new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 19

mHC-lite: You Don't Need 20 Sinkhorn-Knopp Iterations

Hyper-Connections (HC) generalizes residual connections by introducing dynamic residual matrices that mix information across multiple residual streams, accelerating convergence in deep neural networks. However, unconstrained residual matrices can compromise training stability. To address this, DeepSeek's Manifold-Constrained Hyper-Connections (mHC) approximately projects these matrices onto the Birkhoff polytope via iterative Sinkhorn--Knopp (SK) normalization. We identify two limitations of this approach: (i) finite SK iterations do not guarantee exact doubly stochasticity, leaving an approximation gap that can accumulate through network depth and undermine stability; (ii) efficient SK implementation requires highly specialized CUDA kernels, raising engineering barriers and reducing portability. Motivated by the Birkhoff--von Neumann theorem, we propose mHC-lite, a simple reparameterization that explicitly constructs doubly stochastic matrices as convex combinations of permutation matrices. This approach guarantees exact doubly stochasticity by construction and can be implemented using only native matrix operations. Extensive experiments demonstrate that mHC-lite matches or exceeds mHC in performance while achieving higher training throughput with a naive implementation and eliminating the residual instabilities observed in both HC and mHC. The code is publicly available at https://github.com/FFTYYY/mhc-lite.

  • 2 authors
·
Jan 9

On Penalty Methods for Nonconvex Bilevel Optimization and First-Order Stochastic Approximation

In this work, we study first-order algorithms for solving Bilevel Optimization (BO) where the objective functions are smooth but possibly nonconvex in both levels and the variables are restricted to closed convex sets. As a first step, we study the landscape of BO through the lens of penalty methods, in which the upper- and lower-level objectives are combined in a weighted sum with penalty parameter sigma > 0. In particular, we establish a strong connection between the penalty function and the hyper-objective by explicitly characterizing the conditions under which the values and derivatives of the two must be O(sigma)-close. A by-product of our analysis is the explicit formula for the gradient of hyper-objective when the lower-level problem has multiple solutions under minimal conditions, which could be of independent interest. Next, viewing the penalty formulation as O(sigma)-approximation of the original BO, we propose first-order algorithms that find an epsilon-stationary solution by optimizing the penalty formulation with sigma = O(epsilon). When the perturbed lower-level problem uniformly satisfies the small-error proximal error-bound (EB) condition, we propose a first-order algorithm that converges to an epsilon-stationary point of the penalty function, using in total O(epsilon^{-3}) and O(epsilon^{-7}) accesses to first-order (stochastic) gradient oracles when the oracle is deterministic and oracles are noisy, respectively. Under an additional assumption on stochastic oracles, we show that the algorithm can be implemented in a fully {\it single-loop} manner, i.e., with O(1) samples per iteration, and achieves the improved oracle-complexity of O(epsilon^{-3}) and O(epsilon^{-5}), respectively.

  • 4 authors
·
Sep 4, 2023

Artificial Entanglement in the Fine-Tuning of Large Language Models

Large language models (LLMs) can be adapted to new tasks using parameter-efficient fine-tuning (PEFT) methods that modify only a small number of trainable parameters, often through low-rank updates. In this work, we adopt a quantum-information-inspired perspective to understand their effectiveness. From this perspective, low-rank parameterizations naturally correspond to low-dimensional Matrix Product States (MPS) representations, which enable entanglement-based characterizations of parameter structure. Thereby, we term and measure "Artificial Entanglement", defined as the entanglement entropy of the parameters in artificial neural networks (in particular the LLMs). We first study the representative low-rank adaptation (LoRA) PEFT method, alongside full fine-tuning (FFT), using LLaMA models at the 1B and 8B scales trained on the Tulu3 and OpenThoughts3 datasets, and uncover: (i) Internal artificial entanglement in the updates of query and value projection matrices in LoRA follows a volume law with a central suppression (termed as the "Entanglement Valley"), which is sensitive to hyper-parameters and is distinct from that in FFT; (ii) External artificial entanglement in attention matrices, corresponding to token-token correlations in representation space, follows an area law with logarithmic corrections and remains robust to LoRA hyper-parameters and training steps. Drawing a parallel to the No-Hair Theorem in black hole physics, we propose that although LoRA and FFT induce distinct internal entanglement signatures, such differences do not manifest in the attention outputs, suggesting a "no-hair" property that results in the effectiveness of low rank updates. We further provide theoretical support based on random matrix theory, and extend our analysis to an MPS Adaptation PEFT method, which exhibits qualitatively similar behaviors.

  • 6 authors
·
Jan 11 2