new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 29

LUT Tensor Core: Lookup Table Enables Efficient Low-Bit LLM Inference Acceleration

As large language model (LLM) inference demands ever-greater resources, there is a rapid growing trend of using low-bit weights to shrink memory usage and boost inference efficiency. However, these low-bit LLMs introduce the need for mixed-precision matrix multiplication (mpGEMM), which is a crucial yet under-explored operation that involves multiplying lower-precision weights with higher-precision activations. Unfortunately, current hardware does not natively support mpGEMM, resulting in indirect and inefficient dequantization-based implementations. To address the mpGEMM requirements in low-bit LLMs, we explored the lookup table (LUT)-based approach for mpGEMM. However, a conventional LUT implementation falls short of its potential. To fully harness the power of LUT-based mpGEMM, we introduce LUT Tensor Core, a software-hardware co-design optimized for low-bit LLM inference. Specifically, we introduce software-based operator fusion and table symmetrization techniques to optimize table precompute and table storage, respectively. Then, LUT Tensor Core proposes the hardware design featuring an elongated tiling shape design to enhance table reuse and a bit-serial design to support various precision combinations in mpGEMM. Moreover, we design an end-to-end compilation stack with new instructions for LUT-based mpGEMM, enabling efficient LLM compilation and optimizations. The evaluation on low-bit LLMs (e.g., BitNet, LLAMA) shows that LUT Tensor Core achieves more than a magnitude of improvements on both compute density and energy efficiency.

  • 11 authors
·
Aug 12, 2024

PLM: Efficient Peripheral Language Models Hardware-Co-Designed for Ubiquitous Computing

While scaling laws have been continuously validated in large language models (LLMs) with increasing model parameters, the inherent tension between the inference demands of LLMs and the limited resources of edge devices poses a critical challenge to the development of edge intelligence. Recently, numerous small language models have emerged, aiming to distill the capabilities of LLMs into smaller footprints. However, these models often retain the fundamental architectural principles of their larger counterparts, still imposing considerable strain on the storage and bandwidth capacities of edge devices. In this paper, we introduce the PLM, a Peripheral Language Model, developed through a co-design process that jointly optimizes model architecture and edge system constraints. The PLM utilizes a Multi-head Latent Attention mechanism and employs the squared ReLU activation function to encourage sparsity, thereby reducing peak memory footprint during inference. During training, we collect and reorganize open-source datasets, implement a multi-phase training strategy, and empirically investigate the Warmup-Stable-Decay-Constant (WSDC) learning rate scheduler. Additionally, we incorporate Reinforcement Learning from Human Feedback (RLHF) by adopting the ARIES preference learning approach. Following a two-phase SFT process, this method yields performance gains of 2% in general tasks, 9% in the GSM8K task, and 11% in coding tasks. In addition to its novel architecture, evaluation results demonstrate that PLM outperforms existing small language models trained on publicly available data while maintaining the lowest number of activated parameters. Furthermore, deployment across various edge devices, including consumer-grade GPUs, mobile phones, and Raspberry Pis, validates PLM's suitability for peripheral applications. The PLM series models are publicly available at https://github.com/plm-team/PLM.

  • 12 authors
·
Mar 15

MeanCache: User-Centric Semantic Caching for LLM Web Services

Large Language Models (LLMs) like ChatGPT and Llama have revolutionized natural language processing and search engine dynamics. However, these models incur exceptionally high computational costs. For instance, GPT-3 consists of 175 billion parameters, where inference demands billions of floating-point operations. Caching is a natural solution to reduce LLM inference costs on repeated queries, which constitute about 31% of the total queries. However, existing caching methods are incapable of finding semantic similarities among LLM queries nor do they operate on contextual queries, leading to unacceptable false hit-and-miss rates. This paper introduces MeanCache, a user-centric semantic cache for LLM-based services that identifies semantically similar queries to determine cache hit or miss. Using MeanCache, the response to a user's semantically similar query can be retrieved from a local cache rather than re-querying the LLM, thus reducing costs, service provider load, and environmental impact. MeanCache leverages Federated Learning (FL) to collaboratively train a query similarity model without violating user privacy. By placing a local cache in each user's device and using FL, MeanCache reduces the latency and costs and enhances model performance, resulting in lower false hit rates. MeanCache also encodes context chains for every cached query, offering a simple yet highly effective mechanism to discern contextual query responses from standalone. Our experiments benchmarked against the state-of-the-art caching method, reveal that MeanCache attains an approximately 17% higher F-score and a 20% increase in precision during semantic cache hit-and-miss decisions while performing even better on contextual queries. It also reduces the storage requirement by 83% and accelerates semantic cache hit-and-miss decisions by 11%.

  • 6 authors
·
Mar 5, 2024

ED-ViT: Splitting Vision Transformer for Distributed Inference on Edge Devices

Deep learning models are increasingly deployed on resource-constrained edge devices for real-time data analytics. In recent years, Vision Transformer models and their variants have demonstrated outstanding performance across various computer vision tasks. However, their high computational demands and inference latency pose significant challenges for model deployment on resource-constraint edge devices. To address this issue, we propose a novel Vision Transformer splitting framework, ED-ViT, designed to execute complex models across multiple edge devices efficiently. Specifically, we partition Vision Transformer models into several sub-models, where each sub-model is tailored to handle a specific subset of data classes. To further minimize computation overhead and inference latency, we introduce a class-wise pruning technique that reduces the size of each sub-model. We conduct extensive experiments on five datasets with three model structures, demonstrating that our approach significantly reduces inference latency on edge devices and achieves a model size reduction of up to 28.9 times and 34.1 times, respectively, while maintaining test accuracy comparable to the original Vision Transformer. Additionally, we compare ED-ViT with two state-of-the-art methods that deploy CNN and SNN models on edge devices, evaluating accuracy, inference time, and overall model size. Our comprehensive evaluation underscores the effectiveness of the proposed ED-ViT framework.

  • 8 authors
·
Oct 15, 2024

CoreInfer: Accelerating Large Language Model Inference with Semantics-Inspired Adaptive Sparse Activation

Large language models (LLMs) with billions of parameters have sparked a new wave of exciting AI applications. However, their high computational costs and memory demands during inference pose significant challenges. Adaptive sparse activation inference, which activates only a small number of neurons for each token, offers a novel way to accelerate model inference without degrading performance, showing great potential for resource-constrained hardware devices. Nevertheless, existing methods predict activated neurons based on individual tokens with additional MLP, which involve frequent changes in activation maps and resource calls, limiting the acceleration benefits of sparse activation. In this paper, we introduce CoreInfer, an MLP-free adaptive sparse activation inference method based on sentence-level prediction. Specifically, we propose the concept of sentence-wise core neurons, which refers to the subset of neurons most critical for a given sentence, and empirically demonstrate its effectiveness. To determine the core neurons, we explore the correlation between core neurons and the sentence's semantics. Remarkably, we discovered that core neurons exhibit both stability and similarity in relation to the sentence's semantics -- an insight overlooked by previous studies. Building on this finding, we further design two semantic-based methods for predicting core neurons to fit different input scenarios. In CoreInfer, the core neurons are determined during the pre-filling stage and fixed during the encoding stage, enabling zero-cost sparse inference. We evaluated the model generalization and task generalization of CoreInfer across various models and tasks. Notably, on an NVIDIA TITAN XP GPU, CoreInfer achieved a 10.33 times and 2.72 times speedup compared to the Huggingface implementation and PowerInfer, respectively.

  • 6 authors
·
Oct 23, 2024

Accurate Block Quantization in LLMs with Outliers

The demand for inference on extremely large scale LLMs has seen enormous growth in the recent months. It made evident the colossal shortage of dedicated hardware capable of efficient and fast processing of the involved compute and memory movement. The problem is aggravated by the exploding raise in the lengths of the sequences being processed, since those require efficient on-chip storage of the KV-cache of size proportional to the sequence length. To make the required compute feasible and fit the involved data into available memory, numerous quantization techniques have been proposed that allow accurate quantization for both weights and activations. One of the main recent breakthroughs in this direction was introduction of the family of Block Floating Point (BFP) formats characterized by a block of mantissas with a shared scale factor. These enable memory- power-, and compute- efficient hardware support of the tensor operations and provide extremely good quantization accuracy. The main issues preventing widespread application of block formats is caused by the presence of outliers in weights and activations since those affect the accuracy of the other values in the same block. In this paper, we focus on the most critical problem of limited KV-cache storage. We propose a novel approach enabling usage of low precision BFP formats without compromising the resulting model accuracy. We exploit the common channel-wise patterns exhibited by the outliers to rearrange them in such a way, that their quantization quality is significantly improved. The methodology yields 2x savings in the memory footprint without significant degradation of the model's accuracy. Importantly, the rearrangement of channels happens at the compile time and thus has no impact on the inference latency.

  • 2 authors
·
Mar 29, 2024

Intelligence per Watt: Measuring Intelligence Efficiency of Local AI

Large language model (LLM) queries are predominantly processed by frontier models in centralized cloud infrastructure. Rapidly growing demand strains this paradigm, and cloud providers struggle to scale infrastructure at pace. Two advances enable us to rethink this paradigm: small LMs (<=20B active parameters) now achieve competitive performance to frontier models on many tasks, and local accelerators (e.g., Apple M4 Max) run these models at interactive latencies. This raises the question: can local inference viably redistribute demand from centralized infrastructure? Answering this requires measuring whether local LMs can accurately answer real-world queries and whether they can do so efficiently enough to be practical on power-constrained devices (i.e., laptops). We propose intelligence per watt (IPW), task accuracy divided by unit of power, as a metric for assessing capability and efficiency of local inference across model-accelerator pairs. We conduct a large-scale empirical study across 20+ state-of-the-art local LMs, 8 accelerators, and a representative subset of LLM traffic: 1M real-world single-turn chat and reasoning queries. For each query, we measure accuracy, energy, latency, and power. Our analysis reveals 3 findings. First, local LMs can accurately answer 88.7% of single-turn chat and reasoning queries with accuracy varying by domain. Second, from 2023-2025, IPW improved 5.3x and local query coverage rose from 23.2% to 71.3%. Third, local accelerators achieve at least 1.4x lower IPW than cloud accelerators running identical models, revealing significant headroom for optimization. These findings demonstrate that local inference can meaningfully redistribute demand from centralized infrastructure, with IPW serving as the critical metric for tracking this transition. We release our IPW profiling harness for systematic intelligence-per-watt benchmarking.

