Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeConvoSense: Overcoming Monotonous Commonsense Inferences for Conversational AI
Mastering commonsense understanding and reasoning is a pivotal skill essential for conducting engaging conversations. While there have been several attempts to create datasets that facilitate commonsense inferences in dialogue contexts, existing datasets tend to lack in-depth details, restate information already present in the conversation, and often fail to capture the multifaceted nature of commonsense reasoning. In response to these limitations, we compile a new synthetic dataset for commonsense reasoning in dialogue contexts using GPT, ConvoSense, that boasts greater contextual novelty, offers a higher volume of inferences per example, and substantially enriches the detail conveyed by the inferences. Our dataset contains over 500,000 inferences across 12,000 dialogues with 10 popular inference types, which empowers the training of generative commonsense models for dialogue that are superior in producing plausible inferences with high novelty when compared to models trained on the previous datasets. To the best of our knowledge, ConvoSense is the first of its kind to provide such a multitude of novel inferences at such a large scale.
SpaceNLI: Evaluating the Consistency of Predicting Inferences in Space
While many natural language inference (NLI) datasets target certain semantic phenomena, e.g., negation, tense & aspect, monotonicity, and presupposition, to the best of our knowledge, there is no NLI dataset that involves diverse types of spatial expressions and reasoning. We fill this gap by semi-automatically creating an NLI dataset for spatial reasoning, called SpaceNLI. The data samples are automatically generated from a curated set of reasoning patterns, where the patterns are annotated with inference labels by experts. We test several SOTA NLI systems on SpaceNLI to gauge the complexity of the dataset and the system's capacity for spatial reasoning. Moreover, we introduce a Pattern Accuracy and argue that it is a more reliable and stricter measure than the accuracy for evaluating a system's performance on pattern-based generated data samples. Based on the evaluation results we find that the systems obtain moderate results on the spatial NLI problems but lack consistency per inference pattern. The results also reveal that non-projective spatial inferences (especially due to the "between" preposition) are the most challenging ones.
Perceptions to Beliefs: Exploring Precursory Inferences for Theory of Mind in Large Language Models
While humans naturally develop theory of mind (ToM), the capability to understand other people's mental states and beliefs, state-of-the-art large language models (LLMs) underperform on simple ToM benchmarks. We posit that we can extend our understanding of LLMs' ToM abilities by evaluating key human ToM precursors -- perception inference and perception-to-belief inference -- in LLMs. We introduce two datasets, Percept-ToMi and Percept-FANToM, to evaluate these precursory inferences for ToM in LLMs by annotating characters' perceptions on ToMi and FANToM, respectively. Our evaluation of eight state-of-the-art LLMs reveals that the models generally perform well in perception inference while exhibiting limited capability in perception-to-belief inference (e.g., lack of inhibitory control). Based on these results, we present PercepToM, a novel ToM method leveraging LLMs' strong perception inference capability while supplementing their limited perception-to-belief inference. Experimental results demonstrate that PercepToM significantly enhances LLM's performance, especially in false belief scenarios.
Cosmic Multipoles in Galaxy Surveys Part I: How Inferences Depend on Source Counts and Masks
We present a new approach to constructing and fitting dipoles and higher-order multipoles in synthetic galaxy samples over the sky. Within our Bayesian paradigm, we illustrate that this technique is robust to masked skies, allowing us to make credible inferences about the relative contributions of each multipole. We also show that dipoles can be recovered in surveys with small footprints, determining the requisite source counts required for concrete estimation of the dipole parameters. This work is motivated by recent probes of the cosmic dipole in galaxy catalogues. Namely, the kinematic dipole of the Cosmic Microwave Background, as arising from the motion of our heliocentric frame at approx 370 km,s^{-1}, implies that an analogous dipole should be observed in the number counts of galaxies in flux-density-limited samples. Recent studies have reported a dipole aligning with the kinematic dipole but with an anomalously large amplitude. Accordingly, our new technique will be important as forthcoming galaxy surveys are made available and for revisiting previous data.
Framing the News:From Human Perception to Large Language Model Inferences
Identifying the frames of news is important to understand the articles' vision, intention, message to be conveyed, and which aspects of the news are emphasized. Framing is a widely studied concept in journalism, and has emerged as a new topic in computing, with the potential to automate processes and facilitate the work of journalism professionals. In this paper, we study this issue with articles related to the Covid-19 anti-vaccine movement. First, to understand the perspectives used to treat this theme, we developed a protocol for human labeling of frames for 1786 headlines of No-Vax movement articles of European newspapers from 5 countries. Headlines are key units in the written press, and worth of analysis as many people only read headlines (or use them to guide their decision for further reading.) Second, considering advances in Natural Language Processing (NLP) with large language models, we investigated two approaches for frame inference of news headlines: first with a GPT-3.5 fine-tuning approach, and second with GPT-3.5 prompt-engineering. Our work contributes to the study and analysis of the performance that these models have to facilitate journalistic tasks like classification of frames, while understanding whether the models are able to replicate human perception in the identification of these frames.
Privacy and Utility Preserving Sensor-Data Transformations
Sensitive inferences and user re-identification are major threats to privacy when raw sensor data from wearable or portable devices are shared with cloud-assisted applications. To mitigate these threats, we propose mechanisms to transform sensor data before sharing them with applications running on users' devices. These transformations aim at eliminating patterns that can be used for user re-identification or for inferring potentially sensitive activities, while introducing a minor utility loss for the target application (or task). We show that, on gesture and activity recognition tasks, we can prevent inference of potentially sensitive activities while keeping the reduction in recognition accuracy of non-sensitive activities to less than 5 percentage points. We also show that we can reduce the accuracy of user re-identification and of the potential inference of gender to the level of a random guess, while keeping the accuracy of activity recognition comparable to that obtained on the original data.
Potemkin Understanding in Large Language Models
Large language models (LLMs) are regularly evaluated using benchmark datasets. But what justifies making inferences about an LLM's capabilities based on its answers to a curated set of questions? This paper first introduces a formal framework to address this question. The key is to note that the benchmarks used to test LLMs -- such as AP exams -- are also those used to test people. However, this raises an implication: these benchmarks are only valid tests if LLMs misunderstand concepts in ways that mirror human misunderstandings. Otherwise, success on benchmarks only demonstrates potemkin understanding: the illusion of understanding driven by answers irreconcilable with how any human would interpret a concept. We present two procedures for quantifying the existence of potemkins: one using a specially designed benchmark in three domains, the other using a general procedure that provides a lower-bound on their prevalence. We find that potemkins are ubiquitous across models, tasks, and domains. We also find that these failures reflect not just incorrect understanding, but deeper internal incoherence in concept representations.
Emo Pillars: Knowledge Distillation to Support Fine-Grained Context-Aware and Context-Less Emotion Classification
Most datasets for sentiment analysis lack context in which an opinion was expressed, often crucial for emotion understanding, and are mainly limited by a few emotion categories. Foundation large language models (LLMs) like GPT-4 suffer from over-predicting emotions and are too resource-intensive. We design an LLM-based data synthesis pipeline and leverage a large model, Mistral-7b, for the generation of training examples for more accessible, lightweight BERT-type encoder models. We focus on enlarging the semantic diversity of examples and propose grounding the generation into a corpus of narratives to produce non-repetitive story-character-centered utterances with unique contexts over 28 emotion classes. By running 700K inferences in 450 GPU hours, we contribute with the dataset of 100K contextual and also 300K context-less examples to cover both scenarios. We use it for fine-tuning pre-trained encoders, which results in several Emo Pillars models. We show that Emo Pillars models are highly adaptive to new domains when tuned to specific tasks such as GoEmotions, ISEAR, IEMOCAP, and EmoContext, reaching the SOTA performance on the first three. We also validate our dataset, conducting statistical analysis and human evaluation, and confirm the success of our measures in utterance diversification (although less for the neutral class) and context personalization, while pointing out the need for improved handling of out-of-taxonomy labels within the pipeline.
Minds versus Machines: Rethinking Entailment Verification with Language Models
Humans make numerous inferences in text comprehension to understand discourse. This paper aims to understand the commonalities and disparities in the inference judgments between humans and state-of-the-art Large Language Models (LLMs). Leveraging a comprehensively curated entailment verification benchmark, we evaluate both human and LLM performance across various reasoning categories. Our benchmark includes datasets from three categories (NLI, contextual QA, and rationales) that include multi-sentence premises and different knowledge types, thereby evaluating the inference capabilities in complex reasoning instances. Notably, our findings reveal LLMs' superiority in multi-hop reasoning across extended contexts, while humans excel in tasks necessitating simple deductive reasoning. Leveraging these insights, we introduce a fine-tuned Flan-T5 model that outperforms GPT-3.5 and rivals with GPT-4, offering a robust open-source solution for entailment verification. As a practical application, we showcase the efficacy of our finetuned model in enhancing self-consistency in model-generated explanations, resulting in a 6% performance boost on average across three multiple-choice question-answering datasets.
SocialNLI: A Dialogue-Centric Social Inference Dataset
Making theory-of-mind inferences from human dialogue is a strong indicator of a model's underlying social abilities, which are fundamental for adept AI assistants. However, large language and reasoning models struggle to understand sophisticated social phenomena in transcript data, such as sarcasm and irony. To assess the weaknesses of current models and to identify their solutions, we introduce SocialNLI (SoNLI) -- the first social dialogue inference dataset. SoNLI consists of a collection of dialogue transcripts hand-picked to center complex social nuances like irony and sarcasm, paired with inferences, corresponding likelihood scores, and human-written explanations. We explore social inference analysis as a facet of theory-of-mind, and evaluate LLM and reasoning model theory-of-mind ability through multi-step counterfactual reasoning.
What Are the Odds? Language Models Are Capable of Probabilistic Reasoning
Language models (LM) are capable of remarkably complex linguistic tasks; however, numerical reasoning is an area in which they frequently struggle. An important but rarely evaluated form of reasoning is understanding probability distributions. In this paper, we focus on evaluating the probabilistic reasoning capabilities of LMs using idealized and real-world statistical distributions. We perform a systematic evaluation of state-of-the-art LMs on three tasks: estimating percentiles, drawing samples, and calculating probabilities. We evaluate three ways to provide context to LMs 1) anchoring examples from within a distribution or family of distributions, 2) real-world context, 3) summary statistics on which to base a Normal approximation. Models can make inferences about distributions, and can be further aided by the incorporation of real-world context, example shots and simplified assumptions, even if these assumptions are incorrect or misspecified. To conduct this work, we developed a comprehensive benchmark distribution dataset with associated question-answer pairs that we will release publicly.
Where are we in the search for an Artificial Visual Cortex for Embodied Intelligence?
We present the largest and most comprehensive empirical study of pre-trained visual representations (PVRs) or visual 'foundation models' for Embodied AI. First, we curate CortexBench, consisting of 17 different tasks spanning locomotion, navigation, dexterous, and mobile manipulation. Next, we systematically evaluate existing PVRs and find that none are universally dominant. To study the effect of pre-training data scale and diversity, we combine over 4,000 hours of egocentric videos from 7 different sources (over 5.6M images) and ImageNet to train different-sized vision transformers using Masked Auto-Encoding (MAE) on slices of this data. Contrary to inferences from prior work, we find that scaling dataset size and diversity does not improve performance universally (but does so on average). Our largest model, named VC-1, outperforms all prior PVRs on average but does not universally dominate either. Finally, we show that task or domain-specific adaptation of VC-1 leads to substantial gains, with VC-1 (adapted) achieving competitive or superior performance than the best known results on all of the benchmarks in CortexBench. These models required over 10,000 GPU-hours to train and can be found on our website for the benefit of the research community.
Multiview Contextual Commonsense Inference: A New Dataset and Task
Contextual commonsense inference is the task of generating various types of explanations around the events in a dyadic dialogue, including cause, motivation, emotional reaction, and others. Producing a coherent and non-trivial explanation requires awareness of the dialogue's structure and of how an event is grounded in the context. In this work, we create CICEROv2, a dataset consisting of 8,351 instances from 2,379 dialogues, containing multiple human-written answers for each contextual commonsense inference question, representing a type of explanation on cause, subsequent event, motivation, and emotional reaction. We show that the inferences in CICEROv2 are more semantically diverse than other contextual commonsense inference datasets. To solve the inference task, we propose a collection of pre-training objectives, including concept denoising and utterance sorting to prepare a pre-trained model for the downstream contextual commonsense inference task. Our results show that the proposed pre-training objectives are effective at adapting the pre-trained T5-Large model for the contextual commonsense inference task.
CliCR: A Dataset of Clinical Case Reports for Machine Reading Comprehension
We present a new dataset for machine comprehension in the medical domain. Our dataset uses clinical case reports with around 100,000 gap-filling queries about these cases. We apply several baselines and state-of-the-art neural readers to the dataset, and observe a considerable gap in performance (20% F1) between the best human and machine readers. We analyze the skills required for successful answering and show how reader performance varies depending on the applicable skills. We find that inferences using domain knowledge and object tracking are the most frequently required skills, and that recognizing omitted information and spatio-temporal reasoning are the most difficult for the machines.
Human-like Affective Cognition in Foundation Models
Understanding emotions is fundamental to human interaction and experience. Humans easily infer emotions from situations or facial expressions, situations from emotions, and do a variety of other affective cognition. How adept is modern AI at these inferences? We introduce an evaluation framework for testing affective cognition in foundation models. Starting from psychological theory, we generate 1,280 diverse scenarios exploring relationships between appraisals, emotions, expressions, and outcomes. We evaluate the abilities of foundation models (GPT-4, Claude-3, Gemini-1.5-Pro) and humans (N = 567) across carefully selected conditions. Our results show foundation models tend to agree with human intuitions, matching or exceeding interparticipant agreement. In some conditions, models are ``superhuman'' -- they better predict modal human judgements than the average human. All models benefit from chain-of-thought reasoning. This suggests foundation models have acquired a human-like understanding of emotions and their influence on beliefs and behavior.
Talk like a Graph: Encoding Graphs for Large Language Models
Graphs are a powerful tool for representing and analyzing complex relationships in real-world applications such as social networks, recommender systems, and computational finance. Reasoning on graphs is essential for drawing inferences about the relationships between entities in a complex system, and to identify hidden patterns and trends. Despite the remarkable progress in automated reasoning with natural text, reasoning on graphs with large language models (LLMs) remains an understudied problem. In this work, we perform the first comprehensive study of encoding graph-structured data as text for consumption by LLMs. We show that LLM performance on graph reasoning tasks varies on three fundamental levels: (1) the graph encoding method, (2) the nature of the graph task itself, and (3) interestingly, the very structure of the graph considered. These novel results provide valuable insight on strategies for encoding graphs as text. Using these insights we illustrate how the correct choice of encoders can boost performance on graph reasoning tasks inside LLMs by 4.8% to 61.8%, depending on the task.
