new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 30

RT-DETRv4: Painlessly Furthering Real-Time Object Detection with Vision Foundation Models

Real-time object detection has achieved substantial progress through meticulously designed architectures and optimization strategies. However, the pursuit of high-speed inference via lightweight network designs often leads to degraded feature representation, which hinders further performance improvements and practical on-device deployment. In this paper, we propose a cost-effective and highly adaptable distillation framework that harnesses the rapidly evolving capabilities of Vision Foundation Models (VFMs) to enhance lightweight object detectors. Given the significant architectural and learning objective disparities between VFMs and resource-constrained detectors, achieving stable and task-aligned semantic transfer is challenging. To address this, on one hand, we introduce a Deep Semantic Injector (DSI) module that facilitates the integration of high-level representations from VFMs into the deep layers of the detector. On the other hand, we devise a Gradient-guided Adaptive Modulation (GAM) strategy, which dynamically adjusts the intensity of semantic transfer based on gradient norm ratios. Without increasing deployment and inference overhead, our approach painlessly delivers striking and consistent performance gains across diverse DETR-based models, underscoring its practical utility for real-time detection. Our new model family, RT-DETRv4, achieves state-of-the-art results on COCO, attaining AP scores of 49.7/53.5/55.4/57.0 at corresponding speeds of 273/169/124/78 FPS.

  • 8 authors
·
Oct 29, 2025

Deep Learning on a Data Diet: Finding Important Examples Early in Training

Recent success in deep learning has partially been driven by training increasingly overparametrized networks on ever larger datasets. It is therefore natural to ask: how much of the data is superfluous, which examples are important for generalization, and how do we find them? In this work, we make the striking observation that, in standard vision datasets, simple scores averaged over several weight initializations can be used to identify important examples very early in training. We propose two such scores -- the Gradient Normed (GraNd) and the Error L2-Norm (EL2N) scores -- and demonstrate their efficacy on a range of architectures and datasets by pruning significant fractions of training data without sacrificing test accuracy. In fact, using EL2N scores calculated a few epochs into training, we can prune half of the CIFAR10 training set while slightly improving test accuracy. Furthermore, for a given dataset, EL2N scores from one architecture or hyperparameter configuration generalize to other configurations. Compared to recent work that prunes data by discarding examples that are rarely forgotten over the course of training, our scores use only local information early in training. We also use our scores to detect noisy examples and study training dynamics through the lens of important examples -- we investigate how the data distribution shapes the loss surface and identify subspaces of the model's data representation that are relatively stable over training.

  • 3 authors
·
Jul 14, 2021

The Unseen Bias: How Norm Discrepancy in Pre-Norm MLLMs Leads to Visual Information Loss

Multimodal Large Language Models (MLLMs), which couple pre-trained vision encoders and language models, have shown remarkable capabilities. However, their reliance on the ubiquitous Pre-Norm architecture introduces a subtle yet critical flaw: a severe norm disparity between the high-norm visual tokens and the low-norm text tokens. In this work, we present a formal theoretical analysis demonstrating that this imbalance is not a static issue. Instead, it induces an ``asymmetric update dynamic,'' where high-norm visual tokens exhibit a ``representational inertia,'' causing them to transform semantically much slower than their textual counterparts. This fundamentally impairs effective cross-modal feature fusion. Our empirical validation across a range of mainstream MLLMs confirms that this theoretical dynamic -- the persistence of norm disparity and the resulting asymmetric update rates -- is a prevalent phenomenon. Based on this insight, we propose a remarkably simple yet effective solution: inserting a single, carefully initialized LayerNorm layer after the visual projector to enforce norm alignment. Experiments conducted on the LLaVA-1.5 architecture show that this intervention yields significant performance gains not only on a wide suite of multimodal benchmarks but also, notably, on text-only evaluations such as MMLU, suggesting that resolving the architectural imbalance leads to a more holistically capable model.

  • 8 authors
·
Dec 9, 2025