Stanford Stanford AI
·
Nov 11 3

HAMburger: Accelerating LLM Inference via Token Smashing

The growing demand for efficient Large Language Model (LLM) inference requires a holistic optimization on algorithms, systems, and hardware. However, very few works have fundamentally changed the generation pattern: each token needs one forward pass and one KV cache. This can be sub-optimal because we found that LLMs are extremely capable of self-identifying the exact dose of information that a single KV cache can store, and many tokens can be generated confidently without global context. Based on this insight, we introduce HAMburger, a Hierarchically Auto-regressive Model that redefines resource allocation in LLMs by moving beyond uniform computation and storage per token during inference. Stacking a compositional embedder and a micro-step decoder in between a base LLM, HAMburger smashes multiple tokens into a single KV and generates several tokens per step. Additionally, HAMburger functions as a speculative decoding framework where it can blindly trust self-drafted tokens. As a result, HAMburger shifts the growth of KV cache and forward FLOPs from linear to sub-linear with respect to output length, and adjusts its inference speed based on query perplexity and output structure. Extensive evaluations show that HAMburger reduces the KV cache computation by up to 2times and achieves up to 2times TPS, while maintaining quality in both short- and long-context tasks. Our method explores an extremely challenging inference regime that requires both computation- and memory-efficiency with a hardware-agnostic design.

  • 2 authors
·
May 26

Extended Inductive Reasoning for Personalized Preference Inference from Behavioral Signals

Large language models (LLMs) have demonstrated significant success in complex reasoning tasks such as math and coding. In contrast to these tasks where deductive reasoning predominates, inductive reasoning-the ability to derive general rules from incomplete evidence, remains underexplored. This paper investigates extended inductive reasoning in LLMs through the lens of personalized preference inference, a critical challenge in LLM alignment where current approaches struggle to capture diverse user preferences. The task demands strong inductive reasoning capabilities as user preferences are typically embedded implicitly across various interaction forms, requiring models to synthesize consistent preference patterns from scattered signals. We propose AlignXplore, a model that leverages extended reasoning chains to enable systematic preference inference from behavioral signals in users' interaction histories. Such explicit preference articulation enables efficient streaming inference: when new behavioral signals emerge, the model can directly build upon previously inferred preference descriptions rather than reprocessing historical signals from scratch, while also supporting iterative refinement to the inferred preferences. We develop AlignXplore by combining cold-start training based on synthetic data with subsequent online reinforcement learning. Through extensive experiments, we demonstrate that AlignXplore achieves substantial improvements over the backbone model by an average of 15.49\% on in-domain and out-of-domain benchmarks, while maintaining strong generalization ability across different input formats and downstream models. Further analyses establish best practices for preference inference learning through systematic comparison of reward modeling strategies, while revealing the emergence of human-like inductive reasoning patterns during training.

  • 4 authors
·
May 23

Sparse Spectral Training and Inference on Euclidean and Hyperbolic Neural Networks

The growing computational demands posed by increasingly number of neural network's parameters necessitate low-memory-consumption training approaches. Previous memory reduction techniques, such as Low-Rank Adaptation (LoRA) and ReLoRA, suffer from the limitation of low rank and saddle point issues, particularly during intensive tasks like pre-training. In this paper, we propose Sparse Spectral Training (SST), an advanced training methodology that updates all singular values and selectively updates singular vectors of network weights, thereby optimizing resource usage while closely approximating full-rank training. SST refines the training process by employing a targeted updating strategy for singular vectors, which is determined by a multinomial sampling method weighted by the significance of the singular values, ensuring both high performance and memory reduction. Through comprehensive testing on both Euclidean and hyperbolic neural networks across various tasks, including natural language generation, machine translation, node classification and link prediction, SST demonstrates its capability to outperform existing memory reduction training methods and is comparable with full-rank training in some cases. On OPT-125M, with rank equating to 8.3% of embedding dimension, SST reduces the perplexity gap to full-rank training by 67.6%, demonstrating a significant reduction of the performance loss with prevalent low-rank methods. This approach offers a strong alternative to traditional training techniques, paving the way for more efficient and scalable neural network training solutions.

  • 5 authors
·
May 24, 2024

AIM: Adaptive Inference of Multi-Modal LLMs via Token Merging and Pruning

Large language models (LLMs) have enabled the creation of multi-modal LLMs that exhibit strong comprehension of visual data such as images and videos. However, these models usually rely on extensive visual tokens from visual encoders, leading to high computational demands, which limits their applicability in resource-constrained environments and for long-context tasks. In this work, we propose a training-free adaptive inference method for multi-modal LLMs that can accommodate a broad range of efficiency requirements with a minimum performance drop. Our method consists of a) iterative token merging based on embedding similarity before LLMs, and b) progressive token pruning within LLM layers based on multi-modal importance. With a minimalist design, our method can be applied to both video and image LLMs. Extensive experiments on diverse video and image benchmarks demonstrate that, our method substantially reduces computation load (e.g., a 7-fold reduction in FLOPs) while preserving the performance of video and image LLMs. Further, under a similar computational cost, our method outperforms the state-of-the-art methods in long video understanding (e.g., +4.6 on MLVU). Additionally, our in-depth analysis provides insights into token redundancy and LLM layer behaviors, offering guidance for future research in designing efficient multi-modal LLMs. Our code will be available at https://github.com/LaVi-Lab/AIM.

  • 4 authors
·
Dec 4, 2024 2

WINA: Weight Informed Neuron Activation for Accelerating Large Language Model Inference

The growing computational demands of large language models (LLMs) make efficient inference and activation strategies increasingly critical. While recent approaches, such as Mixture-of-Experts (MoE), leverage selective activation but require specialized training, training-free sparse activation methods offer broader applicability and superior resource efficiency through their plug-and-play design. However, many existing methods rely solely on hidden state magnitudes to determine activation, resulting in high approximation errors and suboptimal inference accuracy. To address these limitations, we propose WINA (Weight Informed Neuron Activation), a novel, simple, and training-free sparse activation framework that jointly considers hidden state magnitudes and the column-wise ell_2-norms of weight matrices. We show that this leads to a sparsification strategy that obtains optimal approximation error bounds with theoretical guarantees tighter than existing techniques. Empirically, WINA also outperforms state-of-the-art methods (e.g., TEAL) by up to 2.94% in average performance at the same sparsity levels, across a diverse set of LLM architectures and datasets. These results position WINA as a new performance frontier for training-free sparse activation in LLM inference, advancing training-free sparse activation methods and setting a robust baseline for efficient inference. The source code is available at https://github.com/microsoft/wina.

  • 7 authors
·
May 25 2

D2O: Dynamic Discriminative Operations for Efficient Generative Inference of Large Language Models

Efficient inference in Large Language Models (LLMs) is impeded by the growing memory demands of key-value (KV) caching, especially for longer sequences. Traditional KV cache eviction strategies, which prioritize less critical KV-pairs based on attention scores, often degrade generation quality, leading to issues such as context loss or hallucinations. To address this, we introduce Dynamic Discriminative Operations (D2O), a novel method that utilizes two-level discriminative strategies to optimize KV cache size without fine-tuning, while preserving essential context. Initially, by observing varying densities of attention weights between shallow and deep layers, we use this insight to determine which layers should avoid excessive eviction to minimize information loss. Subsequently, for the eviction strategy in each layer, D2O innovatively incorporates a compensation mechanism that maintains a similarity threshold to re-discriminate the importance of previously discarded tokens, determining whether they should be recalled and merged with similar tokens. Our approach not only achieves significant memory savings and enhances inference throughput by more than 3 times but also maintains high-quality long-text generation. Extensive experiments across various benchmarks and LLM architectures have demonstrated that D2O significantly enhances performance with a constrained KV cache budget.

  • 10 authors
·
Jun 18, 2024

Efficient Mixed-Precision Large Language Model Inference with TurboMind

Mixed-precision inference techniques reduce the memory and computational demands of Large Language Models (LLMs) by applying hybrid precision formats to model weights, activations, and KV caches. This work introduces mixed-precision LLM inference techniques that encompass (i) systematic memory and compute optimization across hierarchical storage and tensor core architectures, and (ii) comprehensive end-to-end mixed-precision optimization across diverse precision formats and hardware configurations. Our approach features two novel mixed-precision pipelines designed for optimal hardware utilization: a General Matrix Multiply (GEMM) pipeline that optimizes matrix operations through offline weight packing and online acceleration, and an attention pipeline that enables efficient attention computation with arbitrary Query, Key, and Value precision combinations. The key implementation of the pipelines includes (i) hardware-aware weight packing for automatic format optimization, (ii) adaptive head alignment for efficient attention computation, (iii) instruction-level parallelism for memory hierarchy exploitation, and (iv) KV memory loading pipeline for enhanced inference efficiency. We conduct comprehensive evaluations across 16 popular LLMs and 4 representative GPU architectures. Results demonstrate that our approach achieves up to 61% lower serving latency (30% on average) and up to 156% higher throughput (58% on average) in mixed-precision workloads compared to existing mixed-precision frameworks, establishing consistent performance improvements across all tested configurations and hardware types. This work is integrated into TurboMind, a high-performance inference engine of the LMDeploy project, which is open-sourced and publicly available at https://github.com/InternLM/lmdeploy.

