Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeC-Mixup: Improving Generalization in Regression
Improving the generalization of deep networks is an important open challenge, particularly in domains without plentiful data. The mixup algorithm improves generalization by linearly interpolating a pair of examples and their corresponding labels. These interpolated examples augment the original training set. Mixup has shown promising results in various classification tasks, but systematic analysis of mixup in regression remains underexplored. Using mixup directly on regression labels can result in arbitrarily incorrect labels. In this paper, we propose a simple yet powerful algorithm, C-Mixup, to improve generalization on regression tasks. In contrast with vanilla mixup, which picks training examples for mixing with uniform probability, C-Mixup adjusts the sampling probability based on the similarity of the labels. Our theoretical analysis confirms that C-Mixup with label similarity obtains a smaller mean square error in supervised regression and meta-regression than vanilla mixup and using feature similarity. Another benefit of C-Mixup is that it can improve out-of-distribution robustness, where the test distribution is different from the training distribution. By selectively interpolating examples with similar labels, it mitigates the effects of domain-associated information and yields domain-invariant representations. We evaluate C-Mixup on eleven datasets, ranging from tabular to video data. Compared to the best prior approach, C-Mixup achieves 6.56%, 4.76%, 5.82% improvements in in-distribution generalization, task generalization, and out-of-distribution robustness, respectively. Code is released at https://github.com/huaxiuyao/C-Mixup.
Harnessing Hard Mixed Samples with Decoupled Regularizer
Mixup is an efficient data augmentation approach that improves the generalization of neural networks by smoothing the decision boundary with mixed data. Recently, dynamic mixup methods have improved previous static policies effectively (e.g., linear interpolation) by maximizing target-related salient regions in mixed samples, but excessive additional time costs are not acceptable. These additional computational overheads mainly come from optimizing the mixed samples according to the mixed labels. However, we found that the extra optimizing step may be redundant because label-mismatched mixed samples are informative hard mixed samples for deep models to localize discriminative features. In this paper, we thus are not trying to propose a more complicated dynamic mixup policy but rather an efficient mixup objective function with a decoupled regularizer named Decoupled Mixup (DM). The primary effect is that DM can adaptively utilize those hard mixed samples to mine discriminative features without losing the original smoothness of mixup. As a result, DM enables static mixup methods to achieve comparable or even exceed the performance of dynamic methods without any extra computation. This also leads to an interesting objective design problem for mixup training that we need to focus on both smoothing the decision boundaries and identifying discriminative features. Extensive experiments on supervised and semi-supervised learning benchmarks across seven datasets validate the effectiveness of DM as a plug-and-play module. Source code and models are available at https://github.com/Westlake-AI/openmixup
Manifold Mixup: Better Representations by Interpolating Hidden States
Deep neural networks excel at learning the training data, but often provide incorrect and confident predictions when evaluated on slightly different test examples. This includes distribution shifts, outliers, and adversarial examples. To address these issues, we propose Manifold Mixup, a simple regularizer that encourages neural networks to predict less confidently on interpolations of hidden representations. Manifold Mixup leverages semantic interpolations as additional training signal, obtaining neural networks with smoother decision boundaries at multiple levels of representation. As a result, neural networks trained with Manifold Mixup learn class-representations with fewer directions of variance. We prove theory on why this flattening happens under ideal conditions, validate it on practical situations, and connect it to previous works on information theory and generalization. In spite of incurring no significant computation and being implemented in a few lines of code, Manifold Mixup improves strong baselines in supervised learning, robustness to single-step adversarial attacks, and test log-likelihood.
MixUp as Locally Linear Out-Of-Manifold Regularization
MixUp is a recently proposed data-augmentation scheme, which linearly interpolates a random pair of training examples and correspondingly the one-hot representations of their labels. Training deep neural networks with such additional data is shown capable of significantly improving the predictive accuracy of the current art. The power of MixUp, however, is primarily established empirically and its working and effectiveness have not been explained in any depth. In this paper, we develop an understanding for MixUp as a form of "out-of-manifold regularization", which imposes certain "local linearity" constraints on the model's input space beyond the data manifold. This analysis enables us to identify a limitation of MixUp, which we call "manifold intrusion". In a nutshell, manifold intrusion in MixUp is a form of under-fitting resulting from conflicts between the synthetic labels of the mixed-up examples and the labels of original training data. Such a phenomenon usually happens when the parameters controlling the generation of mixing policies are not sufficiently fine-tuned on the training data. To address this issue, we propose a novel adaptive version of MixUp, where the mixing policies are automatically learned from the data using an additional network and objective function designed to avoid manifold intrusion. The proposed regularizer, AdaMixUp, is empirically evaluated on several benchmark datasets. Extensive experiments demonstrate that AdaMixUp improves upon MixUp when applied to the current art of deep classification models.