Mind the Gap! Injecting Commonsense Knowledge for Abstractive Dialogue Summarization
In this paper, we propose to leverage the unique characteristics of dialogues sharing commonsense knowledge across participants, to resolve the difficulties in summarizing them. We present SICK, a framework that uses commonsense inferences as additional context. Compared to previous work that solely relies on the input dialogue, SICK uses an external knowledge model to generate a rich set of commonsense inferences and selects the most probable one with a similarity-based selection method. Built upon SICK, SICK++ utilizes commonsense as supervision, where the task of generating commonsense inferences is added upon summarizing the dialogue in a multi-task learning setting. Experimental results show that with injected commonsense knowledge, our framework generates more informative and consistent summaries than existing methods.
CASAPose: Class-Adaptive and Semantic-Aware Multi-Object Pose Estimation
Applications in the field of augmented reality or robotics often require joint localisation and 6D pose estimation of multiple objects. However, most algorithms need one network per object class to be trained in order to provide the best results. Analysing all visible objects demands multiple inferences, which is memory and time-consuming. We present a new single-stage architecture called CASAPose that determines 2D-3D correspondences for pose estimation of multiple different objects in RGB images in one pass. It is fast and memory efficient, and achieves high accuracy for multiple objects by exploiting the output of a semantic segmentation decoder as control input to a keypoint recognition decoder via local class-adaptive normalisation. Our new differentiable regression of keypoint locations significantly contributes to a faster closing of the domain gap between real test and synthetic training data. We apply segmentation-aware convolutions and upsampling operations to increase the focus inside the object mask and to reduce mutual interference of occluding objects. For each inserted object, the network grows by only one output segmentation map and a negligible number of parameters. We outperform state-of-the-art approaches in challenging multi-object scenes with inter-object occlusion and synthetic training.
JSTprove: Pioneering Verifiable AI for a Trustless Future
The integration of machine learning (ML) systems into critical industries such as healthcare, finance, and cybersecurity has transformed decision-making processes, but it also brings new challenges around trust, security, and accountability. As AI systems become more ubiquitous, ensuring the transparency and correctness of AI-driven decisions is crucial, especially when they have direct consequences on privacy, security, or fairness. Verifiable AI, powered by Zero-Knowledge Machine Learning (zkML), offers a robust solution to these challenges. zkML enables the verification of AI model inferences without exposing sensitive data, providing an essential layer of trust and privacy. However, traditional zkML systems typically require deep cryptographic expertise, placing them beyond the reach of most ML engineers. In this paper, we introduce JSTprove, a specialized zkML toolkit, built on Polyhedra Network's Expander backend, to enable AI developers and ML engineers to generate and verify proofs of AI inference. JSTprove provides an end-to-end verifiable AI inference pipeline that hides cryptographic complexity behind a simple command-line interface while exposing auditable artifacts for reproducibility. We present the design, innovations, and real-world use cases of JSTprove as well as our blueprints and tooling to encourage community review and extension. JSTprove therefore serves both as a usable zkML product for current engineering needs and as a reproducible foundation for future research and production deployments of verifiable AI.
Reading Between the Prompts: How Stereotypes Shape LLM's Implicit Personalization
Generative Large Language Models (LLMs) infer user's demographic information from subtle cues in the conversation -- a phenomenon called implicit personalization. Prior work has shown that such inferences can lead to lower quality responses for users assumed to be from minority groups, even when no demographic information is explicitly provided. In this work, we systematically explore how LLMs respond to stereotypical cues using controlled synthetic conversations, by analyzing the models' latent user representations through both model internals and generated answers to targeted user questions. Our findings reveal that LLMs do infer demographic attributes based on these stereotypical signals, which for a number of groups even persists when the user explicitly identifies with a different demographic group. Finally, we show that this form of stereotype-driven implicit personalization can be effectively mitigated by intervening on the model's internal representations using a trained linear probe to steer them toward the explicitly stated identity. Our results highlight the need for greater transparency and control in how LLMs represent user identity.
TPD: Enhancing Student Language Model Reasoning via Principle Discovery and Guidance
Large Language Models (LLMs) have recently showcased remarkable reasoning abilities. However, larger models often surpass their smaller counterparts in reasoning tasks, posing the challenge of effectively transferring these capabilities from larger models. Existing approaches heavily rely on extensive fine-tuning data or continuous interactions with a superior teacher LLM during inference. We introduce a principle-based teacher-student framework called ``Teaching via Principle Discovery'' (TPD) to address these limitations. Inspired by human learning mechanisms, TPD mimics the interaction between a teacher and a student using a principle-based approach. The teacher LLM generates problem-solving instructions and corrective principles based on the student LLM's errors. These principles guide the refinement of instructions and the selection of instructive examples from a validation set. This enables the student model to learn from both the teacher's guidance and its own mistakes. Once the student model begins making inferences, TPD requires no further intervention from the teacher LLM or humans. Through extensive experiments across eight reasoning tasks, we demonstrate the effectiveness of TPD. Compared to standard chain-of-thought prompting, TPD significantly improves the student model's performance, achieving 6.2% improvement on average.
Proximity Ascertainment Bias in Early Covid Case Locations
A comparison of the distances to the Huanan Seafood Market of early Covid cases with known links to the market versus cases without known links shows results apparently incompatible with a location model lacking proximity ascertainment bias. The sign of the difference instead agrees with a model in which such ascertainment bias is large. In the presence of such bias inferences based on the clustering of case locations become unreliable.
Task Conditioned BERT for Joint Intent Detection and Slot-filling
Dialogue systems need to deal with the unpredictability of user intents to track dialogue state and the heterogeneity of slots to understand user preferences. In this paper we investigate the hypothesis that solving these challenges as one unified model will allow the transfer of parameter support data across the different tasks. The proposed principled model is based on a Transformer encoder, trained on multiple tasks, and leveraged by a rich input that conditions the model on the target inferences. Conditioning the Transformer encoder on multiple target inferences over the same corpus, i.e., intent and multiple slot types, allows learning richer language interactions than a single-task model would be able to. In fact, experimental results demonstrate that conditioning the model on an increasing number of dialogue inference tasks leads to improved results: on the MultiWOZ dataset, the joint intent and slot detection can be improved by 3.2\% by conditioning on intent, 10.8\% by conditioning on slot and 14.4\% by conditioning on both intent and slots. Moreover, on real conversations with Farfetch costumers, the proposed conditioned BERT can achieve high joint-goal and intent detection performance throughout a dialogue.
Real-time Inference and Extrapolation via a Diffusion-inspired Temporal Transformer Operator (DiTTO)
Extrapolation remains a grand challenge in deep neural networks across all application domains. We propose an operator learning method to solve time-dependent partial differential equations (PDEs) continuously and with extrapolation in time without any temporal discretization. The proposed method, named Diffusion-inspired Temporal Transformer Operator (DiTTO), is inspired by latent diffusion models and their conditioning mechanism, which we use to incorporate the temporal evolution of the PDE, in combination with elements from the transformer architecture to improve its capabilities. Upon training, DiTTO can make inferences in real-time. We demonstrate its extrapolation capability on a climate problem by estimating the temperature around the globe for several years, and also in modeling hypersonic flows around a double-cone. We propose different training strategies involving temporal-bundling and sub-sampling and demonstrate performance improvements for several benchmarks, performing extrapolation for long time intervals as well as zero-shot super-resolution in time.
DeepReShape: Redesigning Neural Networks for Efficient Private Inference
Prior work on Private Inference (PI) -- inferences performed directly on encrypted input -- has focused on minimizing a network's ReLUs, which have been assumed to dominate PI latency rather than FLOPs. Recent work has shown that FLOPs for PI can no longer be ignored and incur high latency penalties. In this paper, we develop DeepReShape, a technique that optimizes neural network architectures under PI's constraints, optimizing for both ReLUs and FLOPs for the first time. The key insight is strategically allocating channels to position the network's ReLUs in order of their criticality to network accuracy, simultaneously optimizes ReLU and FLOPs efficiency. DeepReShape automates network development with an efficient process, and we call generated networks HybReNets. We evaluate DeepReShape using standard PI benchmarks and demonstrate a 2.1% accuracy gain with a 5.2times runtime improvement at iso-ReLU on CIFAR-100 and an 8.7times runtime improvement at iso-accuracy on TinyImageNet. Furthermore, we investigate the significance of network selection in prior ReLU optimizations and shed light on the key network attributes for superior PI performance.
ERRA: An Embodied Representation and Reasoning Architecture for Long-horizon Language-conditioned Manipulation Tasks
This letter introduces ERRA, an embodied learning architecture that enables robots to jointly obtain three fundamental capabilities (reasoning, planning, and interaction) for solving long-horizon language-conditioned manipulation tasks. ERRA is based on tightly-coupled probabilistic inferences at two granularity levels. Coarse-resolution inference is formulated as sequence generation through a large language model, which infers action language from natural language instruction and environment state. The robot then zooms to the fine-resolution inference part to perform the concrete action corresponding to the action language. Fine-resolution inference is constructed as a Markov decision process, which takes action language and environmental sensing as observations and outputs the action. The results of action execution in environments provide feedback for subsequent coarse-resolution reasoning. Such coarse-to-fine inference allows the robot to decompose and achieve long-horizon tasks interactively. In extensive experiments, we show that ERRA can complete various long-horizon manipulation tasks specified by abstract language instructions. We also demonstrate successful generalization to the novel but similar natural language instructions.
Implementing Deep Learning-Based Approaches for Article Summarization in Indian Languages
The research on text summarization for low-resource Indian languages has been limited due to the availability of relevant datasets. This paper presents a summary of various deep-learning approaches used for the ILSUM 2022 Indic language summarization datasets. The ISUM 2022 dataset consists of news articles written in Indian English, Hindi, and Gujarati respectively, and their ground-truth summarizations. In our work, we explore different pre-trained seq2seq models and fine-tune those with the ILSUM 2022 datasets. In our case, the fine-tuned SoTA PEGASUS model worked the best for English, the fine-tuned IndicBART model with augmented data for Hindi, and again fine-tuned PEGASUS model along with a translation mapping-based approach for Gujarati. Our scores on the obtained inferences were evaluated using ROUGE-1, ROUGE-2, and ROUGE-4 as the evaluation metrics.
Conformal Predictor for Improving Zero-shot Text Classification Efficiency
Pre-trained language models (PLMs) have been shown effective for zero-shot (0shot) text classification. 0shot models based on natural language inference (NLI) and next sentence prediction (NSP) employ cross-encoder architecture and infer by making a forward pass through the model for each label-text pair separately. This increases the computational cost to make inferences linearly in the number of labels. In this work, we improve the efficiency of such cross-encoder-based 0shot models by restricting the number of likely labels using another fast base classifier-based conformal predictor (CP) calibrated on samples labeled by the 0shot model. Since a CP generates prediction sets with coverage guarantees, it reduces the number of target labels without excluding the most probable label based on the 0shot model. We experiment with three intent and two topic classification datasets. With a suitable CP for each dataset, we reduce the average inference time for NLI- and NSP-based models by 25.6% and 22.2% respectively, without dropping performance below the predefined error rate of 1%.
CICERO: A Dataset for Contextualized Commonsense Inference in Dialogues
This paper addresses the problem of dialogue reasoning with contextualized commonsense inference. We curate CICERO, a dataset of dyadic conversations with five types of utterance-level reasoning-based inferences: cause, subsequent event, prerequisite, motivation, and emotional reaction. The dataset contains 53,105 of such inferences from 5,672 dialogues. We use this dataset to solve relevant generative and discriminative tasks: generation of cause and subsequent event; generation of prerequisite, motivation, and listener's emotional reaction; and selection of plausible alternatives. Our results ascertain the value of such dialogue-centric commonsense knowledge datasets. It is our hope that CICERO will open new research avenues into commonsense-based dialogue reasoning.
Wonder3D: Single Image to 3D using Cross-Domain Diffusion
In this work, we introduce Wonder3D, a novel method for efficiently generating high-fidelity textured meshes from single-view images.Recent methods based on Score Distillation Sampling (SDS) have shown the potential to recover 3D geometry from 2D diffusion priors, but they typically suffer from time-consuming per-shape optimization and inconsistent geometry. In contrast, certain works directly produce 3D information via fast network inferences, but their results are often of low quality and lack geometric details. To holistically improve the quality, consistency, and efficiency of image-to-3D tasks, we propose a cross-domain diffusion model that generates multi-view normal maps and the corresponding color images. To ensure consistency, we employ a multi-view cross-domain attention mechanism that facilitates information exchange across views and modalities. Lastly, we introduce a geometry-aware normal fusion algorithm that extracts high-quality surfaces from the multi-view 2D representations. Our extensive evaluations demonstrate that our method achieves high-quality reconstruction results, robust generalization, and reasonably good efficiency compared to prior works.
UNcommonsense Reasoning: Abductive Reasoning about Uncommon Situations
Language technologies that accurately model the dynamics of events must perform commonsense reasoning. Existing work evaluating commonsense reasoning focuses on making inferences about common, everyday situations. To instead investigate the ability to model unusual, unexpected, and unlikely situations, we explore the task of uncommonsense abductive reasoning. Given a piece of context with an unexpected outcome, this task requires reasoning abductively to generate a natural language explanation that makes the unexpected outcome more likely in the context. To this end, we curate and release a new English language corpus called UNcommonsense. We characterize the differences between the performance of human explainers and the best performing large language models, finding that model-enhanced human-written explanations achieve the highest quality by trading off between specificity and diversity. Finally, we experiment with several online imitation learning algorithms to train open and accessible language models on this task. When compared with the vanilla supervised fine-tuning approach, these methods consistently reduce lose rates on both common and uncommonsense abductive reasoning judged by human evaluators.
TALM: Tool Augmented Language Models
Transformer based language models (LMs) demonstrate increasing performance with scale across a wide variety of tasks. Scale alone however cannot enable models to solve tasks that require access to ephemeral, changing, or private data that was unavailable at training time. Many useful tasks may also benefit from LMs being able to access APIs that read or modify state. In this work, we present Tool Augmented Language Models (TALM), combining a text-only approach to augment language models with non-differentiable tools, and an iterative "self-play" technique to bootstrap performance starting from few tool demonstrations. TALM exhibits strong performance on both a knowledge-heavy QA task and a reasoning oriented math task with simple tools. At a given model scale, TALM significantly outperforms non-augmented LMs. We further demonstrate that TALM successfully performs out-of-distribution inferences on both QA and math tasks, where non-augmented LMs fail. Our results suggest that Tool Augmented Language Models are a promising direction to enrich LMs' capabilities, with less dependence on scale.