  • 8 authors
·
Aug 21

Dovetail: A CPU/GPU Heterogeneous Speculative Decoding for LLM inference

Due to the high resource demands of Large Language Models (LLMs), achieving widespread deployment on consumer-grade devices presents significant challenges. Typically, personal or consumer-grade devices, including servers configured prior to the era of large-scale models, generally have relatively weak GPUs and relatively strong CPUs. However, most current methods primarily depend on GPUs for computation. Therefore, we propose Dovetail, an approach that deploys the draft model on the GPU to generate draft tokens while allowing the target model to perform parallel verification on the CPU, thereby improving the utilization of all available hardware resources and occupying less inter-device communication bandwidth. Accordingly, we have redesigned the draft model to better align with heterogeneous hardware characteristics. To this end, we implemented several optimizations: reducing the number of draft tokens to mitigate latency in parallel verification, increasing the depth of the draft model to enhance its predictive capacity, and introducing DGF (Dynamic Gating Fusion) to improve the integration of features and token embeddings. In the HumanEval benchmark, Dovetail achieved an inference speed of 5.86 tokens per second for LLaMA2-Chat-7B using 3GB of VRAM, representing an approximately 2.77x improvement over CPU-only inference. Furthermore, the inference speed was increased to 8 tokens per second when utilizing 7GB of VRAM.

  • 5 authors
·
Dec 25, 2024

With Greater Text Comes Greater Necessity: Inference-Time Training Helps Long Text Generation

Long text generation, such as novel writing and discourse-level translation with extremely long contexts, presents significant challenges to current language models. Existing methods mainly focus on extending the model's context window through strategies like length extrapolation. However, these approaches demand substantial hardware resources during the training and/or inference phases. Our proposed method, Temp-Lora, introduces an alternative concept. Instead of relying on the KV cache to store all context information, we embeds this information directly into a temporary Lora module. In the process of long text generation, this module is progressively trained with text generated previously. This approach not only efficiently preserves contextual knowledge but also prevents any permanent alteration to the model's parameters given that the module is discarded post-generation. Extensive experiments on the PG19 language modeling benchmark and the GuoFeng discourse-level translation benchmark validate the effectiveness of Temp-Lora. Our results show that: 1) Temp-Lora substantially enhances generation quality for long text, as indicated by a 13.2% decrease in perplexity (PPL) on a subset of PG19, and a 29.3% decrease in PPL along with a 113.2% increase in BLEU score on a subset of GuoFeng, 2) Temp-Lora is compatible with and enhances most existing long text generation methods, and 3) Temp-Lora can greatly reduce computational costs by shortening the context window. For example, we can ensure a moderate improvement in generation quality (a decrease of 3.8% in PPL) while enabling a 51.5% memory usage reduction and a 60.0% decrease in latency for inference.

  • 3 authors
·
Jan 21, 2024

Speculative MoE: Communication Efficient Parallel MoE Inference with Speculative Token and Expert Pre-scheduling

MoE (Mixture of Experts) prevails as a neural architecture that can scale modern transformer-based LLMs (Large Language Models) to unprecedented scales. Nevertheless, large MoEs' great demands of computing power, memory capacity and memory bandwidth make scalable serving a fundamental challenge and efficient parallel inference has become a requisite to attain adequate throughput under latency constraints. DeepSpeed-MoE, one state-of-the-art MoE inference framework, adopts a 3D-parallel paradigm including EP (Expert Parallelism), TP (Tensor Parallel) and DP (Data Parallelism). However, our analysis shows DeepSpeed-MoE's inference efficiency is largely bottlenecked by EP, which is implemented with costly all-to-all collectives to route token activation. Our work aims to boost DeepSpeed-MoE by strategically reducing EP's communication overhead with a technique named Speculative MoE. Speculative MoE has two speculative parallelization schemes, speculative token shuffling and speculative expert grouping, which predict outstanding tokens' expert routing paths and pre-schedule tokens and experts across devices to losslessly trim EP's communication volume. Besides DeepSpeed-MoE, we also build Speculative MoE into a prevailing MoE inference engine SGLang. Experiments show Speculative MoE can significantly boost state-of-the-art MoE inference frameworks on fast homogeneous and slow heterogeneous interconnects.

  • 7 authors
·
Mar 6

PINN surrogate of Li-ion battery models for parameter inference. Part I: Implementation and multi-fidelity hierarchies for the single-particle model

To plan and optimize energy storage demands that account for Li-ion battery aging dynamics, techniques need to be developed to diagnose battery internal states accurately and rapidly. This study seeks to reduce the computational resources needed to determine a battery's internal states by replacing physics-based Li-ion battery models -- such as the single-particle model (SPM) and the pseudo-2D (P2D) model -- with a physics-informed neural network (PINN) surrogate. The surrogate model makes high-throughput techniques, such as Bayesian calibration, tractable to determine battery internal parameters from voltage responses. This manuscript is the first of a two-part series that introduces PINN surrogates of Li-ion battery models for parameter inference (i.e., state-of-health diagnostics). In this first part, a method is presented for constructing a PINN surrogate of the SPM. A multi-fidelity hierarchical training, where several neural nets are trained with multiple physics-loss fidelities is shown to significantly improve the surrogate accuracy when only training on the governing equation residuals. The implementation is made available in a companion repository (https://github.com/NREL/pinnstripes). The techniques used to develop a PINN surrogate of the SPM are extended in Part II for the PINN surrogate for the P2D battery model, and explore the Bayesian calibration capabilities of both surrogates.

  • 9 authors
·
Dec 28, 2023

Agile-Quant: Activation-Guided Quantization for Faster Inference of LLMs on the Edge

Large Language Models (LLMs) stand out for their impressive performance in intricate language modeling tasks. However, their demanding computational and memory needs pose obstacles for broad use on edge devices. Quantization is then introduced to boost LLMs' on-device efficiency. Recent works show that 8-bit or lower weight quantization is feasible with minimal impact on end-to-end task performance, while the activation is still not quantized. On the other hand, mainstream commodity edge devices still struggle to execute these sub-8-bit quantized networks effectively. In this paper, we propose Agile-Quant, an activation-guided quantization framework for popular Large Language Models (LLMs), and implement an end-to-end accelerator on multiple edge devices for faster inference. Considering the hardware profiling and activation analysis, we first introduce a basic activation quantization strategy to balance the trade-off of task performance and real inference speed. Then we leverage the activation-aware token pruning technique to reduce the outliers and the adverse impact on attentivity. Ultimately, we utilize the SIMD-based 4-bit multiplier and our efficient TRIP matrix multiplication to implement the accelerator for LLMs on the edge. We apply our framework on different scales of LLMs including LLaMA, OPT, and BLOOM with 4-bit or 8-bit for the activation and 4-bit for the weight quantization. Experiments show that Agile-Quant achieves simultaneous quantization of model weights and activations while maintaining task performance comparable to existing weight-only quantization methods. Moreover, in the 8- and 4-bit scenario, Agile-Quant achieves an on-device speedup of up to 2.55x compared to its FP16 counterparts across multiple edge devices, marking a pioneering advancement in this domain.

  • 8 authors
·
Dec 9, 2023

Fortytwo: Swarm Inference with Peer-Ranked Consensus

As centralized AI hits compute ceilings and diminishing returns from ever-larger training runs, meeting demand requires an inference layer that scales horizontally in both capacity and capability. We present Fortytwo, a novel protocol that leverages swarm intelligence principles and distributed pairwise ranking consensus to achieve superior performance in AI inference. Our approach reimagines collaboration among AI nodes using swarm inference: a peer-ranked, reputation-weighted consensus across heterogeneous models that surfaces the highest-quality responses. Using pairwise ranking with a custom Bradley-Terry-style aggregation model, we demonstrate that swarm inference substantially outperforms majority voting, achieving 85.90% on GPQA Diamond versus 68.69% for majority voting with the same model set - an improvement of +17.21 percentage points (approximately +25.1% relative). The protocol incorporates on-chain reputation so node influence adapts to demonstrated accuracy over time, yielding a meritocratic consensus that filters low-quality or malicious participants. To resist Sybil attacks, Fortytwo employs proof-of-capability in its consensus: nodes must successfully complete calibration/test requests and stake reputation to enter ranking rounds, making multi-identity attacks economically unattractive while preserving openness. Across six challenging benchmarks, including GPQA Diamond, LiveCodeBench, and AIME, our evaluation indicates higher accuracy and strong resilience to adversarial and noisy free-form prompting (e.g., prompt-injection degradation of only 0.12% versus 6.20% for a monolithic single-model baseline), while retaining practical deployability. Together, these results establish a foundation for decentralized AI systems - democratizing access to high-quality inference through collective intelligence without sacrificing reliability or security.

Fortytwo-Network Fortytwo
·
Oct 27 1

LOOK-M: Look-Once Optimization in KV Cache for Efficient Multimodal Long-Context Inference

Long-context Multimodal Large Language Models (MLLMs) demand substantial computational resources for inference as the growth of their multimodal Key-Value (KV) cache, in response to increasing input lengths, challenges memory and time efficiency. Unlike single-modality LLMs that manage only textual contexts, the KV cache of long-context MLLMs includes representations from multiple images with temporal and spatial relationships and related textual contexts. The predominance of image tokens means traditional optimizations for LLMs' KV caches are unsuitable for multimodal long-context settings, and no prior works have addressed this challenge. In this work, we introduce LOOK-M, a pioneering, fine-tuning-free approach that efficiently reduces the multimodal KV cache size while maintaining performance comparable to a full cache. We observe that during prompt prefill, the model prioritizes more textual attention over image features, and based on the multimodal interaction observation, a new proposed text-prior method is explored to compress the KV cache. Furthermore, to mitigate the degradation of image contextual information, we propose several compensatory strategies using KV pairs merging. LOOK-M demonstrates that with a significant reduction in KV Cache memory usage, such as reducing it by 80% in some cases, it not only achieves up to 1.5x faster decoding but also maintains or even enhances performance across a variety of long context multimodal tasks.