A Survey on Mixup Augmentations and Beyond
As Deep Neural Networks have achieved thrilling breakthroughs in the past decade, data augmentations have garnered increasing attention as regularization techniques when massive labeled data are unavailable. Among existing augmentations, Mixup and relevant data-mixing methods that convexly combine selected samples and the corresponding labels are widely adopted because they yield high performances by generating data-dependent virtual data while easily migrating to various domains. This survey presents a comprehensive review of foundational mixup methods and their applications. We first elaborate on the training pipeline with mixup augmentations as a unified framework containing modules. A reformulated framework could contain various mixup methods and give intuitive operational procedures. Then, we systematically investigate the applications of mixup augmentations on vision downstream tasks, various data modalities, and some analysis \& theorems of mixup. Meanwhile, we conclude the current status and limitations of mixup research and point out further work for effective and efficient mixup augmentations. This survey can provide researchers with the current state of the art in mixup methods and provide some insights and guidance roles in the mixup arena. An online project with this survey is available at https://github.com/Westlake-AI/Awesome-Mixup.
mixup: Beyond Empirical Risk Minimization
Large deep neural networks are powerful, but exhibit undesirable behaviors such as memorization and sensitivity to adversarial examples. In this work, we propose mixup, a simple learning principle to alleviate these issues. In essence, mixup trains a neural network on convex combinations of pairs of examples and their labels. By doing so, mixup regularizes the neural network to favor simple linear behavior in-between training examples. Our experiments on the ImageNet-2012, CIFAR-10, CIFAR-100, Google commands and UCI datasets show that mixup improves the generalization of state-of-the-art neural network architectures. We also find that mixup reduces the memorization of corrupt labels, increases the robustness to adversarial examples, and stabilizes the training of generative adversarial networks.
Selective Mixup Helps with Distribution Shifts, But Not (Only) because of Mixup
Mixup is a highly successful technique to improve generalization of neural networks by augmenting the training data with combinations of random pairs. Selective mixup is a family of methods that apply mixup to specific pairs, e.g. only combining examples across classes or domains. These methods have claimed remarkable improvements on benchmarks with distribution shifts, but their mechanisms and limitations remain poorly understood. We examine an overlooked aspect of selective mixup that explains its success in a completely new light. We find that the non-random selection of pairs affects the training distribution and improve generalization by means completely unrelated to the mixing. For example in binary classification, mixup across classes implicitly resamples the data for a uniform class distribution - a classical solution to label shift. We show empirically that this implicit resampling explains much of the improvements in prior work. Theoretically, these results rely on a regression toward the mean, an accidental property that we identify in several datasets. We have found a new equivalence between two successful methods: selective mixup and resampling. We identify limits of the former, confirm the effectiveness of the latter, and find better combinations of their respective benefits.
Boosting Discriminative Visual Representation Learning with Scenario-Agnostic Mixup
Mixup is a well-known data-dependent augmentation technique for DNNs, consisting of two sub-tasks: mixup generation and classification. However, the recent dominant online training method confines mixup to supervised learning (SL), and the objective of the generation sub-task is limited to selected sample pairs instead of the whole data manifold, which might cause trivial solutions. To overcome such limitations, we comprehensively study the objective of mixup generation and propose Scenario-Agnostic Mixup (SAMix) for both SL and Self-supervised Learning (SSL) scenarios. Specifically, we hypothesize and verify the objective function of mixup generation as optimizing local smoothness between two mixed classes subject to global discrimination from other classes. Accordingly, we propose eta-balanced mixup loss for complementary learning of the two sub-objectives. Meanwhile, a label-free generation sub-network is designed, which effectively provides non-trivial mixup samples and improves transferable abilities. Moreover, to reduce the computational cost of online training, we further introduce a pre-trained version, SAMix^P, achieving more favorable efficiency and generalizability. Extensive experiments on nine SL and SSL benchmarks demonstrate the consistent superiority and versatility of SAMix compared with existing methods.
Mixout: Effective Regularization to Finetune Large-scale Pretrained Language Models
In natural language processing, it has been observed recently that generalization could be greatly improved by finetuning a large-scale language model pretrained on a large unlabeled corpus. Despite its recent success and wide adoption, finetuning a large pretrained language model on a downstream task is prone to degenerate performance when there are only a small number of training instances available. In this paper, we introduce a new regularization technique, to which we refer as "mixout", motivated by dropout. Mixout stochastically mixes the parameters of two models. We show that our mixout technique regularizes learning to minimize the deviation from one of the two models and that the strength of regularization adapts along the optimization trajectory. We empirically evaluate the proposed mixout and its variants on finetuning a pretrained language model on downstream tasks. More specifically, we demonstrate that the stability of finetuning and the average accuracy greatly increase when we use the proposed approach to regularize finetuning of BERT on downstream tasks in GLUE.