CoAT: Chain-of-Associated-Thoughts Framework for Enhancing Large Language Models Reasoning
Research on LLM technologies is rapidly emerging, with most of them employing a 'fast thinking' approach to inference. Most LLMs generate the final result based solely on a single query and LLM's reasoning capabilities. However, with the advent of OpenAI-o1, 'slow thinking' techniques have garnered increasing attention because its process is closer to the human thought process. Inspired by the human ability to constantly associate and replenish knowledge during thinking, we developed the novel Chain-of-Associated-Thoughts (CoAT) framework, which introduces an innovative synergy between the Monte Carlo Tree Search (MCTS) algorithm and a dynamic mechanism for integrating new key information, termed 'associative memory'. By combining the structured exploration capabilities of MCTS with the adaptive learning capacity of associative memory, CoAT significantly expands the LLM search space, enabling our framework to explore diverse reasoning pathways and dynamically update its knowledge base in real-time. This allows the framework to not only revisit and refine earlier inferences but also adaptively incorporate evolving information, ensuring that the final output is both accurate and comprehensive. To validate the effectiveness of our framework, we conducted extensive experiments across a range of generative and reasoning tasks. These experiments demonstrated that our framework outperforms conventional inference processes on accuracy, coherence, and diversity. The framework's ability to iteratively expand its search space while retaining contextually relevant information results.
Variational Inference with Normalizing Flows
The choice of approximate posterior distribution is one of the core problems in variational inference. Most applications of variational inference employ simple families of posterior approximations in order to allow for efficient inference, focusing on mean-field or other simple structured approximations. This restriction has a significant impact on the quality of inferences made using variational methods. We introduce a new approach for specifying flexible, arbitrarily complex and scalable approximate posterior distributions. Our approximations are distributions constructed through a normalizing flow, whereby a simple initial density is transformed into a more complex one by applying a sequence of invertible transformations until a desired level of complexity is attained. We use this view of normalizing flows to develop categories of finite and infinitesimal flows and provide a unified view of approaches for constructing rich posterior approximations. We demonstrate that the theoretical advantages of having posteriors that better match the true posterior, combined with the scalability of amortized variational approaches, provides a clear improvement in performance and applicability of variational inference.
Soda-Eval: Open-Domain Dialogue Evaluation in the age of LLMs
Although human evaluation remains the gold standard for open-domain dialogue evaluation, the growing popularity of automated evaluation using Large Language Models (LLMs) has also extended to dialogue. However, most frameworks leverage benchmarks that assess older chatbots on aspects such as fluency and relevance, which are not reflective of the challenges associated with contemporary models. In fact, a qualitative analysis on Soda, a GPT-3.5 generated dialogue dataset, suggests that current chatbots may exhibit several recurring issues related to coherence and commonsense knowledge, but generally produce highly fluent and relevant responses. Noting the aforementioned limitations, this paper introduces Soda-Eval, an annotated dataset based on Soda that covers over 120K turn-level assessments across 10K dialogues, where the annotations were generated by GPT-4. Using Soda-Eval as a benchmark, we then study the performance of several open-access instruction-tuned LLMs, finding that dialogue evaluation remains challenging. Fine-tuning these models improves performance over few-shot inferences, both in terms of correlation and explanation.
C3Net: Compound Conditioned ControlNet for Multimodal Content Generation
We present Compound Conditioned ControlNet, C3Net, a novel generative neural architecture taking conditions from multiple modalities and synthesizing multimodal contents simultaneously (e.g., image, text, audio). C3Net adapts the ControlNet architecture to jointly train and make inferences on a production-ready diffusion model and its trainable copies. Specifically, C3Net first aligns the conditions from multi-modalities to the same semantic latent space using modality-specific encoders based on contrastive training. Then, it generates multimodal outputs based on the aligned latent space, whose semantic information is combined using a ControlNet-like architecture called Control C3-UNet. Correspondingly, with this system design, our model offers an improved solution for joint-modality generation through learning and explaining multimodal conditions instead of simply taking linear interpolations on the latent space. Meanwhile, as we align conditions to a unified latent space, C3Net only requires one trainable Control C3-UNet to work on multimodal semantic information. Furthermore, our model employs unimodal pretraining on the condition alignment stage, outperforming the non-pretrained alignment even on relatively scarce training data and thus demonstrating high-quality compound condition generation. We contribute the first high-quality tri-modal validation set to validate quantitatively that C3Net outperforms or is on par with first and contemporary state-of-the-art multimodal generation. Our codes and tri-modal dataset will be released.
PHALM: Building a Knowledge Graph from Scratch by Prompting Humans and a Language Model
Despite the remarkable progress in natural language understanding with pretrained Transformers, neural language models often do not handle commonsense knowledge well. Toward commonsense-aware models, there have been attempts to obtain knowledge, ranging from automatic acquisition to crowdsourcing. However, it is difficult to obtain a high-quality knowledge base at a low cost, especially from scratch. In this paper, we propose PHALM, a method of building a knowledge graph from scratch, by prompting both crowdworkers and a large language model (LLM). We used this method to build a Japanese event knowledge graph and trained Japanese commonsense generation models. Experimental results revealed the acceptability of the built graph and inferences generated by the trained models. We also report the difference in prompting humans and an LLM. Our code, data, and models are available at github.com/nlp-waseda/comet-atomic-ja.
Inferring the Goals of Communicating Agents from Actions and Instructions
When humans cooperate, they frequently coordinate their activity through both verbal communication and non-verbal actions, using this information to infer a shared goal and plan. How can we model this inferential ability? In this paper, we introduce a model of a cooperative team where one agent, the principal, may communicate natural language instructions about their shared plan to another agent, the assistant, using GPT-3 as a likelihood function for instruction utterances. We then show how a third person observer can infer the team's goal via multi-modal Bayesian inverse planning from actions and instructions, computing the posterior distribution over goals under the assumption that agents will act and communicate rationally to achieve them. We evaluate this approach by comparing it with human goal inferences in a multi-agent gridworld, finding that our model's inferences closely correlate with human judgments (R = 0.96). When compared to inference from actions alone, we also find that instructions lead to more rapid and less uncertain goal inference, highlighting the importance of verbal communication for cooperative agents.
PeaCoK: Persona Commonsense Knowledge for Consistent and Engaging Narratives
Sustaining coherent and engaging narratives requires dialogue or storytelling agents to understand how the personas of speakers or listeners ground the narrative. Specifically, these agents must infer personas of their listeners to produce statements that cater to their interests. They must also learn to maintain consistent speaker personas for themselves throughout the narrative, so that their counterparts feel involved in a realistic conversation or story. However, personas are diverse and complex: they entail large quantities of rich interconnected world knowledge that is challenging to robustly represent in general narrative systems (e.g., a singer is good at singing, and may have attended conservatoire). In this work, we construct a new large-scale persona commonsense knowledge graph, PeaCoK, containing ~100K human-validated persona facts. Our knowledge graph schematizes five dimensions of persona knowledge identified in previous studies of human interactive behaviours, and distils facts in this schema from both existing commonsense knowledge graphs and large-scale pretrained language models. Our analysis indicates that PeaCoK contains rich and precise world persona inferences that help downstream systems generate more consistent and engaging narratives.
(Local) Differential Privacy has NO Disparate Impact on Fairness
In recent years, Local Differential Privacy (LDP), a robust privacy-preserving methodology, has gained widespread adoption in real-world applications. With LDP, users can perturb their data on their devices before sending it out for analysis. However, as the collection of multiple sensitive information becomes more prevalent across various industries, collecting a single sensitive attribute under LDP may not be sufficient. Correlated attributes in the data may still lead to inferences about the sensitive attribute. This paper empirically studies the impact of collecting multiple sensitive attributes under LDP on fairness. We propose a novel privacy budget allocation scheme that considers the varying domain size of sensitive attributes. This generally led to a better privacy-utility-fairness trade-off in our experiments than the state-of-art solution. Our results show that LDP leads to slightly improved fairness in learning problems without significantly affecting the performance of the models. We conduct extensive experiments evaluating three benchmark datasets using several group fairness metrics and seven state-of-the-art LDP protocols. Overall, this study challenges the common belief that differential privacy necessarily leads to worsened fairness in machine learning.
Why think step by step? Reasoning emerges from the locality of experience
Humans have a powerful and mysterious capacity to reason. By working through a series of purely mental steps, we can make inferences we would not be capable of making directly -- despite the fact that we get no additional data from the world. Similarly, when large language models generate a series of intermediate steps (a chain of thought) before answering a question, they often produce better answers than they otherwise would. We investigate why and how chain-of-thought reasoning is useful in language models, testing the hypothesis that reasoning is effective when training data consists of local clusters of variables that influence each other strongly. These training conditions enable the chaining of accurate local inferences in order to estimate relationships between variables that were not seen together in training. We prove that there will exist a "reasoning gap", where reasoning through intermediate variables improves inference, for the simple case of an autoregressive density estimator trained on local samples from a chain-structured probabilistic model. We then test our hypothesis empirically in more complex models, training an autoregressive language model on samples from Bayes nets but only including a subset of variables in each sample. We test language models' ability to match conditional probabilities with and without intermediate reasoning steps, finding that intermediate steps are only helpful when the training data is locally structured with respect to dependencies between variables and that the combination of locally-structured observations and reasoning is much more data-efficient than training on all variables. Our results illustrate how the effectiveness of reasoning step by step is rooted in the local statistical structure of the training data.
Sampling-Based Accuracy Testing of Posterior Estimators for General Inference
Parameter inference, i.e. inferring the posterior distribution of the parameters of a statistical model given some data, is a central problem to many scientific disciplines. Generative models can be used as an alternative to Markov Chain Monte Carlo methods for conducting posterior inference, both in likelihood-based and simulation-based problems. However, assessing the accuracy of posteriors encoded in generative models is not straightforward. In this paper, we introduce `Tests of Accuracy with Random Points' (TARP) coverage testing as a method to estimate coverage probabilities of generative posterior estimators. Our method differs from previously-existing coverage-based methods, which require posterior evaluations. We prove that our approach is necessary and sufficient to show that a posterior estimator is accurate. We demonstrate the method on a variety of synthetic examples, and show that TARP can be used to test the results of posterior inference analyses in high-dimensional spaces. We also show that our method can detect inaccurate inferences in cases where existing methods fail.
WebUI: A Dataset for Enhancing Visual UI Understanding with Web Semantics
Modeling user interfaces (UIs) from visual information allows systems to make inferences about the functionality and semantics needed to support use cases in accessibility, app automation, and testing. Current datasets for training machine learning models are limited in size due to the costly and time-consuming process of manually collecting and annotating UIs. We crawled the web to construct WebUI, a large dataset of 400,000 rendered web pages associated with automatically extracted metadata. We analyze the composition of WebUI and show that while automatically extracted data is noisy, most examples meet basic criteria for visual UI modeling. We applied several strategies for incorporating semantics found in web pages to increase the performance of visual UI understanding models in the mobile domain, where less labeled data is available: (i) element detection, (ii) screen classification and (iii) screen similarity.
Twitter Data Analysis: Izmir Earthquake Case
T\"urkiye is located on a fault line; earthquakes often occur on a large and small scale. There is a need for effective solutions for gathering current information during disasters. We can use social media to get insight into public opinion. This insight can be used in public relations and disaster management. In this study, Twitter posts on Izmir Earthquake that took place on October 2020 are analyzed. We question if this analysis can be used to make social inferences on time. Data mining and natural language processing (NLP) methods are used for this analysis. NLP is used for sentiment analysis and topic modelling. The latent Dirichlet Allocation (LDA) algorithm is used for topic modelling. We used the Bidirectional Encoder Representations from Transformers (BERT) model working with Transformers architecture for sentiment analysis. It is shown that the users shared their goodwill wishes and aimed to contribute to the initiated aid activities after the earthquake. The users desired to make their voices heard by competent institutions and organizations. The proposed methods work effectively. Future studies are also discussed.
Can Transformers Reason in Fragments of Natural Language?
State-of-the-art deep-learning-based approaches to Natural Language Processing (NLP) are credited with various capabilities that involve reasoning with natural language texts. In this paper we carry out a large-scale empirical study investigating the detection of formally valid inferences in controlled fragments of natural language for which the satisfiability problem becomes increasingly complex. We find that, while transformer-based language models perform surprisingly well in these scenarios, a deeper analysis re-veals that they appear to overfit to superficial patterns in the data rather than acquiring the logical principles governing the reasoning in these fragments.
Maieutic Prompting: Logically Consistent Reasoning with Recursive Explanations
Despite their impressive capabilities, large pre-trained language models (LMs) struggle with consistent reasoning; recently, prompting LMs to generate explanations that self-guide the inference has emerged as a promising direction to amend this. However, these approaches are fundamentally bounded by the correctness of explanations, which themselves are often noisy and inconsistent. In this work, we develop Maieutic Prompting, which infers a correct answer to a question even from the noisy and inconsistent generations of LM. Maieutic Prompting induces a tree of explanations abductively (e.g. X is true, because ...) and recursively, then frames the inference as a satisfiability problem over these explanations and their logical relations. We test Maieutic Prompting for true/false QA on three challenging benchmarks that require complex commonsense reasoning. Maieutic Prompting achieves up to 20% better accuracy than state-of-the-art prompting methods, and as a fully unsupervised approach, performs competitively with supervised models. We also show that Maieutic Prompting improves robustness in inference while providing interpretable rationales.
How FaR Are Large Language Models From Agents with Theory-of-Mind?
"Thinking is for Doing." Humans can infer other people's mental states from observations--an ability called Theory-of-Mind (ToM)--and subsequently act pragmatically on those inferences. Existing question answering benchmarks such as ToMi ask models questions to make inferences about beliefs of characters in a story, but do not test whether models can then use these inferences to guide their actions. We propose a new evaluation paradigm for large language models (LLMs): Thinking for Doing (T4D), which requires models to connect inferences about others' mental states to actions in social scenarios. Experiments on T4D demonstrate that LLMs such as GPT-4 and PaLM 2 seemingly excel at tracking characters' beliefs in stories, but they struggle to translate this capability into strategic action. Our analysis reveals the core challenge for LLMs lies in identifying the implicit inferences about mental states without being explicitly asked about as in ToMi, that lead to choosing the correct action in T4D. To bridge this gap, we introduce a zero-shot prompting framework, Foresee and Reflect (FaR), which provides a reasoning structure that encourages LLMs to anticipate future challenges and reason about potential actions. FaR boosts GPT-4's performance from 50% to 71% on T4D, outperforming other prompting methods such as Chain-of-Thought and Self-Ask. Moreover, FaR generalizes to diverse out-of-distribution story structures and scenarios that also require ToM inferences to choose an action, consistently outperforming other methods including few-shot in-context learning.
DiTFastAttn: Attention Compression for Diffusion Transformer Models
Diffusion Transformers (DiT) excel at image and video generation but face computational challenges due to self-attention's quadratic complexity. We propose DiTFastAttn, a novel post-training compression method to alleviate DiT's computational bottleneck. We identify three key redundancies in the attention computation during DiT inference: 1. spatial redundancy, where many attention heads focus on local information; 2. temporal redundancy, with high similarity between neighboring steps' attention outputs; 3. conditional redundancy, where conditional and unconditional inferences exhibit significant similarity. To tackle these redundancies, we propose three techniques: 1. Window Attention with Residual Caching to reduce spatial redundancy; 2. Temporal Similarity Reduction to exploit the similarity between steps; 3. Conditional Redundancy Elimination to skip redundant computations during conditional generation. To demonstrate the effectiveness of DiTFastAttn, we apply it to DiT, PixArt-Sigma for image generation tasks, and OpenSora for video generation tasks. Evaluation results show that for image generation, our method reduces up to 88\% of the FLOPs and achieves up to 1.6x speedup at high resolution generation.