  • 8 authors
·
Jun 26, 2024

ALISA: Accelerating Large Language Model Inference via Sparsity-Aware KV Caching

The Transformer architecture has significantly advanced natural language processing (NLP) and has been foundational in developing large language models (LLMs) such as LLaMA and OPT, which have come to dominate a broad range of NLP tasks. Despite their superior accuracy, LLMs present unique challenges in practical inference, concerning the compute and memory-intensive nature. Thanks to the autoregressive characteristic of LLM inference, KV caching for the attention layers in Transformers can effectively accelerate LLM inference by substituting quadratic-complexity computation with linear-complexity memory accesses. Yet, this approach requires increasing memory as demand grows for processing longer sequences. The overhead leads to reduced throughput due to I/O bottlenecks and even out-of-memory errors, particularly on resource-constrained systems like a single commodity GPU. In this paper, we propose ALISA, a novel algorithm-system co-design solution to address the challenges imposed by KV caching. On the algorithm level, ALISA prioritizes tokens that are most important in generating a new token via a Sparse Window Attention (SWA) algorithm. SWA introduces high sparsity in attention layers and reduces the memory footprint of KV caching at negligible accuracy loss. On the system level, ALISA employs three-phase token-level dynamical scheduling and optimizes the trade-off between caching and recomputation, thus maximizing the overall performance in resource-constrained systems. In a single GPU-CPU system, we demonstrate that under varying workloads, ALISA improves the throughput of baseline systems such as FlexGen and vLLM by up to 3X and 1.9X, respectively.

  • 3 authors
·
Mar 25, 2024

GEAR: An Efficient KV Cache Compression Recipefor Near-Lossless Generative Inference of LLM

Key-value (KV) caching has become the de-facto to accelerate generation speed for large language models (LLMs) inference. However, the growing cache demand with increasing sequence length has transformed LLM inference to be a memory bound problem, significantly constraining the system throughput. Existing methods rely on dropping unimportant tokens or quantizing all entries uniformly. Such methods, however, often incur high approximation errors to represent the compressed matrices. The autoregressive decoding process further compounds the error of each step, resulting in critical deviation in model generation and deterioration of performance. To tackle this challenge, we propose GEAR, an efficient KV cache compression framework that achieves near-lossless high-ratio compression. GEAR first applies quantization to majority of entries of similar magnitudes to ultra-low precision. It then employs a low rank matrix to approximate the quantization error, and a sparse matrix to remedy individual errors from outlier entries. By adeptly integrating three techniques, GEAR is able to fully exploit their synergistic potentials. Our experiments demonstrate that compared to alternatives, GEAR achieves near-lossless 4-bit KV cache compression with up to 2.38x throughput improvement, while reducing peak-memory size up to 2.29x. Our code is publicly available at https://github.com/HaoKang-Timmy/GEAR.

  • 7 authors
·
Mar 8, 2024 2

Accurate Expert Predictions in MoE Inference via Cross-Layer Gate

Large Language Models (LLMs) have demonstrated impressive performance across various tasks, and their application in edge scenarios has attracted significant attention. However, sparse-activated Mixture-of-Experts (MoE) models, which are well suited for edge scenarios, have received relatively little attention due to their high memory demands. Offload-based methods have been proposed to address this challenge, but they face difficulties with expert prediction. Inaccurate expert predictions can result in prolonged inference delays. To promote the application of MoE models in edge scenarios, we propose Fate, an offloading system designed for MoE models to enable efficient inference in resource-constrained environments. The key insight behind Fate is that gate inputs from adjacent layers can be effectively used for expert prefetching, achieving high prediction accuracy without additional GPU overhead. Furthermore, Fate employs a shallow-favoring expert caching strategy that increases the expert hit rate to 99\%. Additionally, Fate integrates tailored quantization strategies for cache optimization and IO efficiency. Experimental results show that, compared to Load on Demand and Expert Activation Path-based method, Fate achieves up to 4.5x and 1.9x speedups in prefill speed and up to 4.1x and 2.2x speedups in decoding speed, respectively, while maintaining inference quality. Moreover, Fate's performance improvements are scalable across different memory budgets.

  • 8 authors
·
Feb 17

Distribution Transformers: Fast Approximate Bayesian Inference With On-The-Fly Prior Adaptation

While Bayesian inference provides a principled framework for reasoning under uncertainty, its widespread adoption is limited by the intractability of exact posterior computation, necessitating the use of approximate inference. However, existing methods are often computationally expensive, or demand costly retraining when priors change, limiting their utility, particularly in sequential inference problems such as real-time sensor fusion. To address these challenges, we introduce the Distribution Transformer -- a novel architecture that can learn arbitrary distribution-to-distribution mappings. Our method can be trained to map a prior to the corresponding posterior, conditioned on some dataset -- thus performing approximate Bayesian inference. Our novel architecture represents a prior distribution as a (universally-approximating) Gaussian Mixture Model (GMM), and transforms it into a GMM representation of the posterior. The components of the GMM attend to each other via self-attention, and to the datapoints via cross-attention. We demonstrate that Distribution Transformers both maintain flexibility to vary the prior, and significantly reduces computation times-from minutes to milliseconds-while achieving log-likelihood performance on par with or superior to existing approximate inference methods across tasks such as sequential inference, quantum system parameter inference, and Gaussian Process predictive posterior inference with hyperpriors.

  • 4 authors
·
Feb 4

Efficient Inference of Vision Instruction-Following Models with Elastic Cache

In the field of instruction-following large vision-language models (LVLMs), the efficient deployment of these models faces challenges, notably due to the high memory demands of their key-value (KV) caches. Conventional cache management strategies for LLMs focus on cache eviction, which often fails to address the specific needs of multimodal instruction-following models. Recognizing this gap, in this paper, we introduce Elastic Cache, a novel approach that benefits from applying distinct acceleration methods for instruction encoding and output generation stages. We investigate the metrics of importance in different stages and propose an importance-driven cache merging strategy to prune redundancy caches. Instead of discarding less important caches, our strategy identifies important key/value vectors as anchor points. Surrounding less important caches are then merged with these anchors, enhancing the preservation of contextual information in the KV caches while yielding an arbitrary acceleration ratio. For instruction encoding, we utilize the frequency to evaluate the importance of caches. Regarding output generation, we prioritize tokens based on their distance with an offset, by which both the initial and most recent tokens are retained. Results on a range of LVLMs demonstrate that Elastic Cache not only boosts efficiency but also notably outperforms existing pruning methods in language generation across various tasks. Code is available at https://github.com/liuzuyan/ElasticCache

  • 8 authors
·
Jul 25, 2024 2

Deep Learning and genetic algorithms for cosmological Bayesian inference speed-up

In this paper, we present a novel approach to accelerate the Bayesian inference process, focusing specifically on the nested sampling algorithms. Bayesian inference plays a crucial role in cosmological parameter estimation, providing a robust framework for extracting theoretical insights from observational data. However, its computational demands can be substantial, primarily due to the need for numerous likelihood function evaluations. Our proposed method utilizes the power of deep learning, employing feedforward neural networks to approximate the likelihood function dynamically during the Bayesian inference process. Unlike traditional approaches, our method trains neural networks on-the-fly using the current set of live points as training data, without the need for pre-training. This flexibility enables adaptation to various theoretical models and datasets. We perform simple hyperparameter optimization using genetic algorithms to suggest initial neural network architectures for learning each likelihood function. Once sufficient accuracy is achieved, the neural network replaces the original likelihood function. The implementation integrates with nested sampling algorithms and has been thoroughly evaluated using both simple cosmological dark energy models and diverse observational datasets. Additionally, we explore the potential of genetic algorithms for generating initial live points within nested sampling inference, opening up new avenues for enhancing the efficiency and effectiveness of Bayesian inference methods.

  • 2 authors
·
May 6, 2024

Variational Inference for SDEs Driven by Fractional Noise

We present a novel variational framework for performing inference in (neural) stochastic differential equations (SDEs) driven by Markov-approximate fractional Brownian motion (fBM). SDEs offer a versatile tool for modeling real-world continuous-time dynamic systems with inherent noise and randomness. Combining SDEs with the powerful inference capabilities of variational methods, enables the learning of representative function distributions through stochastic gradient descent. However, conventional SDEs typically assume the underlying noise to follow a Brownian motion (BM), which hinders their ability to capture long-term dependencies. In contrast, fractional Brownian motion (fBM) extends BM to encompass non-Markovian dynamics, but existing methods for inferring fBM parameters are either computationally demanding or statistically inefficient. In this paper, building upon the Markov approximation of fBM, we derive the evidence lower bound essential for efficient variational inference of posterior path measures, drawing from the well-established field of stochastic analysis. Additionally, we provide a closed-form expression to determine optimal approximation coefficients. Furthermore, we propose the use of neural networks to learn the drift, diffusion and control terms within our variational posterior, leading to the variational training of neural-SDEs. In this framework, we also optimize the Hurst index, governing the nature of our fractional noise. Beyond validation on synthetic data, we contribute a novel architecture for variational latent video prediction,-an approach that, to the best of our knowledge, enables the first variational neural-SDE application to video perception.

  • 4 authors
·
Oct 19, 2023

Lattica: A Decentralized Cross-NAT Communication Framework for Scalable AI Inference and Training

The rapid expansion of distributed Artificial Intelligence (AI) workloads beyond centralized data centers creates a demand for new communication substrates. These substrates must operate reliably in heterogeneous and permissionless environments, where Network Address Translators (NATs) and firewalls impose significant constraints. Existing solutions, however, are either designed for controlled data center deployments or implemented as monolithic systems that tightly couple machine learning logic with networking code. To address these limitations, we present Lattica, a decentralized cross-NAT communication framework designed to support distributed AI systems. Lattica integrates three core components. First, it employs a robust suite of NAT traversal mechanisms to establish a globally addressable peer-to-peer mesh. Second, it provides a decentralized data store based on Conflict-free Replicated Data Types (CRDTs), ensuring verifiable and eventually consistent state replication. Third, it incorporates a content discovery layer that leverages distributed hash tables (DHTs) together with an optimized RPC protocol for efficient model synchronization. By integrating these components, Lattica delivers a complete protocol stack for sovereign, resilient, and scalable AI systems that operate independently of centralized intermediaries. It is directly applicable to edge intelligence, collaborative reinforcement learning, and other large-scale distributed machine learning scenarios.