RegMixup: Mixup as a Regularizer Can Surprisingly Improve Accuracy and Out Distribution Robustness
We show that the effectiveness of the well celebrated Mixup [Zhang et al., 2018] can be further improved if instead of using it as the sole learning objective, it is utilized as an additional regularizer to the standard cross-entropy loss. This simple change not only provides much improved accuracy but also significantly improves the quality of the predictive uncertainty estimation of Mixup in most cases under various forms of covariate shifts and out-of-distribution detection experiments. In fact, we observe that Mixup yields much degraded performance on detecting out-of-distribution samples possibly, as we show empirically, because of its tendency to learn models that exhibit high-entropy throughout; making it difficult to differentiate in-distribution samples from out-distribution ones. To show the efficacy of our approach (RegMixup), we provide thorough analyses and experiments on vision datasets (ImageNet & CIFAR-10/100) and compare it with a suite of recent approaches for reliable uncertainty estimation.
Unknown Domain Inconsistency Minimization for Domain Generalization
The objective of domain generalization (DG) is to enhance the transferability of the model learned from a source domain to unobserved domains. To prevent overfitting to a specific domain, Sharpness-Aware Minimization (SAM) reduces source domain's loss sharpness. Although SAM variants have delivered significant improvements in DG, we highlight that there's still potential for improvement in generalizing to unknown domains through the exploration on data space. This paper introduces an objective rooted in both parameter and data perturbed regions for domain generalization, coined Unknown Domain Inconsistency Minimization (UDIM). UDIM reduces the loss landscape inconsistency between source domain and unknown domains. As unknown domains are inaccessible, these domains are empirically crafted by perturbing instances from the source domain dataset. In particular, by aligning the loss landscape acquired in the source domain to the loss landscape of perturbed domains, we expect to achieve generalization grounded on these flat minima for the unknown domains. Theoretically, we validate that merging SAM optimization with the UDIM objective establishes an upper bound for the true objective of the DG task. In an empirical aspect, UDIM consistently outperforms SAM variants across multiple DG benchmark datasets. Notably, UDIM shows statistically significant improvements in scenarios with more restrictive domain information, underscoring UDIM's generalization capability in unseen domains. Our code is available at https://github.com/SJShin-AI/UDIM.
Data Mixing Optimization for Supervised Fine-Tuning of Large Language Models
Optimizing data mixtures for supervised fine-tuning (SFT) of large language models (LLMs) is critical for developing general-purpose models, yet this area remains underexplored. In this paper, we frame data mixing as an optimization problem and introduce a novel method designed to minimize validation loss. Our approach parametrizes the loss by modeling effective data transferred and leveraging scaling laws for fine-tuning. By experimenting with various small-scale data mixtures, we fit these parameters and derive the optimal weights. We provide both mathematical proofs and empirical results demonstrating that our algorithm achieves excellent overall and individual performance across all domains. Through controlled experiments, we show that models trained with our optimized weights perform on par with those using optimal weights determined via grid search, with per-domain loss only 0.66% higher than the best domain loss from grid search on average. Additionally, we show that reweighting popular SFT datasets using our method improves both validation loss and downstream performance. Finally, we discuss how our method can generalize to guide data selection for domain-specific models and provide insights into SFT.
Balancing Discriminability and Transferability for Source-Free Domain Adaptation
Conventional domain adaptation (DA) techniques aim to improve domain transferability by learning domain-invariant representations; while concurrently preserving the task-discriminability knowledge gathered from the labeled source data. However, the requirement of simultaneous access to labeled source and unlabeled target renders them unsuitable for the challenging source-free DA setting. The trivial solution of realizing an effective original to generic domain mapping improves transferability but degrades task discriminability. Upon analyzing the hurdles from both theoretical and empirical standpoints, we derive novel insights to show that a mixup between original and corresponding translated generic samples enhances the discriminability-transferability trade-off while duly respecting the privacy-oriented source-free setting. A simple but effective realization of the proposed insights on top of the existing source-free DA approaches yields state-of-the-art performance with faster convergence. Beyond single-source, we also outperform multi-source prior-arts across both classification and semantic segmentation benchmarks.
The Benefits of Mixup for Feature Learning
Mixup, a simple data augmentation method that randomly mixes two data points via linear interpolation, has been extensively applied in various deep learning applications to gain better generalization. However, the theoretical underpinnings of its efficacy are not yet fully understood. In this paper, we aim to seek a fundamental understanding of the benefits of Mixup. We first show that Mixup using different linear interpolation parameters for features and labels can still achieve similar performance to the standard Mixup. This indicates that the intuitive linearity explanation in Zhang et al., (2018) may not fully explain the success of Mixup. Then we perform a theoretical study of Mixup from the feature learning perspective. We consider a feature-noise data model and show that Mixup training can effectively learn the rare features (appearing in a small fraction of data) from its mixture with the common features (appearing in a large fraction of data). In contrast, standard training can only learn the common features but fails to learn the rare features, thus suffering from bad generalization performance. Moreover, our theoretical analysis also shows that the benefits of Mixup for feature learning are mostly gained in the early training phase, based on which we propose to apply early stopping in Mixup. Experimental results verify our theoretical findings and demonstrate the effectiveness of the early-stopped Mixup training.