Data Mixture Inference: What do BPE Tokenizers Reveal about their Training Data?
The pretraining data of today's strongest language models is opaque. In particular, little is known about the proportions of various domains or languages represented. In this work, we tackle a task which we call data mixture inference, which aims to uncover the distributional make-up of training data. We introduce a novel attack based on a previously overlooked source of information -- byte-pair encoding (BPE) tokenizers, used by the vast majority of modern language models. Our key insight is that the ordered list of merge rules learned by a BPE tokenizer naturally reveals information about the token frequencies in its training data: the first merge is the most common byte pair, the second is the most common pair after merging the first token, and so on. Given a tokenizer's merge list along with data samples for each category of interest, we formulate a linear program that solves for the proportion of each category in the tokenizer's training set. Importantly, to the extent to which tokenizer training data is representative of the pretraining data, we indirectly learn about the pretraining data. In controlled experiments, we show that our attack recovers mixture ratios with high precision for tokenizers trained on known mixtures of natural languages, programming languages, and data sources. We then apply our approach to off-the-shelf tokenizers released with recent LMs. We confirm much publicly disclosed information about these models, and also make several new inferences: GPT-4o's tokenizer is much more multilingual than its predecessors, training on 39% non-English data; Llama3 extends GPT-3.5's tokenizer primarily for multilingual (48%) use; GPT-3.5's and Claude's tokenizers are trained on predominantly code (~60%). We hope our work sheds light on current design practices for pretraining data, and inspires continued research into data mixture inference for LMs.
Evaluating Multiview Object Consistency in Humans and Image Models
We introduce a benchmark to directly evaluate the alignment between human observers and vision models on a 3D shape inference task. We leverage an experimental design from the cognitive sciences which requires zero-shot visual inferences about object shape: given a set of images, participants identify which contain the same/different objects, despite considerable viewpoint variation. We draw from a diverse range of images that include common objects (e.g., chairs) as well as abstract shapes (i.e., procedurally generated `nonsense' objects). After constructing over 2000 unique image sets, we administer these tasks to human participants, collecting 35K trials of behavioral data from over 500 participants. This includes explicit choice behaviors as well as intermediate measures, such as reaction time and gaze data. We then evaluate the performance of common vision models (e.g., DINOv2, MAE, CLIP). We find that humans outperform all models by a wide margin. Using a multi-scale evaluation approach, we identify underlying similarities and differences between models and humans: while human-model performance is correlated, humans allocate more time/processing on challenging trials. All images, data, and code can be accessed via our project page.
Large Language Models Assume People are More Rational than We Really are
In order for AI systems to communicate effectively with people, they must understand how we make decisions. However, people's decisions are not always rational, so the implicit internal models of human decision-making in Large Language Models (LLMs) must account for this. Previous empirical evidence seems to suggest that these implicit models are accurate -- LLMs offer believable proxies of human behavior, acting how we expect humans would in everyday interactions. However, by comparing LLM behavior and predictions to a large dataset of human decisions, we find that this is actually not the case: when both simulating and predicting people's choices, a suite of cutting-edge LLMs (GPT-4o & 4-Turbo, Llama-3-8B & 70B, Claude 3 Opus) assume that people are more rational than we really are. Specifically, these models deviate from human behavior and align more closely with a classic model of rational choice -- expected value theory. Interestingly, people also tend to assume that other people are rational when interpreting their behavior. As a consequence, when we compare the inferences that LLMs and people draw from the decisions of others using another psychological dataset, we find that these inferences are highly correlated. Thus, the implicit decision-making models of LLMs appear to be aligned with the human expectation that other people will act rationally, rather than with how people actually act.
Neural Amortized Inference for Nested Multi-agent Reasoning
Multi-agent interactions, such as communication, teaching, and bluffing, often rely on higher-order social inference, i.e., understanding how others infer oneself. Such intricate reasoning can be effectively modeled through nested multi-agent reasoning. Nonetheless, the computational complexity escalates exponentially with each level of reasoning, posing a significant challenge. However, humans effortlessly perform complex social inferences as part of their daily lives. To bridge the gap between human-like inference capabilities and computational limitations, we propose a novel approach: leveraging neural networks to amortize high-order social inference, thereby expediting nested multi-agent reasoning. We evaluate our method in two challenging multi-agent interaction domains. The experimental results demonstrate that our method is computationally efficient while exhibiting minimal degradation in accuracy.
Coherent Multimodal Reasoning with Iterative Self-Evaluation for Vision-Language Models
Despite significant advancements, current large language models (LLMs) and vision-language models (LVLMs) continue to struggle with complex, multi-step, cross-modal common sense reasoning tasks, often exhibiting a lack of "deliberative thinking." They tend to rely on superficial associations rather than deep, chained inference, particularly when integrating visual information with abstract concepts. To address this, we propose the Coherent Multimodal Reasoning Framework (CMRF), a novel approach that enhances LVLMs' common sense reasoning capabilities through an iterative, self-evaluating inference mechanism. CMRF mimics human problem-solving by decomposing complex queries, generating step-by-step inferences, and self-correcting errors. Our framework integrates three key modules: a Reasoning Decomposition Unit (RDU) for breaking down problems into sub-questions, a Contextual Inference Engine (CIE) for contextual inference, and a Coherence Assessment Module (CAM) for evaluating logical consistency and confidence. Coupled with an Adaptive Iterative Refinement strategy, CMRF systematically refines its reasoning paths. Built upon LLaVA-1.6-34B and trained on a novel Multimodal Daily Activity Reasoning (MDAR) dataset, CMRF achieves state-of-the-art performance among open-source LVLMs on challenging benchmarks like VCR, A-OKVQA, and DailyLife-MRC. It attains an average accuracy of 69.4%, surpassing the best open-source baseline by +2.4 percentage points, with particular strength in complex reasoning scenarios. Extensive ablation studies and human evaluations confirm the critical contributions of each module and the effectiveness of iterative refinement in fostering more coherent and accurate reasoning.
$Π$-NeSy: A Possibilistic Neuro-Symbolic Approach
In this article, we introduce a neuro-symbolic approach that combines a low-level perception task performed by a neural network with a high-level reasoning task performed by a possibilistic rule-based system. The goal is to be able to derive for each input instance the degree of possibility that it belongs to a target (meta-)concept. This (meta-)concept is connected to intermediate concepts by a possibilistic rule-based system. The probability of each intermediate concept for the input instance is inferred using a neural network. The connection between the low-level perception task and the high-level reasoning task lies in the transformation of neural network outputs modeled by probability distributions (through softmax activation) into possibility distributions. The use of intermediate concepts is valuable for the explanation purpose: using the rule-based system, the classification of an input instance as an element of the (meta-)concept can be justified by the fact that intermediate concepts have been recognized. From the technical side, our contribution consists of the design of efficient methods for defining the matrix relation and the equation system associated with a possibilistic rule-based system. The corresponding matrix and equation are key data structures used to perform inferences from a possibilistic rule-based system and to learn the values of the rule parameters in such a system according to a training data sample. Furthermore, leveraging recent results on the handling of inconsistent systems of fuzzy relational equations, an approach for learning rule parameters according to multiple training data samples is presented. Experiments carried out on the MNIST addition problems and the MNIST Sudoku puzzles problems highlight the effectiveness of our approach compared with state-of-the-art neuro-symbolic ones.
Are Optimal Algorithms Still Optimal? Rethinking Sorting in LLM-Based Pairwise Ranking with Batching and Caching
We introduce a novel framework for analyzing sorting algorithms in pairwise ranking prompting (PRP), re-centering the cost model around LLM inferences rather than traditional pairwise comparisons. While classical metrics based on comparison counts have traditionally been used to gauge efficiency, our analysis reveals that expensive LLM inferences overturn these predictions; accordingly, our framework encourages strategies such as batching and caching to mitigate inference costs. We show that algorithms optimal in the classical setting can lose efficiency when LLM inferences dominate the cost under certain optimizations.
Embedded Machine Learning for Solar PV Power Regulation in a Remote Microgrid
This paper presents a machine-learning study for solar inverter power regulation in a remote microgrid. Machine learning models for active and reactive power control are respectively trained using an ensemble learning method. Then, unlike conventional schemes that make inferences on a central server in the far-end control center, the proposed scheme deploys the trained models on an embedded edge-computing device near the inverter to reduce the communication delay. Experiments on a real embedded device achieve matched results as on the desktop PC, with about 0.1ms time cost for each inference input.
Impact of Missing Values in Machine Learning: A Comprehensive Analysis
Machine learning (ML) has become a ubiquitous tool across various domains of data mining and big data analysis. The efficacy of ML models depends heavily on high-quality datasets, which are often complicated by the presence of missing values. Consequently, the performance and generalization of ML models are at risk in the face of such datasets. This paper aims to examine the nuanced impact of missing values on ML workflows, including their types, causes, and consequences. Our analysis focuses on the challenges posed by missing values, including biased inferences, reduced predictive power, and increased computational burdens. The paper further explores strategies for handling missing values, including imputation techniques and removal strategies, and investigates how missing values affect model evaluation metrics and introduces complexities in cross-validation and model selection. The study employs case studies and real-world examples to illustrate the practical implications of addressing missing values. Finally, the discussion extends to future research directions, emphasizing the need for handling missing values ethically and transparently. The primary goal of this paper is to provide insights into the pervasive impact of missing values on ML models and guide practitioners toward effective strategies for achieving robust and reliable model outcomes.
Mitigating Perspective Distortion-induced Shape Ambiguity in Image Crops
Objects undergo varying amounts of perspective distortion as they move across a camera's field of view. Models for predicting 3D from a single image often work with crops around the object of interest and ignore the location of the object in the camera's field of view. We note that ignoring this location information further exaggerates the inherent ambiguity in making 3D inferences from 2D images and can prevent models from even fitting to the training data. To mitigate this ambiguity, we propose Intrinsics-Aware Positional Encoding (KPE), which incorporates information about the location of crops in the image and camera intrinsics. Experiments on three popular 3D-from-a-single-image benchmarks: depth prediction on NYU, 3D object detection on KITTI & nuScenes, and predicting 3D shapes of articulated objects on ARCTIC, show the benefits of KPE.
Contrastive Learning for Inference in Dialogue
Inference, especially those derived from inductive processes, is a crucial component in our conversation to complement the information implicitly or explicitly conveyed by a speaker. While recent large language models show remarkable advances in inference tasks, their performance in inductive reasoning, where not all information is present in the context, is far behind deductive reasoning. In this paper, we analyze the behavior of the models based on the task difficulty defined by the semantic information gap -- which distinguishes inductive and deductive reasoning (Johnson-Laird, 1988, 1993). Our analysis reveals that the disparity in information between dialogue contexts and desired inferences poses a significant challenge to the inductive inference process. To mitigate this information gap, we investigate a contrastive learning approach by feeding negative samples. Our experiments suggest negative samples help models understand what is wrong and improve their inference generations.
REFINER: Reasoning Feedback on Intermediate Representations
Language models (LMs) have recently shown remarkable performance on reasoning tasks by explicitly generating intermediate inferences, e.g., chain-of-thought prompting. However, these intermediate inference steps may be inappropriate deductions from the initial context and lead to incorrect final predictions. Here we introduce REFINER, a framework for finetuning LMs to explicitly generate intermediate reasoning steps while interacting with a critic model that provides automated feedback on the reasoning. Specifically, the critic provides structured feedback that the reasoning LM uses to iteratively improve its intermediate arguments. Empirical evaluations of REFINER on three diverse reasoning tasks show significant improvements over baseline LMs of comparable scale. Furthermore, when using GPT-3.5 or ChatGPT as the reasoner, the trained critic significantly improves reasoning without finetuning the reasoner. Finally, our critic model is trained without expensive human-in-the-loop data but can be substituted with humans at inference time.
Conformal inference is (almost) free for neural networks trained with early stopping
Early stopping based on hold-out data is a popular regularization technique designed to mitigate overfitting and increase the predictive accuracy of neural networks. Models trained with early stopping often provide relatively accurate predictions, but they generally still lack precise statistical guarantees unless they are further calibrated using independent hold-out data. This paper addresses the above limitation with conformalized early stopping: a novel method that combines early stopping with conformal calibration while efficiently recycling the same hold-out data. This leads to models that are both accurate and able to provide exact predictive inferences without multiple data splits nor overly conservative adjustments. Practical implementations are developed for different learning tasks -- outlier detection, multi-class classification, regression -- and their competitive performance is demonstrated on real data.
Verifiable Goal Recognition for Autonomous Driving with Occlusions
Goal recognition (GR) involves inferring the goals of other vehicles, such as a certain junction exit, which can enable more accurate prediction of their future behaviour. In autonomous driving, vehicles can encounter many different scenarios and the environment may be partially observable due to occlusions. We present a novel GR method named Goal Recognition with Interpretable Trees under Occlusion (OGRIT). OGRIT uses decision trees learned from vehicle trajectory data to infer the probabilities of a set of generated goals. We demonstrate that OGRIT can handle missing data due to occlusions and make inferences across multiple scenarios using the same learned decision trees, while being computationally fast, accurate, interpretable and verifiable. We also release the inDO, rounDO and OpenDDO datasets of occluded regions used to evaluate OGRIT.
HideNseek: Federated Lottery Ticket via Server-side Pruning and Sign Supermask
Federated learning alleviates the privacy risk in distributed learning by transmitting only the local model updates to the central server. However, it faces challenges including statistical heterogeneity of clients' datasets and resource constraints of client devices, which severely impact the training performance and user experience. Prior works have tackled these challenges by combining personalization with model compression schemes including quantization and pruning. However, the pruning is data-dependent and thus must be done on the client side which requires considerable computation cost. Moreover, the pruning normally trains a binary supermask in {0, 1} which significantly limits the model capacity yet with no computation benefit. Consequently, the training requires high computation cost and a long time to converge while the model performance does not pay off. In this work, we propose HideNseek which employs one-shot data-agnostic pruning at initialization to get a subnetwork based on weights' synaptic saliency. Each client then optimizes a sign supermask in {-1, +1} multiplied by the unpruned weights to allow faster convergence with the same compression rates as state-of-the-art. Empirical results from three datasets demonstrate that compared to state-of-the-art, HideNseek improves inferences accuracies by up to 40.6\% while reducing the communication cost and training time by up to 39.7\% and 46.8\% respectively.