  • 7 authors
·
Sep 30 1

Characterizing and Optimizing LLM Inference Workloads on CPU-GPU Coupled Architectures

Large language model (LLM)-based inference workloads increasingly dominate data center costs and resource utilization. Therefore, understanding the inference workload characteristics on evolving CPU-GPU coupled architectures is crucial for optimization. This paper presents an in-depth analysis of LLM inference behavior on loosely-coupled (PCIe A100/H100) and closely-coupled (GH200) systems. We analyze performance dynamics using fine-grained operator-to-kernel trace analysis, facilitated by our novel profiler SKIP and metrics like Total Kernel Launch and Queuing Time (TKLQT). Results show that closely-coupled (CC) GH200 significantly outperforms loosely-coupled (LC) systems at large batch sizes, achieving 1.9x-2.7x faster prefill latency for Llama 3.2-1B. However, our analysis also reveals that GH200 remains CPU-bound up to 4x larger batch sizes than LC systems. In this extended CPU-bound region, we identify the performance characteristics of the Grace CPU as a key factor contributing to higher inference latency at low batch sizes on GH200. We demonstrate that TKLQT accurately identifies this CPU/GPU-bound transition point. Based on this analysis, we further show that kernel fusion offers significant potential to mitigate GH200's low-batch latency bottleneck by reducing kernel launch overhead. This detailed kernel-level characterization provides critical insights for optimizing diverse CPU-GPU coupling strategies. This work is an initial effort, and we plan to explore other major AI/DL workloads that demand different degrees of CPU-GPU heterogeneous architectures.

  • 6 authors
·
Apr 16

DeeR-VLA: Dynamic Inference of Multimodal Large Language Models for Efficient Robot Execution

MLLMs have demonstrated remarkable comprehension and reasoning capabilities with complex language and visual data. These advances have spurred the vision of establishing a generalist robotic MLLM proficient in understanding complex human instructions and accomplishing various embodied tasks. However, developing MLLMs for real-world robots is challenging due to the typically limited computation and memory capacities available on robotic platforms. In contrast, the inference of MLLMs involves storing billions of parameters and performing tremendous computation, imposing significant hardware demands. In our paper, we propose a Dynamic Early-Exit Framework for Robotic Vision-Language-Action Model (DeeR-VLA, or simply DeeR) that automatically adjusts the size of the activated MLLM based on each situation at hand. The approach leverages a multi-exit architecture in MLLMs, which allows the model to terminate processing once a proper size of the model has been activated for a specific situation, thus avoiding further redundant computation. Additionally, we develop novel algorithms that establish early-termination criteria for DeeR, conditioned on predefined demands such as average computational cost (i.e., power consumption), as well as peak computational consumption (i.e., latency) and GPU memory usage. These enhancements ensure that DeeR operates efficiently under varying resource constraints while maintaining competitive performance. On the CALVIN robot manipulation benchmark, DeeR demonstrates significant reductions in computational costs of LLM by 5.2-6.5x and GPU memory of LLM by 2-6x without compromising performance. Code and checkpoints are available at https://github.com/yueyang130/DeeR-VLA.

  • 8 authors
·
Nov 4, 2024 2

SpecReason: Fast and Accurate Inference-Time Compute via Speculative Reasoning

Recent advances in inference-time compute have significantly improved performance on complex tasks by generating long chains of thought (CoTs) using Large Reasoning Models (LRMs). However, this improved accuracy comes at the cost of high inference latency due to the length of generated reasoning sequences and the autoregressive nature of decoding. Our key insight in tackling these overheads is that LRM inference, and the reasoning that it embeds, is highly tolerant of approximations: complex tasks are typically broken down into simpler steps, each of which brings utility based on the semantic insight it provides for downstream steps rather than the exact tokens it generates. Accordingly, we introduce SpecReason, a system that automatically accelerates LRM inference by using a lightweight model to (speculatively) carry out simpler intermediate reasoning steps and reserving the costly base model only to assess (and potentially correct) the speculated outputs. Importantly, SpecReason's focus on exploiting the semantic flexibility of thinking tokens in preserving final-answer accuracy is complementary to prior speculation techniques, most notably speculative decoding, which demands token-level equivalence at each step. Across a variety of reasoning benchmarks, SpecReason achieves 1.5-2.5times speedup over vanilla LRM inference while improving accuracy by 1.0-9.9\%. Compared to speculative decoding without SpecReason, their combination yields an additional 19.4-44.2\% latency reduction. We open-source SpecReason at https://github.com/ruipeterpan/specreason.

  • 6 authors
·
Apr 10 3

Pre-gated MoE: An Algorithm-System Co-Design for Fast and Scalable Mixture-of-Expert Inference

Large language models (LLMs) based on transformers have made significant strides in recent years, the success of which is driven by scaling up their model size. Despite their high algorithmic performance, the computational and memory requirements of LLMs present unprecedented challenges. To tackle the high compute requirements of LLMs, the Mixture-of-Experts (MoE) architecture was introduced which is able to scale its model size without proportionally scaling up its computational requirements. Unfortunately, MoE's high memory demands and dynamic activation of sparse experts restrict its applicability to real-world problems. Previous solutions that offload MoE's memory-hungry expert parameters to CPU memory fall short because the latency to migrate activated experts from CPU to GPU incurs high performance overhead. Our proposed Pre-gated MoE system effectively tackles the compute and memory challenges of conventional MoE architectures using our algorithm-system co-design. Pre-gated MoE employs our novel pre-gating function which alleviates the dynamic nature of sparse expert activation, allowing our proposed system to address the large memory footprint of MoEs while also achieving high performance. We demonstrate that Pre-gated MoE is able to improve performance, reduce GPU memory consumption, while also maintaining the same level of model quality. These features allow our Pre-gated MoE system to cost-effectively deploy large-scale LLMs using just a single GPU with high performance.

  • 8 authors
·
Aug 23, 2023

Fast and Memory-Efficient Video Diffusion Using Streamlined Inference

The rapid progress in artificial intelligence-generated content (AIGC), especially with diffusion models, has significantly advanced development of high-quality video generation. However, current video diffusion models exhibit demanding computational requirements and high peak memory usage, especially for generating longer and higher-resolution videos. These limitations greatly hinder the practical application of video diffusion models on standard hardware platforms. To tackle this issue, we present a novel, training-free framework named Streamlined Inference, which leverages the temporal and spatial properties of video diffusion models. Our approach integrates three core components: Feature Slicer, Operator Grouping, and Step Rehash. Specifically, Feature Slicer effectively partitions input features into sub-features and Operator Grouping processes each sub-feature with a group of consecutive operators, resulting in significant memory reduction without sacrificing the quality or speed. Step Rehash further exploits the similarity between adjacent steps in diffusion, and accelerates inference through skipping unnecessary steps. Extensive experiments demonstrate that our approach significantly reduces peak memory and computational overhead, making it feasible to generate high-quality videos on a single consumer GPU (e.g., reducing peak memory of AnimateDiff from 42GB to 11GB, featuring faster inference on 2080Ti).

  • 10 authors
·
Nov 2, 2024

ABQ-LLM: Arbitrary-Bit Quantized Inference Acceleration for Large Language Models

Large Language Models (LLMs) have revolutionized natural language processing tasks. However, their practical application is constrained by substantial memory and computational demands. Post-training quantization (PTQ) is considered an effective method to accelerate LLM inference. Despite its growing popularity in LLM model compression, PTQ deployment faces two major challenges. First, low-bit quantization leads to performance degradation. Second, restricted by the limited integer computing unit type on GPUs, quantized matrix operations with different precisions cannot be effectively accelerated. To address these issues, we introduce a novel arbitrary-bit quantization algorithm and inference framework, ABQ-LLM. It achieves superior performance across various quantization settings and enables efficient arbitrary-precision quantized inference on the GPU. ABQ-LLM introduces several key innovations: (1) a distribution correction method for transformer blocks to mitigate distribution differences caused by full quantization of weights and activations, improving performance at low bit-widths. (2) the bit balance strategy to counteract performance degradation from asymmetric distribution issues at very low bit-widths (e.g., 2-bit). (3) an innovative quantization acceleration framework that reconstructs the quantization matrix multiplication of arbitrary precision combinations based on BTC (Binary TensorCore) equivalents, gets rid of the limitations of INT4/INT8 computing units. ABQ-LLM can convert each component bit width gain into actual acceleration gain, maximizing performance under mixed precision(e.g., W6A6, W2A8). Based on W2*A8 quantization configuration on LLaMA-7B model, it achieved a WikiText2 perplexity of 7.59 (2.17downarrow vs 9.76 in AffineQuant). Compared to SmoothQuant, we realized 1.6times acceleration improvement and 2.7times memory compression gain.

  • 9 authors
·
Aug 16, 2024

ShadowKV: KV Cache in Shadows for High-Throughput Long-Context LLM Inference

With the widespread deployment of long-context large language models (LLMs), there has been a growing demand for efficient support of high-throughput inference. However, as the key-value (KV) cache expands with the sequence length, the increasing memory footprint and the need to access it for each token generation both result in low throughput when serving long-context LLMs. While various dynamic sparse attention methods have been proposed to speed up inference while maintaining generation quality, they either fail to sufficiently reduce GPU memory consumption or introduce significant decoding latency by offloading the KV cache to the CPU. We present ShadowKV, a high-throughput long-context LLM inference system that stores the low-rank key cache and offloads the value cache to reduce the memory footprint for larger batch sizes and longer sequences. To minimize decoding latency, ShadowKV employs an accurate KV selection strategy that reconstructs minimal sparse KV pairs on-the-fly. By evaluating ShadowKV on a broad range of benchmarks, including RULER, LongBench, and Needle In A Haystack, and models like Llama-3.1-8B, Llama-3-8B-1M, GLM-4-9B-1M, Yi-9B-200K, Phi-3-Mini-128K, and Qwen2-7B-128K, we demonstrate that it can support up to 6times larger batch sizes and boost throughput by up to 3.04times on an A100 GPU without sacrificing accuracy, even surpassing the performance achievable with infinite batch size under the assumption of infinite GPU memory. The code is available at https://github.com/bytedance/ShadowKV.