Co-Mixup: Saliency Guided Joint Mixup with Supermodular Diversity
While deep neural networks show great performance on fitting to the training distribution, improving the networks' generalization performance to the test distribution and robustness to the sensitivity to input perturbations still remain as a challenge. Although a number of mixup based augmentation strategies have been proposed to partially address them, it remains unclear as to how to best utilize the supervisory signal within each input data for mixup from the optimization perspective. We propose a new perspective on batch mixup and formulate the optimal construction of a batch of mixup data maximizing the data saliency measure of each individual mixup data and encouraging the supermodular diversity among the constructed mixup data. This leads to a novel discrete optimization problem minimizing the difference between submodular functions. We also propose an efficient modular approximation based iterative submodular minimization algorithm for efficient mixup computation per each minibatch suitable for minibatch based neural network training. Our experiments show the proposed method achieves the state of the art generalization, calibration, and weakly supervised localization results compared to other mixup methods. The source code is available at https://github.com/snu-mllab/Co-Mixup.
Improving Spoken Language Identification with Map-Mix
The pre-trained multi-lingual XLSR model generalizes well for language identification after fine-tuning on unseen languages. However, the performance significantly degrades when the languages are not very distinct from each other, for example, in the case of dialects. Low resource dialect classification remains a challenging problem to solve. We present a new data augmentation method that leverages model training dynamics of individual data points to improve sampling for latent mixup. The method works well in low-resource settings where generalization is paramount. Our datamaps-based mixup technique, which we call Map-Mix improves weighted F1 scores by 2% compared to the random mixup baseline and results in a significantly well-calibrated model. The code for our method is open sourced on https://github.com/skit-ai/Map-Mix.
HyperDomainNet: Universal Domain Adaptation for Generative Adversarial Networks
Domain adaptation framework of GANs has achieved great progress in recent years as a main successful approach of training contemporary GANs in the case of very limited training data. In this work, we significantly improve this framework by proposing an extremely compact parameter space for fine-tuning the generator. We introduce a novel domain-modulation technique that allows to optimize only 6 thousand-dimensional vector instead of 30 million weights of StyleGAN2 to adapt to a target domain. We apply this parameterization to the state-of-art domain adaptation methods and show that it has almost the same expressiveness as the full parameter space. Additionally, we propose a new regularization loss that considerably enhances the diversity of the fine-tuned generator. Inspired by the reduction in the size of the optimizing parameter space we consider the problem of multi-domain adaptation of GANs, i.e. setting when the same model can adapt to several domains depending on the input query. We propose the HyperDomainNet that is a hypernetwork that predicts our parameterization given the target domain. We empirically confirm that it can successfully learn a number of domains at once and may even generalize to unseen domains. Source code can be found at https://github.com/MACderRu/HyperDomainNet
Provable Benefit of Mixup for Finding Optimal Decision Boundaries
We investigate how pair-wise data augmentation techniques like Mixup affect the sample complexity of finding optimal decision boundaries in a binary linear classification problem. For a family of data distributions with a separability constant kappa, we analyze how well the optimal classifier in terms of training loss aligns with the optimal one in test accuracy (i.e., Bayes optimal classifier). For vanilla training without augmentation, we uncover an interesting phenomenon named the curse of separability. As we increase kappa to make the data distribution more separable, the sample complexity of vanilla training increases exponentially in kappa; perhaps surprisingly, the task of finding optimal decision boundaries becomes harder for more separable distributions. For Mixup training, we show that Mixup mitigates this problem by significantly reducing the sample complexity. To this end, we develop new concentration results applicable to n^2 pair-wise augmented data points constructed from n independent data, by carefully dealing with dependencies between overlapping pairs. Lastly, we study other masking-based Mixup-style techniques and show that they can distort the training loss and make its minimizer converge to a suboptimal classifier in terms of test accuracy.
SampleMix: A Sample-wise Pre-training Data Mixing Strategey by Coordinating Data Quality and Diversity
Existing pretraining data mixing methods for large language models (LLMs) typically follow a domain-wise methodology, a top-down process that first determines domain weights and then performs uniform data sampling across each domain. However, these approaches neglect significant inter-domain overlaps and commonalities, failing to control the global diversity of the constructed training dataset. Further, uniform sampling within domains ignores fine-grained sample-specific features, potentially leading to suboptimal data distribution. To address these shortcomings, we propose a novel sample-wise data mixture approach based on a bottom-up paradigm. This method performs global cross-domain sampling by systematically evaluating the quality and diversity of each sample, thereby dynamically determining the optimal domain distribution. Comprehensive experiments across multiple downstream tasks and perplexity assessments demonstrate that SampleMix surpasses existing domain-based methods. Meanwhile, SampleMix requires 1.4x to 2.1x training steps to achieves the baselines' performance, highlighting the substantial potential of SampleMix to optimize pre-training data.