CREAK: A Dataset for Commonsense Reasoning over Entity Knowledge
Most benchmark datasets targeting commonsense reasoning focus on everyday scenarios: physical knowledge like knowing that you could fill a cup under a waterfall [Talmor et al., 2019], social knowledge like bumping into someone is awkward [Sap et al., 2019], and other generic situations. However, there is a rich space of commonsense inferences anchored to knowledge about specific entities: for example, deciding the truthfulness of a claim "Harry Potter can teach classes on how to fly on a broomstick." Can models learn to combine entity knowledge with commonsense reasoning in this fashion? We introduce CREAK, a testbed for commonsense reasoning about entity knowledge, bridging fact-checking about entities (Harry Potter is a wizard and is skilled at riding a broomstick) with commonsense inferences (if you're good at a skill you can teach others how to do it). Our dataset consists of 13k human-authored English claims about entities that are either true or false, in addition to a small contrast set. Crowdworkers can easily come up with these statements and human performance on the dataset is high (high 90s); we argue that models should be able to blend entity knowledge and commonsense reasoning to do well here. In our experiments, we focus on the closed-book setting and observe that a baseline model finetuned on existing fact verification benchmark struggles on CREAK. Training a model on CREAK improves accuracy by a substantial margin, but still falls short of human performance. Our benchmark provides a unique probe into natural language understanding models, testing both its ability to retrieve facts (e.g., who teaches at the University of Chicago?) and unstated commonsense knowledge (e.g., butlers do not yell at guests).
Preserving Semantic Relations for Zero-Shot Learning
Zero-shot learning has gained popularity due to its potential to scale recognition models without requiring additional training data. This is usually achieved by associating categories with their semantic information like attributes. However, we believe that the potential offered by this paradigm is not yet fully exploited. In this work, we propose to utilize the structure of the space spanned by the attributes using a set of relations. We devise objective functions to preserve these relations in the embedding space, thereby inducing semanticity to the embedding space. Through extensive experimental evaluation on five benchmark datasets, we demonstrate that inducing semanticity to the embedding space is beneficial for zero-shot learning. The proposed approach outperforms the state-of-the-art on the standard zero-shot setting as well as the more realistic generalized zero-shot setting. We also demonstrate how the proposed approach can be useful for making approximate semantic inferences about an image belonging to a category for which attribute information is not available.
Exponentially Faster Language Modelling
Language models only really need to use an exponential fraction of their neurons for individual inferences. As proof, we present FastBERT, a BERT variant that uses 0.3\% of its neurons during inference while performing on par with similar BERT models. FastBERT selectively engages just 12 out of 4095 neurons for each layer inference. This is achieved by replacing feedforward networks with fast feedforward networks (FFFs). While no truly efficient implementation currently exists to unlock the full acceleration potential of conditional neural execution, we provide high-level CPU code achieving 78x speedup over the optimized baseline feedforward implementation, and a PyTorch implementation delivering 40x speedup over the equivalent batched feedforward inference. We publish our training code, benchmarking setup, and model weights.
SparseTransX: Efficient Training of Translation-Based Knowledge Graph Embeddings Using Sparse Matrix Operations
Knowledge graph (KG) learning offers a powerful framework for generating new knowledge and making inferences. Training KG embedding can take a significantly long time, especially for larger datasets. Our analysis shows that the gradient computation of embedding is one of the dominant functions in the translation-based KG embedding training loop. We address this issue by replacing the core embedding computation with SpMM (Sparse-Dense Matrix Multiplication) kernels. This allows us to unify multiple scatter (and gather) operations as a single operation, reducing training time and memory usage. We create a general framework for training KG models using sparse kernels and implement four models, namely TransE, TransR, TransH, and TorusE. Our sparse implementations exhibit up to 5.3x speedup on the CPU and up to 4.2x speedup on the GPU with a significantly low GPU memory footprint. The speedups are consistent across large and small datasets for a given model. Our proposed sparse approach can be extended to accelerate other translation-based (such as TransC, TransM, etc.) and non-translational (such as DistMult, ComplEx, RotatE, etc.) models as well. An implementation of the SpTransX framework is publicly available as a Python package in https://github.com/HipGraph/SpTransX.
WikiVideo: Article Generation from Multiple Videos
We present the challenging task of automatically creating a high-level Wikipedia-style article that aggregates information from multiple diverse videos about real-world events, such as natural disasters or political elections. Videos are intuitive sources for retrieval-augmented generation (RAG), but most contemporary RAG workflows focus heavily on text and existing methods for video-based summarization focus on low-level scene understanding rather than high-level event semantics. To close this gap, we introduce WikiVideo, a benchmark consisting of expert-written articles and densely annotated videos that provide evidence for articles' claims, facilitating the integration of video into RAG pipelines and enabling the creation of in-depth content that is grounded in multimodal sources. We further propose Collaborative Article Generation (CAG), a novel interactive method for article creation from multiple videos. CAG leverages an iterative interaction between an r1-style reasoning model and a VideoLLM to draw higher level inferences about the target event than is possible with VideoLLMs alone, which fixate on low-level visual features. We benchmark state-of-the-art VideoLLMs and CAG in both oracle retrieval and RAG settings and find that CAG consistently outperforms alternative methods, while suggesting intriguing avenues for future work.
Hierarchical Masked 3D Diffusion Model for Video Outpainting
Video outpainting aims to adequately complete missing areas at the edges of video frames. Compared to image outpainting, it presents an additional challenge as the model should maintain the temporal consistency of the filled area. In this paper, we introduce a masked 3D diffusion model for video outpainting. We use the technique of mask modeling to train the 3D diffusion model. This allows us to use multiple guide frames to connect the results of multiple video clip inferences, thus ensuring temporal consistency and reducing jitter between adjacent frames. Meanwhile, we extract the global frames of the video as prompts and guide the model to obtain information other than the current video clip using cross-attention. We also introduce a hybrid coarse-to-fine inference pipeline to alleviate the artifact accumulation problem. The existing coarse-to-fine pipeline only uses the infilling strategy, which brings degradation because the time interval of the sparse frames is too large. Our pipeline benefits from bidirectional learning of the mask modeling and thus can employ a hybrid strategy of infilling and interpolation when generating sparse frames. Experiments show that our method achieves state-of-the-art results in video outpainting tasks. More results are provided at our https://fanfanda.github.io/M3DDM/.
DC3DO: Diffusion Classifier for 3D Objects
Inspired by Geoffrey Hinton emphasis on generative modeling, To recognize shapes, first learn to generate them, we explore the use of 3D diffusion models for object classification. Leveraging the density estimates from these models, our approach, the Diffusion Classifier for 3D Objects (DC3DO), enables zero-shot classification of 3D shapes without additional training. On average, our method achieves a 12.5 percent improvement compared to its multiview counterparts, demonstrating superior multimodal reasoning over discriminative approaches. DC3DO employs a class-conditional diffusion model trained on ShapeNet, and we run inferences on point clouds of chairs and cars. This work highlights the potential of generative models in 3D object classification.
Power Hungry Processing: Watts Driving the Cost of AI Deployment?
Recent years have seen a surge in the popularity of commercial AI products based on generative, multi-purpose AI systems promising a unified approach to building machine learning (ML) models into technology. However, this ambition of "generality" comes at a steep cost to the environment, given the amount of energy these systems require and the amount of carbon that they emit. In this work, we propose the first systematic comparison of the ongoing inference cost of various categories of ML systems, covering both task-specific (i.e. finetuned models that carry out a single task) and `general-purpose' models, (i.e. those trained for multiple tasks). We measure deployment cost as the amount of energy and carbon required to perform 1,000 inferences on representative benchmark dataset using these models. We find that multi-purpose, generative architectures are orders of magnitude more expensive than task-specific systems for a variety of tasks, even when controlling for the number of model parameters. We conclude with a discussion around the current trend of deploying multi-purpose generative ML systems, and caution that their utility should be more intentionally weighed against increased costs in terms of energy and emissions. All the data from our study can be accessed via an interactive demo to carry out further exploration and analysis.
Creating General User Models from Computer Use
Human-computer interaction has long imagined technology that understands us-from our preferences and habits, to the timing and purpose of our everyday actions. Yet current user models remain fragmented, narrowly tailored to specific apps, and incapable of the flexible reasoning required to fulfill these visions. This paper presents an architecture for a general user model (GUM) that learns about you by observing any interaction you have with your computer. The GUM takes as input any unstructured observation of a user (e.g., device screenshots) and constructs confidence-weighted propositions that capture that user knowledge and preferences. GUMs can infer that a user is preparing for a wedding they're attending from messages with a friend. Or recognize that a user is struggling with a collaborator's feedback on a draft by observing multiple stalled edits and a switch to reading related work. GUMs introduce an architecture that infers new propositions about a user from multimodal observations, retrieves related propositions for context, and continuously revises existing propositions. To illustrate the breadth of applications that GUMs enable, we demonstrate how they augment chat-based assistants with context, manage OS notifications to selectively surface important information, and enable interactive agents that adapt to preferences across apps. We also instantiate proactive assistants (GUMBOs) that discover and execute useful suggestions on a user's behalf using their GUM. In our evaluations, we find that GUMs make calibrated and accurate inferences about users, and that assistants built on GUMs proactively identify and perform actions that users wouldn't think to request explicitly. Altogether, GUMs introduce methods that leverage multimodal models to understand unstructured context, enabling long-standing visions of HCI and entirely new interactive systems that anticipate user needs.
GThinker: Towards General Multimodal Reasoning via Cue-Guided Rethinking
Despite notable advancements in multimodal reasoning, leading Multimodal Large Language Models (MLLMs) still underperform on vision-centric multimodal reasoning tasks in general scenarios. This shortfall stems from their predominant reliance on logic- and knowledge-based slow thinking strategies, while effective for domains like math and science, fail to integrate visual information effectively during reasoning. Consequently, these models often fail to adequately ground visual cues, resulting in suboptimal performance in tasks that require multiple plausible visual interpretations and inferences. To address this, we present GThinker (General Thinker), a novel reasoning MLLM excelling in multimodal reasoning across general scenarios, mathematics, and science. GThinker introduces Cue-Rethinking, a flexible reasoning pattern that grounds inferences in visual cues and iteratively reinterprets these cues to resolve inconsistencies. Building on this pattern, we further propose a two-stage training pipeline, including pattern-guided cold start and incentive reinforcement learning, designed to enable multimodal reasoning capabilities across domains. Furthermore, to support the training, we construct GThinker-11K, comprising 7K high-quality, iteratively-annotated reasoning paths and 4K curated reinforcement learning samples, filling the data gap toward general multimodal reasoning. Extensive experiments demonstrate that GThinker achieves 81.5% on the challenging comprehensive multimodal reasoning benchmark M^3CoT, surpassing the latest O4-mini model. It also shows an average improvement of 2.1% on general scenario multimodal reasoning benchmarks, while maintaining on-par performance in mathematical reasoning compared to counterpart advanced reasoning models. The code, model, and data will be released soon at https://github.com/jefferyZhan/GThinker.
Learning to Generate Task-Specific Adapters from Task Description
Pre-trained text-to-text transformers such as BART have achieved impressive performance across a range of NLP tasks. Recent study further shows that they can learn to generalize to novel tasks, by including task descriptions as part of the source sequence and training the model with (source, target) examples. At test time, these fine-tuned models can make inferences on new tasks using the new task descriptions as part of the input. However, this approach has potential limitations, as the model learns to solve individual (source, target) examples (i.e., at the instance level), instead of learning to solve tasks by taking all examples within a task as a whole (i.e., at the task level). To this end, we introduce Hypter, a framework that improves text-to-text transformer's generalization ability to unseen tasks by training a hypernetwork to generate task-specific, light-weight adapters from task descriptions. Experiments on ZEST dataset and a synthetic SQuAD dataset demonstrate that Hypter improves upon fine-tuning baselines. Notably, when using BART-Large as the main network, Hypter brings 11.3% comparative improvement on ZEST dataset.
Benchmarking World-Model Learning
Model-learning agents should gather information to learn world models that support many downstream tasks and inferences, such as predicting unobserved states, estimating near- and far-term consequences of actions, planning action sequences, and detecting changes in dynamics. Current methods for learning and evaluating world models diverge from this goal: training and evaluation are anchored to next-frame prediction, and success is scored by reward maximization in the same environment. We propose WorldTest, a protocol to evaluate model-learning agents that separates reward-free interaction from a scored test phase in a different but related environment. WorldTest is open-endedx2014models should support many different tasks unknown ahead of timex2014and agnostic to model representation, allowing comparison across approaches. We instantiated WorldTest with AutumnBench, a suite of 43 interactive grid-world environments and 129 tasks across three families: masked-frame prediction, planning, and predicting changes to the causal dynamics. We compared 517 human participants and three frontier models on AutumnBench. We found that humans outperform the models, and scaling compute improves performance only in some environments but not others. WorldTest provides a novel templatex2014reward-free exploration, derived tests, and behavior-based scoringx2014to evaluate what agents learn about environment dynamics, and AutumnBench exposes significant headroom in world-model learning.
CytoSAE: Interpretable Cell Embeddings for Hematology
Sparse autoencoders (SAEs) emerged as a promising tool for mechanistic interpretability of transformer-based foundation models. Very recently, SAEs were also adopted for the visual domain, enabling the discovery of visual concepts and their patch-wise attribution to tokens in the transformer model. While a growing number of foundation models emerged for medical imaging, tools for explaining their inferences are still lacking. In this work, we show the applicability of SAEs for hematology. We propose CytoSAE, a sparse autoencoder which is trained on over 40,000 peripheral blood single-cell images. CytoSAE generalizes to diverse and out-of-domain datasets, including bone marrow cytology, where it identifies morphologically relevant concepts which we validated with medical experts. Furthermore, we demonstrate scenarios in which CytoSAE can generate patient-specific and disease-specific concepts, enabling the detection of pathognomonic cells and localized cellular abnormalities at the patch level. We quantified the effect of concepts on a patient-level AML subtype classification task and show that CytoSAE concepts reach performance comparable to the state-of-the-art, while offering explainability on the sub-cellular level. Source code and model weights are available at https://github.com/dynamical-inference/cytosae.
Comprehension Without Competence: Architectural Limits of LLMs in Symbolic Computation and Reasoning
Large Language Models (LLMs) display striking surface fluency yet systematically fail at tasks requiring symbolic reasoning, arithmetic accuracy, and logical consistency. This paper offers a structural diagnosis of such failures, revealing a persistent gap between comprehension and competence. Through controlled experiments and architectural analysis, we demonstrate that LLMs often articulate correct principles without reliably applying them--a failure rooted not in knowledge access, but in computational execution. We term this phenomenon the computational split-brain syndrome, where instruction and action pathways are geometrically and functionally dissociated. This core limitation recurs across domains, from mathematical operations to relational inferences, and explains why model behavior remains brittle even under idealized prompting. We argue that LLMs function as powerful pattern completion engines, but lack the architectural scaffolding for principled, compositional reasoning. Our findings delineate the boundary of current LLM capabilities and motivate future models with metacognitive control, principle lifting, and structurally grounded execution. This diagnosis also clarifies why mechanistic interpretability findings may reflect training-specific pattern coordination rather than universal computational principles, and why the geometric separation between instruction and execution pathways suggests limitations in neural introspection and mechanistic analysis.