ByteDance-Seed ByteDance Seed
·
Oct 28, 2024 2

LLMCad: Fast and Scalable On-device Large Language Model Inference

Generative tasks, such as text generation and question answering, hold a crucial position in the realm of mobile applications. Due to their sensitivity to privacy concerns, there is a growing demand for their execution directly on mobile devices. Currently, the execution of these generative tasks heavily depends on Large Language Models (LLMs). Nevertheless, the limited memory capacity of these devices presents a formidable challenge to the scalability of such models. In our research, we introduce LLMCad, an innovative on-device inference engine specifically designed for efficient generative Natural Language Processing (NLP) tasks. The core idea behind LLMCad revolves around model collaboration: a compact LLM, residing in memory, takes charge of generating the most straightforward tokens, while a high-precision LLM steps in to validate these tokens and rectify any identified errors. LLMCad incorporates three novel techniques: (1) Instead of generating candidate tokens in a sequential manner, LLMCad employs the smaller LLM to construct a token tree, encompassing a wider range of plausible token pathways. Subsequently, the larger LLM can efficiently validate all of these pathways simultaneously. (2) It employs a self-adjusting fallback strategy, swiftly initiating the verification process whenever the smaller LLM generates an erroneous token. (3) To ensure a continuous flow of token generation, LLMCad speculatively generates tokens during the verification process by implementing a compute-IO pipeline. Through an extensive series of experiments, LLMCad showcases an impressive token generation speed, achieving rates up to 9.3x faster than existing inference engines.

  • 7 authors
·
Sep 8, 2023

AccLLM: Accelerating Long-Context LLM Inference Via Algorithm-Hardware Co-Design

Recently, large language models (LLMs) have achieved huge success in the natural language processing (NLP) field, driving a growing demand to extend their deployment from the cloud to edge devices. However, deploying LLMs on resource-constrained edge devices poses significant challenges, including (1) intensive computations and huge model sizes, (2) great memory and bandwidth demands introduced by the autoregressive generation process, and (3) limited scalability for handling long sequences. To address these challenges, we propose AccLLM, a comprehensive acceleration framework that enables efficient and fast long-context LLM inference through algorithm and hardware co-design. At the algorithmic level, we integrate (1) pruning, (2) {\Lambda}-shaped attention, and (3) an innovative W2A8KV4 (2-bit weights, 8-bit activations, and 4-bit KV cache) quantization scheme, thus effectively reducing memory and bandwidth requirements while facilitating LLMs' long-sequence generation. At the hardware level, we design a dedicated FPGA-based accelerator with a reconfigurable computing engine to effectively and flexibly accommodate diverse operations arising from our compression algorithm, thereby fully translating the algorithmic innovations into tangible hardware efficiency. We validate AccLLM on the Xilinx Alveo U280 FPGA, demonstrating a 4.07x energy efficiency and a 2.98x throughput compared to the state-of-the-art work FlightLLM.

  • 4 authors
·
Apr 6

HybriMoE: Hybrid CPU-GPU Scheduling and Cache Management for Efficient MoE Inference

The Mixture of Experts (MoE) architecture has demonstrated significant advantages as it enables to increase the model capacity without a proportional increase in computation. However, the large MoE model size still introduces substantial memory demands, which usually requires expert offloading on resource-constrained platforms and incurs significant overhead. Hybrid CPU-GPU inference has been proposed to leverage CPU computation to reduce expert loading overhead but faces major challenges: on one hand, the expert activation patterns of MoE models are highly unstable, rendering the fixed mapping strategies in existing works inefficient; on the other hand, the hybrid CPU-GPU schedule for MoE is inherently complex due to the diverse expert sizes, structures, uneven workload distribution, etc. To address these challenges, in this paper, we propose HybriMoE, a hybrid CPU-GPU inference framework that improves resource utilization through a novel CPU-GPU scheduling and cache management system. HybriMoE introduces (i) a dynamic intra-layer scheduling strategy to balance workloads across CPU and GPU, (ii) an impact-driven inter-layer prefetching algorithm, and (iii) a score-based caching algorithm to mitigate expert activation instability. We implement HybriMoE on top of the kTransformers framework and evaluate it on three widely used MoE-based LLMs. Experimental results demonstrate that HybriMoE achieves an average speedup of 1.33times in the prefill stage and 1.70times in the decode stage compared to state-of-the-art hybrid MoE inference framework. Our code is available at: https://github.com/PKU-SEC-Lab/HybriMoE.

  • 6 authors
·
Apr 8 2

FlexPrefill: A Context-Aware Sparse Attention Mechanism for Efficient Long-Sequence Inference

Large language models (LLMs) encounter computational challenges during long-sequence inference, especially in the attention pre-filling phase, where the complexity grows quadratically with the prompt length. Previous efforts to mitigate these challenges have relied on fixed sparse attention patterns or identifying sparse attention patterns based on limited cases. However, these methods lacked the flexibility to efficiently adapt to varying input demands. In this paper, we introduce FlexPrefill, a Flexible sparse Pre-filling mechanism that dynamically adjusts sparse attention patterns and computational budget in real-time to meet the specific requirements of each input and attention head. The flexibility of our method is demonstrated through two key innovations: 1) Query-Aware Sparse Pattern Determination: By measuring Jensen-Shannon divergence, this component adaptively switches between query-specific diverse attention patterns and predefined attention patterns. 2) Cumulative-Attention Based Index Selection: This component dynamically selects query-key indexes to be computed based on different attention patterns, ensuring the sum of attention scores meets a predefined threshold. FlexPrefill adaptively optimizes the sparse pattern and sparse ratio of each attention head based on the prompt, enhancing efficiency in long-sequence inference tasks. Experimental results show significant improvements in both speed and accuracy over prior methods, providing a more flexible and efficient solution for LLM inference.

  • 5 authors
·
Feb 28

Breaking the Boundaries of Long-Context LLM Inference: Adaptive KV Management on a Single Commodity GPU

Advanced Large Language Models (LLMs) have achieved impressive performance across a wide range of complex and long-context natural language tasks. However, performing long-context LLM inference locally on a commodity GPU (a PC) with privacy concerns remains challenging due to the increasing memory demands of the key-value (KV) cache. Existing systems typically identify important tokens and selectively offload their KV data to GPU and CPU memory. The KV data needs to be offloaded to disk due to the limited memory on a commodity GPU, but the process is bottlenecked by token importance evaluation overhead and the disk's low bandwidth. In this paper, we present LeoAM, the first efficient importance-aware long-context LLM inference system for a single commodity GPU with adaptive hierarchical GPU-CPU-Disk KV management. Our system employs an adaptive KV management strategy that partitions KV data into variable-sized chunks based on the skewed distribution of attention weights across different layers to reduce computational and additional transmission overheads. Moreover, we propose a lightweight KV abstract method, which minimizes transmission latency by storing and extracting the KV abstract of each chunk on disk instead of the full KV data. LeoAM also leverages the dynamic compression and pipeline techniques to further accelerate inference. Experimental results demonstrate that LongInfer achieves an average inference latency speedup of 3.46x, while maintaining comparable LLM response quality. In scenarios with larger batch sizes, it achieves up to a 5.47x speedup.

  • 4 authors
·
Jun 25

Meta-Learning for Speeding Up Large Model Inference in Decentralized Environments

The deployment of large-scale models, such as large language models (LLMs) and sophisticated image generation systems, incurs substantial costs due to their computational demands. To mitigate these costs and address challenges related to scalability and data security, there is a growing shift towards decentralized systems for deploying such models. In these decentralized environments, efficient inference acceleration becomes crucial to manage computational resources effectively and enhance system responsiveness. In this work, we address the challenge of selecting optimal acceleration methods in decentralized systems by introducing a meta-learning-based framework. This framework automates the selection process by learning from historical performance data of various acceleration techniques across different tasks. Unlike traditional methods that rely on random selection or expert intuition, our approach systematically identifies the best acceleration strategies based on the specific characteristics of each task. We demonstrate that our meta-learning framework not only streamlines the decision-making process but also consistently outperforms conventional methods in terms of efficiency and performance. Our results highlight the potential of meta-learning to revolutionize inference acceleration in decentralized AI systems, offering a path towards more democratic and economically feasible artificial intelligence solutions.

  • 9 authors
·
Oct 28, 2024

Locret: Enhancing Eviction in Long-Context LLM Inference with Trained Retaining Heads

Large language models (LLMs) have shown remarkable advances in supporting long-context comprehension and processing tasks. However, scaling the generation inference of LLMs to such long contexts incurs significant additional computation load, and demands a substantial GPU memory footprint to maintain the key-value (KV) cache of transformer-based LLMs. Existing KV cache compression methods, such as quantization, face memory bottlenecks as context length increases, while static-sized caches, such as eviction, suffer from inefficient policies. These limitations restrict deployment on consumer-grade devices like a single Nvidia 4090 GPU. To overcome this, we propose Locret, a framework for long-context LLM inference that introduces retaining heads to evaluate the causal importance of KV cache units, allowing for more accurate eviction within a fixed cache size. Locret is fine-tuned on top of the frozen backbone LLM using a minimal amount of data from standard long-context SFT datasets. During inference, we evict low-importance cache units along with a chunked prefill pattern, significantly reducing peak GPU memory usage. We conduct an extensive empirical study to evaluate Locret, where the experimental results show that Locret outperforms the recent competitive approaches, including InfLLM, Quantization, SirLLM, and MInference, in terms of memory efficiency and the quality of generated contents -- Locret achieves over a 20x and 8x KV cache compression ratio compared to the full KV cache for Phi-3-mini-128K and Llama-3.1-8B-instruct. Additionally, Locret can be combined with other methods, such as quantization and token merging. To our knowledge, Locret is the first framework capable of deploying Llama-3.1-8B or similar models on a single Nvidia 4090 GPU, enabling 128K long-context inference without compromising generation quality, and requiring little additional system optimizations.

  • 5 authors
·
Oct 2, 2024

Efficient and Economic Large Language Model Inference with Attention Offloading

Transformer-based large language models (LLMs) exhibit impressive performance in generative tasks but introduce significant challenges in real-world serving due to inefficient use of the expensive, computation-optimized accelerators. This mismatch arises from the autoregressive nature of LLMs, where the generation phase comprises operators with varying resource demands. Specifically, the attention operator is memory-intensive, exhibiting a memory access pattern that clashes with the strengths of modern accelerators, especially as context length increases. To enhance the efficiency and cost-effectiveness of LLM serving, we introduce the concept of attention offloading. This approach leverages a collection of cheap, memory-optimized devices for the attention operator while still utilizing high-end accelerators for other parts of the model. This heterogeneous setup ensures that each component is tailored to its specific workload, maximizing overall performance and cost efficiency. Our comprehensive analysis and experiments confirm the viability of splitting the attention computation over multiple devices. Also, the communication bandwidth required between heterogeneous devices proves to be manageable with prevalent networking technologies. To further validate our theory, we develop Lamina, an LLM inference system that incorporates attention offloading. Experimental results indicate that Lamina can provide 1.48x-12.1x higher estimated throughput per dollar than homogeneous solutions.