R&B: Domain Regrouping and Data Mixture Balancing for Efficient Foundation Model Training
Data mixing strategies have successfully reduced the costs involved in training language models. While promising, such methods suffer from two flaws. First, they rely on predetermined data domains (e.g., data sources, task types), which may fail to capture critical semantic nuances, leaving performance on the table. Second, these methods scale with the number of domains in a computationally prohibitive way. We address these challenges via R&B, a framework that re-partitions training data based on semantic similarity (Regroup) to create finer-grained domains, and efficiently optimizes the data composition (Balance) by leveraging a Gram matrix induced by domain gradients obtained throughout training. Unlike prior works, it removes the need for additional compute to obtain evaluation information such as losses or gradients. We analyze this technique under standard regularity conditions and provide theoretical insights that justify R&B's effectiveness compared to non-adaptive mixing approaches. Empirically, we demonstrate the effectiveness of R&B on five diverse datasets ranging from natural language to reasoning and multimodal tasks. With as little as 0.01% additional compute overhead, R&B matches or exceeds the performance of state-of-the-art data mixing strategies.
Cross Contrasting Feature Perturbation for Domain Generalization
Domain generalization (DG) aims to learn a robust model from source domains that generalize well on unseen target domains. Recent studies focus on generating novel domain samples or features to diversify distributions complementary to source domains. Yet, these approaches can hardly deal with the restriction that the samples synthesized from various domains can cause semantic distortion. In this paper, we propose an online one-stage Cross Contrasting Feature Perturbation (CCFP) framework to simulate domain shift by generating perturbed features in the latent space while regularizing the model prediction against domain shift. Different from the previous fixed synthesizing strategy, we design modules with learnable feature perturbations and semantic consistency constraints. In contrast to prior work, our method does not use any generative-based models or domain labels. We conduct extensive experiments on a standard DomainBed benchmark with a strict evaluation protocol for a fair comparison. Comprehensive experiments show that our method outperforms the previous state-of-the-art, and quantitative analyses illustrate that our approach can alleviate the domain shift problem in out-of-distribution (OOD) scenarios.
Pushing Boundaries: Mixup's Influence on Neural Collapse
Mixup is a data augmentation strategy that employs convex combinations of training instances and their respective labels to augment the robustness and calibration of deep neural networks. Despite its widespread adoption, the nuanced mechanisms that underpin its success are not entirely understood. The observed phenomenon of Neural Collapse, where the last-layer activations and classifier of deep networks converge to a simplex equiangular tight frame (ETF), provides a compelling motivation to explore whether mixup induces alternative geometric configurations and whether those could explain its success. In this study, we delve into the last-layer activations of training data for deep networks subjected to mixup, aiming to uncover insights into its operational efficacy. Our investigation, spanning various architectures and dataset pairs, reveals that mixup's last-layer activations predominantly converge to a distinctive configuration different than one might expect. In this configuration, activations from mixed-up examples of identical classes align with the classifier, while those from different classes delineate channels along the decision boundary. Moreover, activations in earlier layers exhibit patterns, as if trained with manifold mixup. These findings are unexpected, as mixed-up features are not simple convex combinations of feature class means (as one might get, for example, by training mixup with the mean squared error loss). By analyzing this distinctive geometric configuration, we elucidate the mechanisms by which mixup enhances model calibration. To further validate our empirical observations, we conduct a theoretical analysis under the assumption of an unconstrained features model, utilizing the mixup loss. Through this, we characterize and derive the optimal last-layer features under the assumption that the classifier forms a simplex ETF.
Provably Learning Diverse Features in Multi-View Data with Midpoint Mixup
Mixup is a data augmentation technique that relies on training using random convex combinations of data points and their labels. In recent years, Mixup has become a standard primitive used in the training of state-of-the-art image classification models due to its demonstrated benefits over empirical risk minimization with regards to generalization and robustness. In this work, we try to explain some of this success from a feature learning perspective. We focus our attention on classification problems in which each class may have multiple associated features (or views) that can be used to predict the class correctly. Our main theoretical results demonstrate that, for a non-trivial class of data distributions with two features per class, training a 2-layer convolutional network using empirical risk minimization can lead to learning only one feature for almost all classes while training with a specific instantiation of Mixup succeeds in learning both features for every class. We also show empirically that these theoretical insights extend to the practical settings of image benchmarks modified to have multiple features.
Domain Generalization via Rationale Invariance
This paper offers a new perspective to ease the challenge of domain generalization, which involves maintaining robust results even in unseen environments. Our design focuses on the decision-making process in the final classifier layer. Specifically, we propose treating the element-wise contributions to the final results as the rationale for making a decision and representing the rationale for each sample as a matrix. For a well-generalized model, we suggest the rationale matrices for samples belonging to the same category should be similar, indicating the model relies on domain-invariant clues to make decisions, thereby ensuring robust results. To implement this idea, we introduce a rationale invariance loss as a simple regularization technique, requiring only a few lines of code. Our experiments demonstrate that the proposed approach achieves competitive results across various datasets, despite its simplicity. Code is available at https://github.com/liangchen527/RIDG.
