be publicly released. 3 authors · Jul 4, 2025
1 Massive MIMO Beam Management in Sub-6 GHz 5G NR Beam codebooks are a new feature of massive multiple-input multiple-output (M-MIMO) in 5G new radio (NR). Codebooks comprised of beamforming vectors are used to transmit reference signals and obtain limited channel state information (CSI) from receivers via the codeword index. This enables large arrays that cannot otherwise obtain sufficient CSI. The performance, however, is limited by the codebook design. In this paper, we show that machine learning can be used to train site-specific codebooks for initial access. We design a neural network based on an autoencoder architecture that uses a beamspace observation in combination with RF environment characteristics to improve the synchronization signal (SS) burst codebook. We test our algorithm using a flexible dataset of channels generated from QuaDRiGa. The results show that our model outperforms the industry standard (DFT beams) and approaches the optimal performance (perfect CSI and singular value decomposition (SVD)-based beamforming), using only a few bits of feedback. 3 authors · Apr 12, 2022
2 CyberHost: Taming Audio-driven Avatar Diffusion Model with Region Codebook Attention Diffusion-based video generation technology has advanced significantly, catalyzing a proliferation of research in human animation. However, the majority of these studies are confined to same-modality driving settings, with cross-modality human body animation remaining relatively underexplored. In this paper, we introduce, an end-to-end audio-driven human animation framework that ensures hand integrity, identity consistency, and natural motion. The key design of CyberHost is the Region Codebook Attention mechanism, which improves the generation quality of facial and hand animations by integrating fine-grained local features with learned motion pattern priors. Furthermore, we have developed a suite of human-prior-guided training strategies, including body movement map, hand clarity score, pose-aligned reference feature, and local enhancement supervision, to improve synthesis results. To our knowledge, CyberHost is the first end-to-end audio-driven human diffusion model capable of facilitating zero-shot video generation within the scope of human body. Extensive experiments demonstrate that CyberHost surpasses previous works in both quantitative and qualitative aspects. 6 authors · Sep 3, 2024 1
- MonoWAD: Weather-Adaptive Diffusion Model for Robust Monocular 3D Object Detection Monocular 3D object detection is an important challenging task in autonomous driving. Existing methods mainly focus on performing 3D detection in ideal weather conditions, characterized by scenarios with clear and optimal visibility. However, the challenge of autonomous driving requires the ability to handle changes in weather conditions, such as foggy weather, not just clear weather. We introduce MonoWAD, a novel weather-robust monocular 3D object detector with a weather-adaptive diffusion model. It contains two components: (1) the weather codebook to memorize the knowledge of the clear weather and generate a weather-reference feature for any input, and (2) the weather-adaptive diffusion model to enhance the feature representation of the input feature by incorporating a weather-reference feature. This serves an attention role in indicating how much improvement is needed for the input feature according to the weather conditions. To achieve this goal, we introduce a weather-adaptive enhancement loss to enhance the feature representation under both clear and foggy weather conditions. Extensive experiments under various weather conditions demonstrate that MonoWAD achieves weather-robust monocular 3D object detection. The code and dataset are released at https://github.com/VisualAIKHU/MonoWAD. 4 authors · Jul 23, 2024