  • 4 authors
·
May 2, 2024

LLM in a flash: Efficient Large Language Model Inference with Limited Memory

Large language models (LLMs) are central to modern natural language processing, delivering exceptional performance in various tasks. However, their intensive computational and memory requirements present challenges, especially for devices with limited DRAM capacity. This paper tackles the challenge of efficiently running LLMs that exceed the available DRAM capacity by storing the model parameters on flash memory but bringing them on demand to DRAM. Our method involves constructing an inference cost model that harmonizes with the flash memory behavior, guiding us to optimize in two critical areas: reducing the volume of data transferred from flash and reading data in larger, more contiguous chunks. Within this flash memory-informed framework, we introduce two principal techniques. First, "windowing'" strategically reduces data transfer by reusing previously activated neurons, and second, "row-column bundling", tailored to the sequential data access strengths of flash memory, increases the size of data chunks read from flash memory. These methods collectively enable running models up to twice the size of the available DRAM, with a 4-5x and 20-25x increase in inference speed compared to naive loading approaches in CPU and GPU, respectively. Our integration of sparsity awareness, context-adaptive loading, and a hardware-oriented design paves the way for effective inference of LLMs on devices with limited memory.

  • 8 authors
·
Dec 12, 2023 8

MixPE: Quantization and Hardware Co-design for Efficient LLM Inference

Transformer-based large language models (LLMs) have achieved remarkable success as model sizes continue to grow, yet their deployment remains challenging due to significant computational and memory demands. Quantization has emerged as a promising solution, and state-of-the-art quantization algorithms for LLMs introduce the need for mixed-precision matrix multiplication (mpGEMM), where lower-precision weights are multiplied with higher-precision activations. Despite its benefits, current hardware accelerators such as GPUs and TPUs lack native support for efficient mpGEMM, leading to inefficient dequantization operations in the main sequential loop. To address this limitation, we introduce MixPE, a specialized mixed-precision processing element designed for efficient low-bit quantization in LLM inference. MixPE leverages two key innovations to minimize dequantization overhead and unlock the full potential of low-bit quantization. First, recognizing that scale and zero point are shared within each quantization group, we propose performing dequantization after per-group mpGEMM, significantly reducing dequantization overhead. Second, instead of relying on conventional multipliers, MixPE utilizes efficient shift\&add operations for multiplication, optimizing both computation and energy efficiency. Our experimental results demonstrate that MixPE surpasses the state-of-the-art quantization accelerators by 2.6times speedup and 1.4times energy reduction.

  • 7 authors
·
Nov 25, 2024

Cambricon-LLM: A Chiplet-Based Hybrid Architecture for On-Device Inference of 70B LLM

Deploying advanced large language models on edge devices, such as smartphones and robotics, is a growing trend that enhances user data privacy and network connectivity resilience while preserving intelligent capabilities. However, such a task exhibits single-batch computing with incredibly low arithmetic intensity, which poses the significant challenges of huge memory footprint and bandwidth demands on limited edge resources. To address these issues, we introduce Cambricon-LLM, a chiplet-based hybrid architecture with NPU and a dedicated NAND flash chip to enable efficient on-device inference of 70B LLMs. Such a hybrid architecture utilizes both the high computing capability of NPU and the data capacity of the NAND flash chip, with the proposed hardware-tiling strategy that minimizes the data movement overhead between NPU and NAND flash chip. Specifically, the NAND flash chip, enhanced by our innovative in-flash computing and on-die ECC techniques, excels at performing precise lightweight on-die processing. Simultaneously, the NPU collaborates with the flash chip for matrix operations and handles special function computations beyond the flash's on-die processing capabilities. Overall, Cambricon-LLM enables the on-device inference of 70B LLMs at a speed of 3.44 token/s, and 7B LLMs at a speed of 36.34 token/s, which is over 22X to 45X faster than existing flash-offloading technologies, showing the potentiality of deploying powerful LLMs in edge devices.

  • 15 authors
·
Sep 23, 2024

DeepSpeed-FastGen: High-throughput Text Generation for LLMs via MII and DeepSpeed-Inference

The deployment and scaling of large language models (LLMs) have become critical as they permeate various applications, demanding high-throughput and low-latency serving systems. Existing frameworks struggle to balance these requirements, especially for workloads with long prompts. This paper introduces DeepSpeed-FastGen, a system that employs Dynamic SplitFuse, a novel prompt and generation composition strategy, to deliver up to 2.3x higher effective throughput, 2x lower latency on average, and up to 3.7x lower (token-level) tail latency, compared to state-of-the-art systems like vLLM. We leverage a synergistic combination of DeepSpeed-MII and DeepSpeed-Inference to provide an efficient and easy-to-use serving system for LLMs. DeepSpeed-FastGen's advanced implementation supports a range of models and offers both non-persistent and persistent deployment options, catering to diverse user scenarios from interactive sessions to long-running applications. We present a detailed benchmarking methodology, analyze the performance through latency-throughput curves, and investigate scalability via load balancing. Our evaluations demonstrate substantial improvements in throughput and latency across various models and hardware configurations. We discuss our roadmap for future enhancements, including broader model support and new hardware backends. The DeepSpeed-FastGen code is readily available for community engagement and contribution.

  • 11 authors
·
Jan 9, 2024 2

ExpertFlow: Optimized Expert Activation and Token Allocation for Efficient Mixture-of-Experts Inference

Sparse Mixture of Experts (MoE) models, while outperforming dense Large Language Models (LLMs) in terms of performance, face significant deployment challenges during inference due to their high memory demands. Existing offloading techniques, which involve swapping activated and idle experts between the GPU and CPU, often suffer from rigid expert caching mechanisms. These mechanisms fail to adapt to dynamic routing, leading to inefficient cache utilization, or incur prohibitive costs for prediction training. To tackle these inference-specific challenges, we introduce ExpertFlow, a comprehensive system specifically designed to enhance inference efficiency by accommodating flexible routing and enabling efficient expert scheduling between CPU and GPU. This reduces overhead and boosts system performance. Central to our approach is a predictive routing path-based offloading mechanism that utilizes a lightweight predictor to accurately forecast routing paths before computation begins. This proactive strategy allows for real-time error correction in expert caching, significantly increasing cache hit ratios and reducing the frequency of expert transfers, thereby minimizing I/O overhead. Additionally, we implement a dynamic token scheduling strategy that optimizes MoE inference by rearranging input tokens across different batches. This method not only reduces the number of activated experts per batch but also improves computational efficiency. Our extensive experiments demonstrate that ExpertFlow achieves up to 93.72\% GPU memory savings and enhances inference speed by 2 to 10 times compared to baseline methods, highlighting its effectiveness and utility as a robust solution for resource-constrained inference scenarios.

  • 10 authors
·
Oct 23, 2024

MeanVC: Lightweight and Streaming Zero-Shot Voice Conversion via Mean Flows

Zero-shot voice conversion (VC) aims to transfer timbre from a source speaker to any unseen target speaker while preserving linguistic content. Growing application scenarios demand models with streaming inference capabilities. This has created a pressing need for models that are simultaneously fast, lightweight, and high-fidelity. However, existing streaming methods typically rely on either autoregressive (AR) or non-autoregressive (NAR) frameworks, which either require large parameter sizes to achieve strong performance or struggle to generalize to unseen speakers. In this study, we propose MeanVC, a lightweight and streaming zero-shot VC approach. MeanVC introduces a diffusion transformer with a chunk-wise autoregressive denoising strategy, combining the strengths of both AR and NAR paradigms for efficient streaming processing. By introducing mean flows, MeanVC regresses the average velocity field during training, enabling zero-shot VC with superior speech quality and speaker similarity in a single sampling step by directly mapping from the start to the endpoint of the flow trajectory. Additionally, we incorporate diffusion adversarial post-training to mitigate over-smoothing and further enhance speech quality. Experimental results demonstrate that MeanVC significantly outperforms existing zero-shot streaming VC systems, achieving superior conversion quality with higher efficiency and significantly fewer parameters. Audio demos and code are publicly available at https://aslp-lab.github.io/MeanVC.

  • 7 authors
·
Oct 9

Mamba-based Light Field Super-Resolution with Efficient Subspace Scanning

Transformer-based methods have demonstrated impressive performance in 4D light field (LF) super-resolution by effectively modeling long-range spatial-angular correlations, but their quadratic complexity hinders the efficient processing of high resolution 4D inputs, resulting in slow inference speed and high memory cost. As a compromise, most prior work adopts a patch-based strategy, which fails to leverage the full information from the entire input LFs. The recently proposed selective state-space model, Mamba, has gained popularity for its efficient long-range sequence modeling. In this paper, we propose a Mamba-based Light Field Super-Resolution method, named MLFSR, by designing an efficient subspace scanning strategy. Specifically, we tokenize 4D LFs into subspace sequences and conduct bi-directional scanning on each subspace. Based on our scanning strategy, we then design the Mamba-based Global Interaction (MGI) module to capture global information and the local Spatial- Angular Modulator (SAM) to complement local details. Additionally, we introduce a Transformer-to-Mamba (T2M) loss to further enhance overall performance. Extensive experiments on public benchmarks demonstrate that MLFSR surpasses CNN-based models and rivals Transformer-based methods in performance while maintaining higher efficiency. With quicker inference speed and reduced memory demand, MLFSR facilitates full-image processing of high-resolution 4D LFs with enhanced performance.