Efficient Context Selection for Long-Context QA: No Tuning, No Iteration, Just Adaptive-$k$
Retrieval-augmented generation (RAG) and long-context language models (LCLMs) both address context limitations of LLMs in open-domain question answering (QA). However, optimal external context to retrieve remains an open problem: fixing the retrieval size risks either wasting tokens or omitting key evidence. Existing adaptive methods like Self-RAG and Self-Route rely on iterative LLM prompting and perform well on factoid QA, but struggle with aggregation QA, where the optimal context size is both unknown and variable. We present Adaptive-k retrieval, a simple and effective single-pass method that adaptively selects the number of passages based on the distribution of the similarity scores between the query and the candidate passages. It does not require model fine-tuning, extra LLM inferences or changes to existing retriever-reader pipelines. On both factoid and aggregation QA benchmarks, Adaptive-k matches or outperforms fixed-k baselines while using up to 10x fewer tokens than full-context input, yet still retrieves 70% of relevant passages. It improves accuracy across five LCLMs and two embedding models, highlighting that dynamically adjusting context size leads to more efficient and accurate QA.
Squeezed Attention: Accelerating Long Context Length LLM Inference
Emerging Large Language Model (LLM) applications require long input prompts to perform complex downstream tasks like document analysis and code generation. For these long context length applications, the length of the input prompt poses a significant challenge in terms of inference efficiency since the inference costs increase linearly with sequence length. However, for many of these applications, much of the context in the prompt is fixed across different user inputs, thereby providing the opportunity to perform offline optimizations to process user inputs quickly, as they are received. In this work, we propose Squeezed Attention as a mechanism to accelerate LLM applications where a large portion of the input prompt is fixed. We first leverage K-means clustering offline to group the keys for the fixed context based on semantic similarity and represent each cluster with a single centroid value. During inference, we compare query tokens from the user input with the centroids to predict which of the keys from the fixed context are semantically relevant and need to be loaded during inference. We then compute exact attention using only these important keys from the fixed context, thereby reducing bandwidth and computational costs. We also extend our method to use a hierarchical centroid lookup to identify important keys, which can reduce the complexity of attention from linear to logarithmic with respect to the context length. We implement optimized Triton kernels for centroid comparison and sparse FlashAttention with important keys, achieving more than 4x speedups during both the prefill and generation phases for long-context inference. Furthermore, we have extensively evaluated our method on various long-context benchmarks including LongBench, where it achieves a 3x reduction in KV cache budget without accuracy loss and up to an 8x reduction with <0.5 point accuracy gap for various models.
Wonder3D++: Cross-domain Diffusion for High-fidelity 3D Generation from a Single Image
In this work, we introduce Wonder3D++, a novel method for efficiently generating high-fidelity textured meshes from single-view images. Recent methods based on Score Distillation Sampling (SDS) have shown the potential to recover 3D geometry from 2D diffusion priors, but they typically suffer from time-consuming per-shape optimization and inconsistent geometry. In contrast, certain works directly produce 3D information via fast network inferences, but their results are often of low quality and lack geometric details. To holistically improve the quality, consistency, and efficiency of single-view reconstruction tasks, we propose a cross-domain diffusion model that generates multi-view normal maps and the corresponding color images. To ensure the consistency of generation, we employ a multi-view cross-domain attention mechanism that facilitates information exchange across views and modalities. Lastly, we introduce a cascaded 3D mesh extraction algorithm that drives high-quality surfaces from the multi-view 2D representations in only about 3 minute in a coarse-to-fine manner. Our extensive evaluations demonstrate that our method achieves high-quality reconstruction results, robust generalization, and good efficiency compared to prior works. Code available at https://github.com/xxlong0/Wonder3D/tree/Wonder3D_Plus.
VIBE: Can a VLM Read the Room?
Understanding human social behavior such as recognizing emotions and the social dynamics causing them is an important and challenging problem. While LLMs have made remarkable advances, they are limited to the textual domain and cannot account for the major role that non-verbal cues play in understanding social situations. Vision Language Models (VLMs) can potentially account for this gap, however their ability to make correct inferences over such social cues has received little attention. In this paper, we explore the capabilities of VLMs at social reasoning. We identify a previously overlooked limitation in VLMs: the Visual Social-Pragmatic Inference gap. To target this gap, we propose a new task for VLMs: Visual Social-Pragmatic Inference. We construct a high quality dataset to test the abilities of a VLM for this task and benchmark the performance of several VLMs on it.
From Linguistic Giants to Sensory Maestros: A Survey on Cross-Modal Reasoning with Large Language Models
Cross-modal reasoning (CMR), the intricate process of synthesizing and drawing inferences across divergent sensory modalities, is increasingly recognized as a crucial capability in the progression toward more sophisticated and anthropomorphic artificial intelligence systems. Large Language Models (LLMs) represent a class of AI algorithms specifically engineered to parse, produce, and engage with human language on an extensive scale. The recent trend of deploying LLMs to tackle CMR tasks has marked a new mainstream of approaches for enhancing their effectiveness. This survey offers a nuanced exposition of current methodologies applied in CMR using LLMs, classifying these into a detailed three-tiered taxonomy. Moreover, the survey delves into the principal design strategies and operational techniques of prototypical models within this domain. Additionally, it articulates the prevailing challenges associated with the integration of LLMs in CMR and identifies prospective research directions. To sum up, this survey endeavors to expedite progress within this burgeoning field by endowing scholars with a holistic and detailed vista, showcasing the vanguard of current research whilst pinpointing potential avenues for advancement. An associated GitHub repository that collects the relevant papers can be found at https://github.com/ZuyiZhou/Awesome-Cross-modal-Reasoning-with-LLMs
Accelerating Diffusion for SAR-to-Optical Image Translation via Adversarial Consistency Distillation
Synthetic Aperture Radar (SAR) provides all-weather, high-resolution imaging capabilities, but its unique imaging mechanism often requires expert interpretation, limiting its widespread applicability. Translating SAR images into more easily recognizable optical images using diffusion models helps address this challenge. However, diffusion models suffer from high latency due to numerous iterative inferences, while Generative Adversarial Networks (GANs) can achieve image translation with just a single iteration but often at the cost of image quality. To overcome these issues, we propose a new training framework for SAR-to-optical image translation that combines the strengths of both approaches. Our method employs consistency distillation to reduce iterative inference steps and integrates adversarial learning to ensure image clarity and minimize color shifts. Additionally, our approach allows for a trade-off between quality and speed, providing flexibility based on application requirements. We conducted experiments on SEN12 and GF3 datasets, performing quantitative evaluations using Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Frechet Inception Distance (FID), as well as calculating the inference latency. The results demonstrate that our approach significantly improves inference speed by 131 times while maintaining the visual quality of the generated images, thus offering a robust and efficient solution for SAR-to-optical image translation.
Enhancing Spatiotemporal Disease Progression Models via Latent Diffusion and Prior Knowledge
In this work, we introduce Brain Latent Progression (BrLP), a novel spatiotemporal disease progression model based on latent diffusion. BrLP is designed to predict the evolution of diseases at the individual level on 3D brain MRIs. Existing deep generative models developed for this task are primarily data-driven and face challenges in learning disease progressions. BrLP addresses these challenges by incorporating prior knowledge from disease models to enhance the accuracy of predictions. To implement this, we propose to integrate an auxiliary model that infers volumetric changes in various brain regions. Additionally, we introduce Latent Average Stabilization (LAS), a novel technique to improve spatiotemporal consistency of the predicted progression. BrLP is trained and evaluated on a large dataset comprising 11,730 T1-weighted brain MRIs from 2,805 subjects, collected from three publicly available, longitudinal Alzheimer's Disease (AD) studies. In our experiments, we compare the MRI scans generated by BrLP with the actual follow-up MRIs available from the subjects, in both cross-sectional and longitudinal settings. BrLP demonstrates significant improvements over existing methods, with an increase of 22% in volumetric accuracy across AD-related brain regions and 43% in image similarity to the ground-truth scans. The ability of BrLP to generate conditioned 3D scans at the subject level, along with the novelty of integrating prior knowledge to enhance accuracy, represents a significant advancement in disease progression modeling, opening new avenues for precision medicine. The code of BrLP is available at the following link: https://github.com/LemuelPuglisi/BrLP.
Defining Expertise: Applications to Treatment Effect Estimation
Decision-makers are often experts of their domain and take actions based on their domain knowledge. Doctors, for instance, may prescribe treatments by predicting the likely outcome of each available treatment. Actions of an expert thus naturally encode part of their domain knowledge, and can help make inferences within the same domain: Knowing doctors try to prescribe the best treatment for their patients, we can tell treatments prescribed more frequently are likely to be more effective. Yet in machine learning, the fact that most decision-makers are experts is often overlooked, and "expertise" is seldom leveraged as an inductive bias. This is especially true for the literature on treatment effect estimation, where often the only assumption made about actions is that of overlap. In this paper, we argue that expertise - particularly the type of expertise the decision-makers of a domain are likely to have - can be informative in designing and selecting methods for treatment effect estimation. We formally define two types of expertise, predictive and prognostic, and demonstrate empirically that: (i) the prominent type of expertise in a domain significantly influences the performance of different methods in treatment effect estimation, and (ii) it is possible to predict the type of expertise present in a dataset, which can provide a quantitative basis for model selection.
An Efficient Rehearsal Scheme for Catastrophic Forgetting Mitigation during Multi-stage Fine-tuning
Incrementally fine-tuning foundational models on new tasks or domains is now the de facto approach in NLP. A known pitfall of this approach is the catastrophic forgetting of prior knowledge that happens during fine-tuning. A common approach to alleviate such forgetting is to rehearse samples from prior tasks during fine-tuning. Several existing works assume a fixed memory buffer to store prior task examples, while relying on inferences (forward passes) with the model at hand for choosing examples for rehearsal from the buffer. However, given the increasing computational cost of model inference, and decreasing cost of data storage, we focus on the setting to rehearse samples with a fixed computational budget instead of a fixed memory budget. We propose a sampling scheme, \bf mix-cd, that prioritizes rehearsal of ``collateral damage'' samples, which are samples predicted correctly by the prior model but forgotten by the incrementally tuned one. The crux of our scheme is a procedure to efficiently estimate the density of collateral damage samples without incurring additional model inferences. Our approach is computationally efficient, easy to implement, and outperforms several leading continual learning methods in compute-constrained settings. All the code will be publicly available at https://github.com/jybai/mix-cd-rehearsal.
Does Pre-trained Language Model Actually Infer Unseen Links in Knowledge Graph Completion?
Knowledge graphs (KGs) consist of links that describe relationships between entities. Due to the difficulty of manually enumerating all relationships between entities, automatically completing them is essential for KGs. Knowledge Graph Completion (KGC) is a task that infers unseen relationships between entities in a KG. Traditional embedding-based KGC methods, such as RESCAL, TransE, DistMult, ComplEx, RotatE, HAKE, HousE, etc., infer missing links using only the knowledge from training data. In contrast, the recent Pre-trained Language Model (PLM)-based KGC utilizes knowledge obtained during pre-training. Therefore, PLM-based KGC can estimate missing links between entities by reusing memorized knowledge from pre-training without inference. This approach is problematic because building KGC models aims to infer unseen links between entities. However, conventional evaluations in KGC do not consider inference and memorization abilities separately. Thus, a PLM-based KGC method, which achieves high performance in current KGC evaluations, may be ineffective in practical applications. To address this issue, we analyze whether PLM-based KGC methods make inferences or merely access memorized knowledge. For this purpose, we propose a method for constructing synthetic datasets specified in this analysis and conclude that PLMs acquire the inference abilities required for KGC through pre-training, even though the performance improvements mostly come from textual information of entities and relations.
PsyCoT: Psychological Questionnaire as Powerful Chain-of-Thought for Personality Detection
Recent advances in large language models (LLMs), such as ChatGPT, have showcased remarkable zero-shot performance across various NLP tasks. However, the potential of LLMs in personality detection, which involves identifying an individual's personality from their written texts, remains largely unexplored. Drawing inspiration from Psychological Questionnaires, which are carefully designed by psychologists to evaluate individual personality traits through a series of targeted items, we argue that these items can be regarded as a collection of well-structured chain-of-thought (CoT) processes. By incorporating these processes, LLMs can enhance their capabilities to make more reasonable inferences on personality from textual input. In light of this, we propose a novel personality detection method, called PsyCoT, which mimics the way individuals complete psychological questionnaires in a multi-turn dialogue manner. In particular, we employ a LLM as an AI assistant with a specialization in text analysis. We prompt the assistant to rate individual items at each turn and leverage the historical rating results to derive a conclusive personality preference. Our experiments demonstrate that PsyCoT significantly improves the performance and robustness of GPT-3.5 in personality detection, achieving an average F1 score improvement of 4.23/10.63 points on two benchmark datasets compared to the standard prompting method. Our code is available at https://github.com/TaoYang225/PsyCoT.
Anatomically-aware Uncertainty for Semi-supervised Image Segmentation
Semi-supervised learning relaxes the need of large pixel-wise labeled datasets for image segmentation by leveraging unlabeled data. A prominent way to exploit unlabeled data is to regularize model predictions. Since the predictions of unlabeled data can be unreliable, uncertainty-aware schemes are typically employed to gradually learn from meaningful and reliable predictions. Uncertainty estimation methods, however, rely on multiple inferences from the model predictions that must be computed for each training step, which is computationally expensive. Moreover, these uncertainty maps capture pixel-wise disparities and do not consider global information. This work proposes a novel method to estimate segmentation uncertainty by leveraging global information from the segmentation masks. More precisely, an anatomically-aware representation is first learnt to model the available segmentation masks. The learnt representation thereupon maps the prediction of a new segmentation into an anatomically-plausible segmentation. The deviation from the plausible segmentation aids in estimating the underlying pixel-level uncertainty in order to further guide the segmentation network. The proposed method consequently estimates the uncertainty using a single inference from our representation, thereby reducing the total computation. We evaluate our method on two publicly available segmentation datasets of left atria in cardiac MRIs and of multiple organs in abdominal CTs. Our anatomically-aware method improves the segmentation accuracy over the state-of-the-art semi-supervised methods in terms of two commonly used evaluation metrics.
Retrieval-Augmented Meta Learning for Low-Resource Text Classification
Meta learning have achieved promising performance in low-resource text classification which aims to identify target classes with knowledge transferred from source classes with sets of small tasks named episodes. However, due to the limited training data in the meta-learning scenario and the inherent properties of parameterized neural networks, poor generalization performance has become a pressing problem that needs to be addressed. To deal with this issue, we propose a meta-learning based method called Retrieval-Augmented Meta Learning(RAML). It not only uses parameterization for inference but also retrieves non-parametric knowledge from an external corpus to make inferences, which greatly alleviates the problem of poor generalization performance caused by the lack of diverse training data in meta-learning. This method differs from previous models that solely rely on parameters, as it explicitly emphasizes the importance of non-parametric knowledge, aiming to strike a balance between parameterized neural networks and non-parametric knowledge. The model is required to determine which knowledge to access and utilize during inference. Additionally, our multi-view passages fusion network module can effectively and efficiently integrate the retrieved information into low-resource classification task. The extensive experiments demonstrate that RAML significantly outperforms current SOTA low-resource text classification models.