Mixture-of-Domain-Adapters: Decoupling and Injecting Domain Knowledge to Pre-trained Language Models Memories
Pre-trained language models (PLMs) demonstrate excellent abilities to understand texts in the generic domain while struggling in a specific domain. Although continued pre-training on a large domain-specific corpus is effective, it is costly to tune all the parameters on the domain. In this paper, we investigate whether we can adapt PLMs both effectively and efficiently by only tuning a few parameters. Specifically, we decouple the feed-forward networks (FFNs) of the Transformer architecture into two parts: the original pre-trained FFNs to maintain the old-domain knowledge and our novel domain-specific adapters to inject domain-specific knowledge in parallel. Then we adopt a mixture-of-adapters gate to fuse the knowledge from different domain adapters dynamically. Our proposed Mixture-of-Domain-Adapters (MixDA) employs a two-stage adapter-tuning strategy that leverages both unlabeled data and labeled data to help the domain adaptation: i) domain-specific adapter on unlabeled data; followed by ii) the task-specific adapter on labeled data. MixDA can be seamlessly plugged into the pretraining-finetuning paradigm and our experiments demonstrate that MixDA achieves superior performance on in-domain tasks (GLUE), out-of-domain tasks (ChemProt, RCT, IMDB, Amazon), and knowledge-intensive tasks (KILT). Further analyses demonstrate the reliability, scalability, and efficiency of our method. The code is available at https://github.com/Amano-Aki/Mixture-of-Domain-Adapters.
AlignMixup: Improving Representations By Interpolating Aligned Features
Mixup is a powerful data augmentation method that interpolates between two or more examples in the input or feature space and between the corresponding target labels. Many recent mixup methods focus on cutting and pasting two or more objects into one image, which is more about efficient processing than interpolation. However, how to best interpolate images is not well defined. In this sense, mixup has been connected to autoencoders, because often autoencoders "interpolate well", for instance generating an image that continuously deforms into another. In this work, we revisit mixup from the interpolation perspective and introduce AlignMix, where we geometrically align two images in the feature space. The correspondences allow us to interpolate between two sets of features, while keeping the locations of one set. Interestingly, this gives rise to a situation where mixup retains mostly the geometry or pose of one image and the texture of the other, connecting it to style transfer. More than that, we show that an autoencoder can still improve representation learning under mixup, without the classifier ever seeing decoded images. AlignMix outperforms state-of-the-art mixup methods on five different benchmarks.
Understanding the Role of Mixup in Knowledge Distillation: An Empirical Study
Mixup is a popular data augmentation technique based on creating new samples by linear interpolation between two given data samples, to improve both the generalization and robustness of the trained model. Knowledge distillation (KD), on the other hand, is widely used for model compression and transfer learning, which involves using a larger network's implicit knowledge to guide the learning of a smaller network. At first glance, these two techniques seem very different, however, we found that "smoothness" is the connecting link between the two and is also a crucial attribute in understanding KD's interplay with mixup. Although many mixup variants and distillation methods have been proposed, much remains to be understood regarding the role of a mixup in knowledge distillation. In this paper, we present a detailed empirical study on various important dimensions of compatibility between mixup and knowledge distillation. We also scrutinize the behavior of the networks trained with a mixup in the light of knowledge distillation through extensive analysis, visualizations, and comprehensive experiments on image classification. Finally, based on our findings, we suggest improved strategies to guide the student network to enhance its effectiveness. Additionally, the findings of this study provide insightful suggestions to researchers and practitioners that commonly use techniques from KD. Our code is available at https://github.com/hchoi71/MIX-KD.
OpenMixup: Open Mixup Toolbox and Benchmark for Visual Representation Learning
Mixup augmentation has emerged as a widely used technique for improving the generalization ability of deep neural networks (DNNs). However, the lack of standardized implementations and benchmarks has impeded recent progress, resulting in poor reproducibility, unfair comparisons, and conflicting insights. In this paper, we introduce OpenMixup, the first mixup augmentation codebase, and benchmark for visual representation learning. Specifically, we train 18 representative mixup baselines from scratch and rigorously evaluate them across 11 image datasets of varying scales and granularity, ranging from fine-grained scenarios to complex non-iconic scenes. We also open-source our modular codebase, including a collection of popular vision backbones, optimization strategies, and analysis toolkits, which not only supports the benchmarking but enables broader mixup applications beyond classification, such as self-supervised learning and regression tasks. Through experiments and empirical analysis, we gain observations and insights on mixup performance-efficiency trade-offs, generalization, and optimization behaviors, and thereby identify preferred choices for different needs. To the best of our knowledge, OpenMixup has facilitated several recent studies. We believe this work can further advance reproducible mixup augmentation research and thereby lay a solid ground for future progress in the community. The source code and user documents are available at https://github.com/Westlake-AI/openmixup.