  • 3 authors
·
Jun 23, 2024

Learning k-Level Structured Sparse Neural Networks Using Group Envelope Regularization

The extensive need for computational resources poses a significant obstacle to deploying large-scale Deep Neural Networks (DNN) on devices with constrained resources. At the same time, studies have demonstrated that a significant number of these DNN parameters are redundant and extraneous. In this paper, we introduce a novel approach for learning structured sparse neural networks, aimed at bridging the DNN hardware deployment challenges. We develop a novel regularization technique, termed Weighted Group Sparse Envelope Function (WGSEF), generalizing the Sparse Envelop Function (SEF), to select (or nullify) neuron groups, thereby reducing redundancy and enhancing computational efficiency. The method speeds up inference time and aims to reduce memory demand and power consumption, thanks to its adaptability which lets any hardware specify group definitions, such as filters, channels, filter shapes, layer depths, a single parameter (unstructured), etc. The properties of the WGSEF enable the pre-definition of a desired sparsity level to be achieved at the training convergence. In the case of redundant parameters, this approach maintains negligible network accuracy degradation or can even lead to improvements in accuracy. Our method efficiently computes the WGSEF regularizer and its proximal operator, in a worst-case linear complexity relative to the number of group variables. Employing a proximal-gradient-based optimization technique, to train the model, it tackles the non-convex minimization problem incorporating the neural network loss and the WGSEF. Finally, we experiment and illustrate the efficiency of our proposed method in terms of the compression ratio, accuracy, and inference latency.

  • 3 authors
·
Dec 25, 2022

QWHA: Quantization-Aware Walsh-Hadamard Adaptation for Parameter-Efficient Fine-Tuning on Large Language Models

The demand for efficient deployment of large language models (LLMs) has driven interest in quantization, which reduces inference cost, and parameter-efficient fine-tuning (PEFT), which lowers training overhead. This motivated the development of quantization-aware PEFT to produce accurate yet efficient quantized models. In this setting, reducing quantization error prior to fine-tuning is crucial for achieving high model accuracy. However, existing methods that rely on low-rank adaptation suffer from limited representational capacity. Recent Fourier-related transform (FT)-based adapters offer greater representational power than low-rank adapters, but their direct integration into quantized models often results in ineffective error reduction and increased computational overhead. To overcome these limitations, we propose QWHA, a method that integrates FT-based adapters into quantized models by employing the Walsh-Hadamard Transform (WHT) as the transform kernel, together with a novel adapter initialization scheme incorporating adaptive parameter selection and value refinement. We demonstrate that QWHA effectively mitigates quantization errors while facilitating fine-tuning, and that its design substantially reduces computational cost. Experimental results show that QWHA consistently outperforms baselines in low-bit quantization accuracy and achieves significant training speedups over existing FT-based adapters. The code is available at https://github.com/vantaa89/qwha.

  • 5 authors
·
Sep 22 2

Zebra-Llama: Towards Extremely Efficient Hybrid Models

With the growing demand for deploying large language models (LLMs) across diverse applications, improving their inference efficiency is crucial for sustainable and democratized access. However, retraining LLMs to meet new user-specific requirements is prohibitively expensive and environmentally unsustainable. In this work, we propose a practical and scalable alternative: composing efficient hybrid language models from existing pre-trained models. Our approach, Zebra-Llama, introduces a family of 1B, 3B, and 8B hybrid models by combining State Space Models (SSMs) and Multi-head Latent Attention (MLA) layers, using a refined initialization and post-training pipeline to efficiently transfer knowledge from pre-trained Transformers. Zebra-Llama achieves Transformer-level accuracy with near-SSM efficiency using only 7-11B training tokens (compared to trillions of tokens required for pre-training) and an 8B teacher. Moreover, Zebra-Llama dramatically reduces KV cache size -down to 3.9%, 2%, and 2.73% of the original for the 1B, 3B, and 8B variants, respectively-while preserving 100%, 100%, and >97% of average zero-shot performance on LM Harness tasks. Compared to models like MambaInLLaMA, X-EcoMLA, Minitron, and Llamba, Zebra-Llama consistently delivers competitive or superior accuracy while using significantly fewer tokens, smaller teachers, and vastly reduced KV cache memory. Notably, Zebra-Llama-8B surpasses Minitron-8B in few-shot accuracy by 7% while using 8x fewer training tokens, over 12x smaller KV cache, and a smaller teacher (8B vs. 15B). It also achieves 2.6x-3.8x higher throughput (tokens/s) than MambaInLlama up to a 32k context length. We will release code and model checkpoints upon acceptance.

  • 5 authors
·
May 22

vAttention: Dynamic Memory Management for Serving LLMs without PagedAttention

Efficient use of GPU memory is essential for high throughput LLM inference. Prior systems reserved memory for the KV-cache ahead-of-time, resulting in wasted capacity due to internal fragmentation. Inspired by OS-based virtual memory systems, vLLM proposed PagedAttention to enable dynamic memory allocation for KV-cache. This approach eliminates fragmentation, enabling high-throughput LLM serving with larger batch sizes. However, to be able to allocate physical memory dynamically, PagedAttention changes the layout of KV-cache from contiguous virtual memory to non-contiguous virtual memory. This change requires attention kernels to be rewritten to support paging, and serving framework to implement a memory manager. Thus, the PagedAttention model leads to software complexity, portability issues, redundancy and inefficiency. In this paper, we propose vAttention for dynamic KV-cache memory management. In contrast to PagedAttention, vAttention retains KV-cache in contiguous virtual memory and leverages low-level system support for demand paging, that already exists, to enable on-demand physical memory allocation. Thus, vAttention unburdens the attention kernel developer from having to explicitly support paging and avoids re-implementation of memory management in the serving framework. We show that vAttention enables seamless dynamic memory management for unchanged implementations of various attention kernels. vAttention also generates tokens up to 1.97x faster than vLLM, while processing input prompts up to 3.92x and 1.45x faster than the PagedAttention variants of FlashAttention and FlashInfer.

  • 5 authors
·
May 7, 2024

M$^3$ViT: Mixture-of-Experts Vision Transformer for Efficient Multi-task Learning with Model-Accelerator Co-design

Multi-task learning (MTL) encapsulates multiple learned tasks in a single model and often lets those tasks learn better jointly. However, when deploying MTL onto those real-world systems that are often resource-constrained or latency-sensitive, two prominent challenges arise: (i) during training, simultaneously optimizing all tasks is often difficult due to gradient conflicts across tasks; (ii) at inference, current MTL regimes have to activate nearly the entire model even to just execute a single task. Yet most real systems demand only one or two tasks at each moment, and switch between tasks as needed: therefore such all tasks activated inference is also highly inefficient and non-scalable. In this paper, we present a model-accelerator co-design framework to enable efficient on-device MTL. Our framework, dubbed M^3ViT, customizes mixture-of-experts (MoE) layers into a vision transformer (ViT) backbone for MTL, and sparsely activates task-specific experts during training. Then at inference with any task of interest, the same design allows for activating only the task-corresponding sparse expert pathway, instead of the full model. Our new model design is further enhanced by hardware-level innovations, in particular, a novel computation reordering scheme tailored for memory-constrained MTL that achieves zero-overhead switching between tasks and can scale to any number of experts. When executing single-task inference, M^{3}ViT achieves higher accuracies than encoder-focused MTL methods, while significantly reducing 88% inference FLOPs. When implemented on a hardware platform of one Xilinx ZCU104 FPGA, our co-design framework reduces the memory requirement by 2.4 times, while achieving energy efficiency up to 9.23 times higher than a comparable FPGA baseline. Code is available at: https://github.com/VITA-Group/M3ViT.

  • 9 authors
·
Oct 26, 2022

Memory-Efficient Fine-Tuning of Compressed Large Language Models via sub-4-bit Integer Quantization

Large language models (LLMs) face the challenges in fine-tuning and deployment due to their high memory demands and computational costs. While parameter-efficient fine-tuning (PEFT) methods aim to reduce the memory usage of the optimizer state during fine-tuning, the inherent size of pre-trained LLM weights continues to be a pressing concern. Even though quantization techniques are widely proposed to ease memory demands and accelerate LLM inference, most of these techniques are geared towards the deployment phase. To bridge this gap, this paper presents Parameter-Efficient and Quantization-aware Adaptation (PEQA) - a simple yet effective method that combines the advantages of PEFT with quantized LLMs. By updating solely the quantization scales, PEQA can be directly applied to quantized LLMs, ensuring seamless task transitions. Parallel to existing PEFT methods, PEQA significantly reduces the memory overhead associated with the optimizer state. Furthermore, it leverages the advantages of quantization to substantially reduce model sizes. Even after fine-tuning, the quantization structure of a PEQA-tuned LLM remains intact, allowing for accelerated inference on the deployment stage. We employ PEQA-tuning for task-specific adaptation on LLMs with up to 65 billion parameters. To assess the logical reasoning and language comprehension of PEQA-tuned LLMs, we fine-tune low-bit quantized LLMs using a instruction dataset. Our results show that even when LLMs are quantized to below 4-bit precision, their capabilities in language modeling, few-shot in-context learning, and comprehension can be resiliently restored to (or even improved over) their full-precision original performances with PEQA.

  • 7 authors
·
May 23, 2023

Performance-Guided LLM Knowledge Distillation for Efficient Text Classification at Scale

Large Language Models (LLMs) face significant challenges at inference time due to their high computational demands. To address this, we present Performance-Guided Knowledge Distillation (PGKD), a cost-effective and high-throughput solution for production text classification applications. PGKD utilizes teacher-student Knowledge Distillation to distill the knowledge of LLMs into smaller, task-specific models. PGKD establishes an active learning routine between the student model and the LLM; the LLM continuously generates new training data leveraging hard-negative mining, student model validation performance, and early-stopping protocols to inform the data generation. By employing a cyclical, performance-aware approach tailored for highly multi-class, sparsely annotated datasets prevalent in industrial text classification, PGKD effectively addresses training challenges and outperforms traditional BERT-base models and other knowledge distillation methods on several multi-class classification datasets. Additionally, cost and latency benchmarking reveals that models fine-tuned with PGKD are up to 130X faster and 25X less expensive than LLMs for inference on the same classification task. While PGKD is showcased for text classification tasks, its versatile framework can be extended to any LLM distillation task, including language generation, making it a powerful tool for optimizing performance across a wide range of AI applications.

  • 3 authors
·
Nov 6, 2024