Benchmarking Algorithmic Bias in Face Recognition: An Experimental Approach Using Synthetic Faces and Human Evaluation
We propose an experimental method for measuring bias in face recognition systems. Existing methods to measure bias depend on benchmark datasets that are collected in the wild and annotated for protected (e.g., race, gender) and non-protected (e.g., pose, lighting) attributes. Such observational datasets only permit correlational conclusions, e.g., "Algorithm A's accuracy is different on female and male faces in dataset X.". By contrast, experimental methods manipulate attributes individually and thus permit causal conclusions, e.g., "Algorithm A's accuracy is affected by gender and skin color." Our method is based on generating synthetic faces using a neural face generator, where each attribute of interest is modified independently while leaving all other attributes constant. Human observers crucially provide the ground truth on perceptual identity similarity between synthetic image pairs. We validate our method quantitatively by evaluating race and gender biases of three research-grade face recognition models. Our synthetic pipeline reveals that for these algorithms, accuracy is lower for Black and East Asian population subgroups. Our method can also quantify how perceptual changes in attributes affect face identity distances reported by these models. Our large synthetic dataset, consisting of 48,000 synthetic face image pairs (10,200 unique synthetic faces) and 555,000 human annotations (individual attributes and pairwise identity comparisons) is available to researchers in this important area.
NormBank: A Knowledge Bank of Situational Social Norms
We present NormBank, a knowledge bank of 155k situational norms. This resource is designed to ground flexible normative reasoning for interactive, assistive, and collaborative AI systems. Unlike prior commonsense resources, NormBank grounds each inference within a multivalent sociocultural frame, which includes the setting (e.g., restaurant), the agents' contingent roles (waiter, customer), their attributes (age, gender), and other physical, social, and cultural constraints (e.g., the temperature or the country of operation). In total, NormBank contains 63k unique constraints from a taxonomy that we introduce and iteratively refine here. Constraints then apply in different combinations to frame social norms. Under these manipulations, norms are non-monotonic - one can cancel an inference by updating its frame even slightly. Still, we find evidence that neural models can help reliably extend the scope and coverage of NormBank. We further demonstrate the utility of this resource with a series of transfer experiments.
Theoretical Guarantees of Learning Ensembling Strategies with Applications to Time Series Forecasting
Ensembling is among the most popular tools in machine learning (ML) due to its effectiveness in minimizing variance and thus improving generalization. Most ensembling methods for black-box base learners fall under the umbrella of "stacked generalization," namely training an ML algorithm that takes the inferences from the base learners as input. While stacking has been widely applied in practice, its theoretical properties are poorly understood. In this paper, we prove a novel result, showing that choosing the best stacked generalization from a (finite or finite-dimensional) family of stacked generalizations based on cross-validated performance does not perform "much worse" than the oracle best. Our result strengthens and significantly extends the results in Van der Laan et al. (2007). Inspired by the theoretical analysis, we further propose a particular family of stacked generalizations in the context of probabilistic forecasting, each one with a different sensitivity for how much the ensemble weights are allowed to vary across items, timestamps in the forecast horizon, and quantiles. Experimental results demonstrate the performance gain of the proposed method.
Teaching Probabilistic Logical Reasoning to Transformers
In this paper, we evaluate the capability of transformer-based language models in making inferences over uncertain text that includes uncertain rules of reasoning. We cover both Pre-trained Language Models (PLMs) and generative Large Language Models (LLMs). Our evaluation results show that both generations of language models struggle with reasoning over uncertain text. We propose a novel end-to-end fine-tuning approach, Probabilistic Constraint Training (PCT), that utilizes probabilistic logical rules as constraints in the fine-tuning phase without relying on these rules in the inference stage. To assess the effectiveness of PCT, we utilize the related corpora and, additionally, create a new and more challenging benchmark that, unlike the previous ones, uses instance-specific rules. Our study demonstrates that PCT improves the transformer-based language model's intrinsic reasoning and makes their probabilistic logical reasoning process more explicit and explainable. Furthermore, PCT equips these models to effectively handle novel situations, including higher reasoning depth, new domains, and complex probabilistic structures.
A hybrid deep-learning-metaheuristic framework for bi-level network design problems
This study proposes a hybrid deep-learning-metaheuristic framework with a bi-level architecture for road network design problems (NDPs). We train a graph neural network (GNN) to approximate the solution of the user equilibrium (UE) traffic assignment problem and use inferences made by the trained model to calculate fitness function evaluations of a genetic algorithm (GA) to approximate solutions for NDPs. Using three test networks, two NDP variants and an exact solver as benchmark, we show that on average, our proposed framework can provide solutions within 1.5% gap of the best results in less than 0.5% of the time used by the exact solution procedure. Our framework can be utilized within an expert system for infrastructure planning to determine the best infrastructure planning and management decisions under different scenarios. Given the flexibility of the framework, it can easily be adapted to many other decision problems that can be modeled as bi-level problems on graphs. Moreover, we foreseen interesting future research directions, thus we also put forward a brief research agenda for this topic. The key observation from our research that can shape future research is that the fitness function evaluation time using the inferences made by the GNN model was in the order of milliseconds, which points to an opportunity and a need for novel heuristics that 1) can cope well with noisy fitness function values provided by deep learning models, and 2) can use the significantly enlarged efficiency of the evaluation step to explore the search space effectively (rather than efficiently). This opens a new avenue for a modern class of metaheuristics that are crafted for use with AI-powered predictors.
COMPS: Conceptual Minimal Pair Sentences for testing Robust Property Knowledge and its Inheritance in Pre-trained Language Models
A characteristic feature of human semantic cognition is its ability to not only store and retrieve the properties of concepts observed through experience, but to also facilitate the inheritance of properties (can breathe) from superordinate concepts (animal) to their subordinates (dog) -- i.e. demonstrate property inheritance. In this paper, we present COMPS, a collection of minimal pair sentences that jointly tests pre-trained language models (PLMs) on their ability to attribute properties to concepts and their ability to demonstrate property inheritance behavior. Analyses of 22 different PLMs on COMPS reveal that they can easily distinguish between concepts on the basis of a property when they are trivially different, but find it relatively difficult when concepts are related on the basis of nuanced knowledge representations. Furthermore, we find that PLMs can demonstrate behavior consistent with property inheritance to a great extent, but fail in the presence of distracting information, which decreases the performance of many models, sometimes even below chance. This lack of robustness in demonstrating simple reasoning raises important questions about PLMs' capacity to make correct inferences even when they appear to possess the prerequisite knowledge.
Home Run: Finding Your Way Home by Imagining Trajectories
When studying unconstrained behaviour and allowing mice to leave their cage to navigate a complex labyrinth, the mice exhibit foraging behaviour in the labyrinth searching for rewards, returning to their home cage now and then, e.g. to drink. Surprisingly, when executing such a ``home run'', the mice do not follow the exact reverse path, in fact, the entry path and home path have very little overlap. Recent work proposed a hierarchical active inference model for navigation, where the low level model makes inferences about hidden states and poses that explain sensory inputs, whereas the high level model makes inferences about moving between locations, effectively building a map of the environment. However, using this ``map'' for planning, only allows the agent to find trajectories that it previously explored, far from the observed mice's behaviour. In this paper, we explore ways of incorporating before-unvisited paths in the planning algorithm, by using the low level generative model to imagine potential, yet undiscovered paths. We demonstrate a proof of concept in a grid-world environment, showing how an agent can accurately predict a new, shorter path in the map leading to its starting point, using a generative model learnt from pixel-based observations.
DeepReDuce: ReLU Reduction for Fast Private Inference
The recent rise of privacy concerns has led researchers to devise methods for private neural inference -- where inferences are made directly on encrypted data, never seeing inputs. The primary challenge facing private inference is that computing on encrypted data levies an impractically-high latency penalty, stemming mostly from non-linear operators like ReLU. Enabling practical and private inference requires new optimization methods that minimize network ReLU counts while preserving accuracy. This paper proposes DeepReDuce: a set of optimizations for the judicious removal of ReLUs to reduce private inference latency. The key insight is that not all ReLUs contribute equally to accuracy. We leverage this insight to drop, or remove, ReLUs from classic networks to significantly reduce inference latency and maintain high accuracy. Given a target network, DeepReDuce outputs a Pareto frontier of networks that tradeoff the number of ReLUs and accuracy. Compared to the state-of-the-art for private inference DeepReDuce improves accuracy and reduces ReLU count by up to 3.5% (iso-ReLU count) and 3.5times (iso-accuracy), respectively.
GLUCOSE: GeneraLized and COntextualized Story Explanations
When humans read or listen, they make implicit commonsense inferences that frame their understanding of what happened and why. As a step toward AI systems that can build similar mental models, we introduce GLUCOSE, a large-scale dataset of implicit commonsense causal knowledge, encoded as causal mini-theories about the world, each grounded in a narrative context. To construct GLUCOSE, we drew on cognitive psychology to identify ten dimensions of causal explanation, focusing on events, states, motivations, and emotions. Each GLUCOSE entry includes a story-specific causal statement paired with an inference rule generalized from the statement. This paper details two concrete contributions. First, we present our platform for effectively crowdsourcing GLUCOSE data at scale, which uses semi-structured templates to elicit causal explanations. Using this platform, we collected a total of ~670K specific statements and general rules that capture implicit commonsense knowledge about everyday situations. Second, we show that existing knowledge resources and pretrained language models do not include or readily predict GLUCOSE's rich inferential content. However, when state-of-the-art neural models are trained on this knowledge, they can start to make commonsense inferences on unseen stories that match humans' mental models.
Are Natural Language Inference Models IMPPRESsive? Learning IMPlicature and PRESupposition
Natural language inference (NLI) is an increasingly important task for natural language understanding, which requires one to infer whether a sentence entails another. However, the ability of NLI models to make pragmatic inferences remains understudied. We create an IMPlicature and PRESupposition diagnostic dataset (IMPPRES), consisting of >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. We use IMPPRES to evaluate whether BERT, InferSent, and BOW NLI models trained on MultiNLI (Williams et al., 2018) learn to make pragmatic inferences. Although MultiNLI appears to contain very few pairs illustrating these inference types, we find that BERT learns to draw pragmatic inferences. It reliably treats scalar implicatures triggered by "some" as entailments. For some presupposition triggers like "only", BERT reliably recognizes the presupposition as an entailment, even when the trigger is embedded under an entailment canceling operator like negation. BOW and InferSent show weaker evidence of pragmatic reasoning. We conclude that NLI training encourages models to learn some, but not all, pragmatic inferences.
Guidance and Evaluation: Semantic-Aware Image Inpainting for Mixed Scenes
Completing a corrupted image with correct structures and reasonable textures for a mixed scene remains an elusive challenge. Since the missing hole in a mixed scene of a corrupted image often contains various semantic information, conventional two-stage approaches utilizing structural information often lead to the problem of unreliable structural prediction and ambiguous image texture generation. In this paper, we propose a Semantic Guidance and Evaluation Network (SGE-Net) to iteratively update the structural priors and the inpainted image in an interplay framework of semantics extraction and image inpainting. It utilizes semantic segmentation map as guidance in each scale of inpainting, under which location-dependent inferences are re-evaluated, and, accordingly, poorly-inferred regions are refined in subsequent scales. Extensive experiments on real-world images of mixed scenes demonstrated the superiority of our proposed method over state-of-the-art approaches, in terms of clear boundaries and photo-realistic textures.
A Transfer Learning Method for Goal Recognition Exploiting Cross-Domain Spatial Features
The ability to infer the intentions of others, predict their goals, and deduce their plans are critical features for intelligent agents. For a long time, several approaches investigated the use of symbolic representations and inferences with limited success, principally because it is difficult to capture the cognitive knowledge behind human decisions explicitly. The trend, nowadays, is increasingly focusing on learning to infer intentions directly from data, using deep learning in particular. We are now observing interesting applications of intent classification in natural language processing, visual activity recognition, and emerging approaches in other domains. This paper discusses a novel approach combining few-shot and transfer learning with cross-domain features, to learn to infer the intent of an agent navigating in physical environments, executing arbitrary long sequences of actions to achieve their goals. Experiments in synthetic environments demonstrate improved performance in terms of learning from few samples and generalizing to unseen configurations, compared to a deep-learning baseline approach.
New rotation period measurements for M dwarfs in the southern hemisphere: an abundance of slowly rotating, fully convective stars
Stellar rotation periods are valuable both for constraining models of angular momentum loss and for under- standing how magnetic features impact inferences of exoplanet parameters. Building on our previous work in the northern hemisphere, we have used long-term, ground-based photometric monitoring from the MEarth Observatory to measure 234 rotation periods for nearby, southern hemisphere M dwarfs. Notable examples include the exoplanet hosts GJ 1132, LHS 1140, and Proxima Centauri. We find excellent agreement between our data and K2 photometry for the overlapping subset. Amongst the sample of stars with the highest quality datasets, we recover periods in 66%; as the length of the dataset increases, our recovery rate approaches 100%. The longest rotation periods we detect are around 140 days, which we suggest represent the periods that are reached when M dwarfs are as old as the local thick disk (about 9 Gyr).
Decoding Compressed Trust: Scrutinizing the Trustworthiness of Efficient LLMs Under Compression
Compressing high-capability Large Language Models (LLMs) has emerged as a favored strategy for resource-efficient inferences. While state-of-the-art (SoTA) compression methods boast impressive advancements in preserving benign task performance, the potential risks of compression in terms of safety and trustworthiness have been largely neglected. This study conducts the first, thorough evaluation of three (3) leading LLMs using five (5) SoTA compression techniques across eight (8) trustworthiness dimensions. Our experiments highlight the intricate interplay between compression and trustworthiness, revealing some interesting patterns. We find that quantization is currently a more effective approach than pruning in achieving efficiency and trustworthiness simultaneously. For instance, a 4-bit quantized model retains the trustworthiness of its original counterpart, but model pruning significantly degrades trustworthiness, even at 50% sparsity. Moreover, employing quantization within a moderate bit range could unexpectedly improve certain trustworthiness dimensions such as ethics and fairness. Conversely, extreme quantization to very low bit levels (3 bits) tends to significantly reduce trustworthiness. This increased risk cannot be uncovered by looking at benign performance alone, in turn, mandating comprehensive trustworthiness evaluation in practice. These findings culminate in practical recommendations for simultaneously achieving high utility, efficiency, and trustworthiness in LLMs. Models and code are available at https://decoding-comp-trust.github.io/.