Puzzle Mix: Exploiting Saliency and Local Statistics for Optimal Mixup
While deep neural networks achieve great performance on fitting the training distribution, the learned networks are prone to overfitting and are susceptible to adversarial attacks. In this regard, a number of mixup based augmentation methods have been recently proposed. However, these approaches mainly focus on creating previously unseen virtual examples and can sometimes provide misleading supervisory signal to the network. To this end, we propose Puzzle Mix, a mixup method for explicitly utilizing the saliency information and the underlying statistics of the natural examples. This leads to an interesting optimization problem alternating between the multi-label objective for optimal mixing mask and saliency discounted optimal transport objective. Our experiments show Puzzle Mix achieves the state of the art generalization and the adversarial robustness results compared to other mixup methods on CIFAR-100, Tiny-ImageNet, and ImageNet datasets. The source code is available at https://github.com/snu-mllab/PuzzleMix.
Selective Mixup Fine-Tuning for Optimizing Non-Decomposable Objectives
The rise in internet usage has led to the generation of massive amounts of data, resulting in the adoption of various supervised and semi-supervised machine learning algorithms, which can effectively utilize the colossal amount of data to train models. However, before deploying these models in the real world, these must be strictly evaluated on performance measures like worst-case recall and satisfy constraints such as fairness. We find that current state-of-the-art empirical techniques offer sub-optimal performance on these practical, non-decomposable performance objectives. On the other hand, the theoretical techniques necessitate training a new model from scratch for each performance objective. To bridge the gap, we propose SelMix, a selective mixup-based inexpensive fine-tuning technique for pre-trained models, to optimize for the desired objective. The core idea of our framework is to determine a sampling distribution to perform a mixup of features between samples from particular classes such that it optimizes the given objective. We comprehensively evaluate our technique against the existing empirical and theoretically principled methods on standard benchmark datasets for imbalanced classification. We find that proposed SelMix fine-tuning significantly improves the performance for various practical non-decomposable objectives across benchmarks.
AttentionMix: Data augmentation method that relies on BERT attention mechanism
The Mixup method has proven to be a powerful data augmentation technique in Computer Vision, with many successors that perform image mixing in a guided manner. One of the interesting research directions is transferring the underlying Mixup idea to other domains, e.g. Natural Language Processing (NLP). Even though there already exist several methods that apply Mixup to textual data, there is still room for new, improved approaches. In this work, we introduce AttentionMix, a novel mixing method that relies on attention-based information. While the paper focuses on the BERT attention mechanism, the proposed approach can be applied to generally any attention-based model. AttentionMix is evaluated on 3 standard sentiment classification datasets and in all three cases outperforms two benchmark approaches that utilize Mixup mechanism, as well as the vanilla BERT method. The results confirm that the attention-based information can be effectively used for data augmentation in the NLP domain.
Mixup Your Own Pairs
In representation learning, regression has traditionally received less attention than classification. Directly applying representation learning techniques designed for classification to regression often results in fragmented representations in the latent space, yielding sub-optimal performance. In this paper, we argue that the potential of contrastive learning for regression has been overshadowed due to the neglect of two crucial aspects: ordinality-awareness and hardness. To address these challenges, we advocate "mixup your own contrastive pairs for supervised contrastive regression", instead of relying solely on real/augmented samples. Specifically, we propose Supervised Contrastive Learning for Regression with Mixup (SupReMix). It takes anchor-inclusive mixtures (mixup of the anchor and a distinct negative sample) as hard negative pairs and anchor-exclusive mixtures (mixup of two distinct negative samples) as hard positive pairs at the embedding level. This strategy formulates harder contrastive pairs by integrating richer ordinal information. Through extensive experiments on six regression datasets including 2D images, volumetric images, text, tabular data, and time-series signals, coupled with theoretical analysis, we demonstrate that SupReMix pre-training fosters continuous ordered representations of regression data, resulting in significant improvement in regression performance. Furthermore, SupReMix is superior to other approaches in a range of regression challenges including transfer learning, imbalanced training data, and scenarios with fewer training samples.
What's in a Latent? Leveraging Diffusion Latent Space for Domain Generalization
Domain Generalization aims to develop models that can generalize to novel and unseen data distributions. In this work, we study how model architectures and pre-training objectives impact feature richness and propose a method to effectively leverage them for domain generalization. Specifically, given a pre-trained feature space, we first discover latent domain structures, referred to as pseudo-domains, that capture domain-specific variations in an unsupervised manner. Next, we augment existing classifiers with these complementary pseudo-domain representations making them more amenable to diverse unseen test domains. We analyze how different pre-training feature spaces differ in the domain-specific variances they capture. Our empirical studies reveal that features from diffusion models excel at separating domains in the absence of explicit domain labels and capture nuanced domain-specific information. On 5 datasets, we show that our very simple framework improves generalization to unseen domains by a maximum test accuracy improvement of over 4% compared to the standard baseline Empirical Risk Minimization (ERM). Crucially, our method outperforms most algorithms that access domain labels during training.