The Sum Leaks More Than Its Parts: Compositional Privacy Risks and Mitigations in Multi-Agent Collaboration
As large language models (LLMs) become integral to multi-agent systems, new privacy risks emerge that extend beyond memorization, direct inference, or single-turn evaluations. In particular, seemingly innocuous responses, when composed across interactions, can cumulatively enable adversaries to recover sensitive information, a phenomenon we term compositional privacy leakage. We present the first systematic study of such compositional privacy leaks and possible mitigation methods in multi-agent LLM systems. First, we develop a framework that models how auxiliary knowledge and agent interactions jointly amplify privacy risks, even when each response is benign in isolation. Next, to mitigate this, we propose and evaluate two defense strategies: (1) Theory-of-Mind defense (ToM), where defender agents infer a questioner's intent by anticipating how their outputs may be exploited by adversaries, and (2) Collaborative Consensus Defense (CoDef), where responder agents collaborate with peers who vote based on a shared aggregated state to restrict sensitive information spread. Crucially, we balance our evaluation across compositions that expose sensitive information and compositions that yield benign inferences. Our experiments quantify how these defense strategies differ in balancing the privacy-utility trade-off. We find that while chain-of-thought alone offers limited protection to leakage (~39% sensitive blocking rate), our ToM defense substantially improves sensitive query blocking (up to 97%) but can reduce benign task success. CoDef achieves the best balance, yielding the highest Balanced Outcome (79.8%), highlighting the benefit of combining explicit reasoning with defender collaboration. Together, our results expose a new class of risks in collaborative LLM deployments and provide actionable insights for designing safeguards against compositional, context-driven privacy leakage.
Pre-training with Large Language Model-based Document Expansion for Dense Passage Retrieval
In this paper, we systematically study the potential of pre-training with Large Language Model(LLM)-based document expansion for dense passage retrieval. Concretely, we leverage the capabilities of LLMs for document expansion, i.e. query generation, and effectively transfer expanded knowledge to retrievers using pre-training strategies tailored for passage retrieval. These strategies include contrastive learning and bottlenecked query generation. Furthermore, we incorporate a curriculum learning strategy to reduce the reliance on LLM inferences. Experimental results demonstrate that pre-training with LLM-based document expansion significantly boosts the retrieval performance on large-scale web-search tasks. Our work shows strong zero-shot and out-of-domain retrieval abilities, making it more widely applicable for retrieval when initializing with no human-labeled data.
QUTE: Quantifying Uncertainty in TinyML models with Early-exit-assisted ensembles
Existing methods for uncertainty quantification incur massive memory and compute overhead, often requiring multiple models/inferences. Hence they are impractical on ultra-low-power KB-sized TinyML devices. To reduce overhead, prior works have proposed the use of early-exit networks as ensembles to quantify uncertainty in a single forward-pass. However, they still have a prohibitive cost for tinyML. To address these challenges, we propose QUTE, a novel resource-efficient early-exit-assisted ensemble architecture optimized for tinyML models. QUTE adds additional output blocks at the final exit of the base network and distills the knowledge of early-exits into these blocks to create a diverse and lightweight ensemble architecture. Our results show that QUTE outperforms popular prior works, and improves the quality of uncertainty estimates by 6% with 3.1x lower model size on average compared to the most relevant prior work. Furthermore, we demonstrate that QUTE is also effective in detecting co-variate shifted and out-of-distribution inputs, and shows competitive performance relative to G-ODIN, a state-of-the-art generalized OOD detector.
A Vietnamese Dataset for Evaluating Machine Reading Comprehension
Over 97 million people speak Vietnamese as their native language in the world. However, there are few research studies on machine reading comprehension (MRC) for Vietnamese, the task of understanding a text and answering questions related to it. Due to the lack of benchmark datasets for Vietnamese, we present the Vietnamese Question Answering Dataset (UIT-ViQuAD), a new dataset for the low-resource language as Vietnamese to evaluate MRC models. This dataset comprises over 23,000 human-generated question-answer pairs based on 5,109 passages of 174 Vietnamese articles from Wikipedia. In particular, we propose a new process of dataset creation for Vietnamese MRC. Our in-depth analyses illustrate that our dataset requires abilities beyond simple reasoning like word matching and demands single-sentence and multiple-sentence inferences. Besides, we conduct experiments on state-of-the-art MRC methods for English and Chinese as the first experimental models on UIT-ViQuAD. We also estimate human performance on the dataset and compare it to the experimental results of powerful machine learning models. As a result, the substantial differences between human performance and the best model performance on the dataset indicate that improvements can be made on UIT-ViQuAD in future research. Our dataset is freely available on our website to encourage the research community to overcome challenges in Vietnamese MRC.
Understanding networks and their behaviors using sheaf theory
Many complicated network problems can be easily understood on small networks. Difficulties arise when small networks are combined into larger ones. Fortunately, the mathematical theory of sheaves was constructed to address just this kind of situation; it extends locally-defined structures to globally valid inferences by way of consistency relations. This paper exhibits examples in network monitoring and filter hardware where sheaves have useful descriptive power.
Cooperation on the Fly: Exploring Language Agents for Ad Hoc Teamwork in the Avalon Game
Multi-agent collaboration with Large Language Models (LLMs) demonstrates proficiency in basic tasks, yet its efficiency in more complex scenarios remains unexplored. In gaming environments, these agents often face situations without established coordination protocols, requiring them to make intelligent inferences about teammates from limited data. This problem motivates the area of ad hoc teamwork, in which an agent may potentially cooperate with a variety of teammates to achieve a shared goal. Our study focuses on the ad hoc teamwork problem where the agent operates in an environment driven by natural language. Our findings reveal the potential of LLM agents in team collaboration, highlighting issues related to hallucinations in communication. To address this issue, we develop CodeAct, a general agent that equips LLM with enhanced memory and code-driven reasoning, enabling the repurposing of partial information for rapid adaptation to new teammates.
HarsanyiNet: Computing Accurate Shapley Values in a Single Forward Propagation
The Shapley value is widely regarded as a trustworthy attribution metric. However, when people use Shapley values to explain the attribution of input variables of a deep neural network (DNN), it usually requires a very high computational cost to approximate relatively accurate Shapley values in real-world applications. Therefore, we propose a novel network architecture, the HarsanyiNet, which makes inferences on the input sample and simultaneously computes the exact Shapley values of the input variables in a single forward propagation. The HarsanyiNet is designed on the theoretical foundation that the Shapley value can be reformulated as the redistribution of Harsanyi interactions encoded by the network.
Analyzing Semantic Faithfulness of Language Models via Input Intervention on Conversational Question Answering
Transformer-based language models have been shown to be highly effective for several NLP tasks. In this paper, we consider three transformer models, BERT, RoBERTa, and XLNet, in both small and large version, and investigate how faithful their representations are with respect to the semantic content of texts. We formalize a notion of semantic faithfulness, in which the semantic content of a text should causally figure in a model's inferences in question answering. We then test this notion by observing a model's behavior on answering questions about a story after performing two novel semantic interventions -- deletion intervention and negation intervention. While transformer models achieve high performance on standard question answering tasks, we show that they fail to be semantically faithful once we perform these interventions for a significant number of cases (~50% for deletion intervention, and ~20% drop in accuracy for negation intervention). We then propose an intervention-based training regime that can mitigate the undesirable effects for deletion intervention by a significant margin (from ~50% to ~6%). We analyze the inner-workings of the models to better understand the effectiveness of intervention-based training for deletion intervention. But we show that this training does not attenuate other aspects of semantic unfaithfulness such as the models' inability to deal with negation intervention or to capture the predicate-argument structure of texts. We also test InstructGPT, via prompting, for its ability to handle the two interventions and to capture predicate-argument structure. While InstructGPT models do achieve very high performance on predicate-argument structure task, they fail to respond adequately to our deletion and negation interventions.
InstructionNER: A Multi-Task Instruction-Based Generative Framework for Few-shot NER
Recently, prompt-based methods have achieved significant performance in few-shot learning scenarios by bridging the gap between language model pre-training and fine-tuning for downstream tasks. However, existing prompt templates are mostly designed for sentence-level tasks and are inappropriate for sequence labeling objectives. To address the above issue, we propose a multi-task instruction-based generative framework, named InstructionNER, for low-resource named entity recognition. Specifically, we reformulate the NER task as a generation problem, which enriches source sentences with task-specific instructions and answer options, then inferences the entities and types in natural language. We further propose two auxiliary tasks, including entity extraction and entity typing, which enable the model to capture more boundary information of entities and deepen the understanding of entity type semantics, respectively. Experimental results show that our method consistently outperforms other baselines on five datasets in few-shot settings.
Explanatory Learning: Beyond Empiricism in Neural Networks
We introduce Explanatory Learning (EL), a framework to let machines use existing knowledge buried in symbolic sequences -- e.g. explanations written in hieroglyphic -- by autonomously learning to interpret them. In EL, the burden of interpreting symbols is not left to humans or rigid human-coded compilers, as done in Program Synthesis. Rather, EL calls for a learned interpreter, built upon a limited collection of symbolic sequences paired with observations of several phenomena. This interpreter can be used to make predictions on a novel phenomenon given its explanation, and even to find that explanation using only a handful of observations, like human scientists do. We formulate the EL problem as a simple binary classification task, so that common end-to-end approaches aligned with the dominant empiricist view of machine learning could, in principle, solve it. To these models, we oppose Critical Rationalist Networks (CRNs), which instead embrace a rationalist view on the acquisition of knowledge. CRNs express several desired properties by construction, they are truly explainable, can adjust their processing at test-time for harder inferences, and can offer strong confidence guarantees on their predictions. As a final contribution, we introduce Odeen, a basic EL environment that simulates a small flatland-style universe full of phenomena to explain. Using Odeen as a testbed, we show how CRNs outperform empiricist end-to-end approaches of similar size and architecture (Transformers) in discovering explanations for novel phenomena.
mRAT-SQL+GAP:A Portuguese Text-to-SQL Transformer
The translation of natural language questions to SQL queries has attracted growing attention, in particular in connection with transformers and similar language models. A large number of techniques are geared towards the English language; in this work, we thus investigated translation to SQL when input questions are given in the Portuguese language. To do so, we properly adapted state-of-the-art tools and resources. We changed the RAT-SQL+GAP system by relying on a multilingual BART model (we report tests with other language models), and we produced a translated version of the Spider dataset. Our experiments expose interesting phenomena that arise when non-English languages are targeted; in particular, it is better to train with original and translated training datasets together, even if a single target language is desired. This multilingual BART model fine-tuned with a double-size training dataset (English and Portuguese) achieved 83% of the baseline, making inferences for the Portuguese test dataset. This investigation can help other researchers to produce results in Machine Learning in a language different from English. Our multilingual ready version of RAT-SQL+GAP and the data are available, open-sourced as mRAT-SQL+GAP at: https://github.com/C4AI/gap-text2sql
DeepA2: A Modular Framework for Deep Argument Analysis with Pretrained Neural Text2Text Language Models
In this paper, we present and implement a multi-dimensional, modular framework for performing deep argument analysis (DeepA2) using current pre-trained language models (PTLMs). ArgumentAnalyst -- a T5 model (Raffel et al. 2020) set up and trained within DeepA2 -- reconstructs argumentative texts, which advance an informal argumentation, as valid arguments: It inserts, e.g., missing premises and conclusions, formalizes inferences, and coherently links the logical reconstruction to the source text. We create a synthetic corpus for deep argument analysis, and evaluate ArgumentAnalyst on this new dataset as well as on existing data, specifically EntailmentBank (Dalvi et al. 2021). Our empirical findings vindicate the overall framework and highlight the advantages of a modular design, in particular its ability to emulate established heuristics (such as hermeneutic cycles), to explore the model's uncertainty, to cope with the plurality of correct solutions (underdetermination), and to exploit higher-order evidence.
MERLOT: Multimodal Neural Script Knowledge Models
As humans, we understand events in the visual world contextually, performing multimodal reasoning across time to make inferences about the past, present, and future. We introduce MERLOT, a model that learns multimodal script knowledge by watching millions of YouTube videos with transcribed speech -- in an entirely label-free, self-supervised manner. By pretraining with a mix of both frame-level (spatial) and video-level (temporal) objectives, our model not only learns to match images to temporally corresponding words, but also to contextualize what is happening globally over time. As a result, MERLOT exhibits strong out-of-the-box representations of temporal commonsense, and achieves state-of-the-art performance on 12 different video QA datasets when finetuned. It also transfers well to the world of static images, allowing models to reason about the dynamic context behind visual scenes. On Visual Commonsense Reasoning, MERLOT answers questions correctly with 80.6% accuracy, outperforming state-of-the-art models of similar size by over 3%, even those that make heavy use of auxiliary supervised data (like object bounding boxes). Ablation analyses demonstrate the complementary importance of: 1) training on videos versus static images; 2) scaling the magnitude and diversity of the pretraining video corpus; and 3) using diverse objectives that encourage full-stack multimodal reasoning, from the recognition to cognition level.
A Named Entity Based Approach to Model Recipes
Traditional cooking recipes follow a structure which can be modelled very well if the rules and semantics of the different sections of the recipe text are analyzed and represented accurately. We propose a structure that can accurately represent the recipe as well as a pipeline to infer the best representation of the recipe in this uniform structure. The Ingredients section in a recipe typically lists down the ingredients required and corresponding attributes such as quantity, temperature, and processing state. This can be modelled by defining these attributes and their values. The physical entities which make up a recipe can be broadly classified into utensils, ingredients and their combinations that are related by cooking techniques. The instruction section lists down a series of events in which a cooking technique or process is applied upon these utensils and ingredients. We model these relationships in the form of tuples. Thus, using a combination of these methods we model cooking recipe in the dataset RecipeDB to show the efficacy of our method. This mined information model can have several applications which include translating recipes between languages, determining similarity between recipes, generation of novel recipes and estimation of the nutritional profile of recipes. For the purpose of recognition of ingredient attributes, we train the Named Entity Relationship (NER) models and analyze the inferences with the help of K-Means clustering. Our model presented with an F1 score of 0.95 across all datasets. We use a similar NER tagging model for labelling cooking techniques (F1 score = 0.88) and utensils (F1 score = 0.90) within the instructions section. Finally, we determine the temporal sequence of relationships between ingredients, utensils and cooking techniques for modeling the instruction steps.
Logical Natural Language Generation from Open-Domain Tables
Neural natural language generation (NLG) models have recently shown remarkable progress in fluency and coherence. However, existing studies on neural NLG are primarily focused on surface-level realizations with limited emphasis on logical inference, an important aspect of human thinking and language. In this paper, we suggest a new NLG task where a model is tasked with generating natural language statements that can be logically entailed by the facts in an open-domain semi-structured table. To facilitate the study of the proposed logical NLG problem, we use the existing TabFact dataset chen2019tabfact featured with a wide range of logical/symbolic inferences as our testbed, and propose new automatic metrics to evaluate the fidelity of generation models w.r.t.\ logical inference. The new task poses challenges to the existing monotonic generation frameworks due to the mismatch between sequence order and logical order. In our experiments, we comprehensively survey different generation architectures (LSTM, Transformer, Pre-Trained LM) trained with different algorithms (RL, Adversarial Training, Coarse-to-Fine) on the dataset and made following observations: 1) Pre-Trained LM can significantly boost both the fluency and logical fidelity metrics, 2) RL and Adversarial Training are trading fluency for fidelity, 3) Coarse-to-Fine generation can help partially alleviate the fidelity issue while maintaining high language fluency. The code and data are available at https://github.com/wenhuchen/LogicNLG.