Rethinking Data Mixture for Large Language Models: A Comprehensive Survey and New Perspectives
Training large language models with data collected from various domains can improve their performance on downstream tasks. However, given a fixed training budget, the sampling proportions of these different domains significantly impact the model's performance. How can we determine the domain weights across different data domains to train the best-performing model within constrained computational resources? In this paper, we provide a comprehensive overview of existing data mixture methods. First, we propose a fine-grained categorization of existing methods, extending beyond the previous offline and online classification. Offline methods are further grouped into heuristic-based, algorithm-based, and function fitting-based methods. For online methods, we categorize them into three groups: online min-max optimization, online mixing law, and other approaches by drawing connections with the optimization frameworks underlying offline methods. Second, we summarize the problem formulations, representative algorithms for each subtype of offline and online methods, and clarify the relationships and distinctions among them. Finally, we discuss the advantages and disadvantages of each method and highlight key challenges in the field of data mixture.
Learning to Balance Specificity and Invariance for In and Out of Domain Generalization
We introduce Domain-specific Masks for Generalization, a model for improving both in-domain and out-of-domain generalization performance. For domain generalization, the goal is to learn from a set of source domains to produce a single model that will best generalize to an unseen target domain. As such, many prior approaches focus on learning representations which persist across all source domains with the assumption that these domain agnostic representations will generalize well. However, often individual domains contain characteristics which are unique and when leveraged can significantly aid in-domain recognition performance. To produce a model which best generalizes to both seen and unseen domains, we propose learning domain specific masks. The masks are encouraged to learn a balance of domain-invariant and domain-specific features, thus enabling a model which can benefit from the predictive power of specialized features while retaining the universal applicability of domain-invariant features. We demonstrate competitive performance compared to naive baselines and state-of-the-art methods on both PACS and DomainNet.
It Takes Two to Tango: Mixup for Deep Metric Learning
Metric learning involves learning a discriminative representation such that embeddings of similar classes are encouraged to be close, while embeddings of dissimilar classes are pushed far apart. State-of-the-art methods focus mostly on sophisticated loss functions or mining strategies. On the one hand, metric learning losses consider two or more examples at a time. On the other hand, modern data augmentation methods for classification consider two or more examples at a time. The combination of the two ideas is under-studied. In this work, we aim to bridge this gap and improve representations using mixup, which is a powerful data augmentation approach interpolating two or more examples and corresponding target labels at a time. This task is challenging because unlike classification, the loss functions used in metric learning are not additive over examples, so the idea of interpolating target labels is not straightforward. To the best of our knowledge, we are the first to investigate mixing both examples and target labels for deep metric learning. We develop a generalized formulation that encompasses existing metric learning loss functions and modify it to accommodate for mixup, introducing Metric Mix, or Metrix. We also introduce a new metric - utilization, to demonstrate that by mixing examples during training, we are exploring areas of the embedding space beyond the training classes, thereby improving representations. To validate the effect of improved representations, we show that mixing inputs, intermediate representations or embeddings along with target labels significantly outperforms state-of-the-art metric learning methods on four benchmark deep metric learning datasets.
Unsupervised Label Noise Modeling and Loss Correction
Despite being robust to small amounts of label noise, convolutional neural networks trained with stochastic gradient methods have been shown to easily fit random labels. When there are a mixture of correct and mislabelled targets, networks tend to fit the former before the latter. This suggests using a suitable two-component mixture model as an unsupervised generative model of sample loss values during training to allow online estimation of the probability that a sample is mislabelled. Specifically, we propose a beta mixture to estimate this probability and correct the loss by relying on the network prediction (the so-called bootstrapping loss). We further adapt mixup augmentation to drive our approach a step further. Experiments on CIFAR-10/100 and TinyImageNet demonstrate a robustness to label noise that substantially outperforms recent state-of-the-art. Source code is available at https://git.io/fjsvE
Organize the Web: Constructing Domains Enhances Pre-Training Data Curation
Modern language models are trained on large, unstructured datasets consisting of trillions of tokens and obtained by crawling the web. The unstructured nature makes it difficult to reason about their contents and develop systematic approaches to data curation. In this paper, we unpack monolithic web corpora by developing taxonomies of their contents and organizing them into domains. We introduce WebOrganizer, a framework for organizing web pages in terms of both their topic and format. Using these two complementary notions of domains, we automatically annotate pre-training data by distilling annotations from a large language model into efficient classifiers. This allows us to study how data from different domains should be mixed to improve models on downstream tasks, and we show that we can combine insights about effective topics and formats to further boost performance. We demonstrate that our domain mixing also improves existing methods that select data based on quality. Furthermore, we study and compare how quality-based methods will implicitly change the domain mixture. Overall, our work demonstrates that constructing and mixing domains provides a valuable complement to quality-based data curation methods, opening new avenues for effective and insightful pre-training data curation.
DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining
The mixture proportions of pretraining data domains (e.g., Wikipedia, books, web text) greatly affect language model (LM) performance. In this paper, we propose Domain Reweighting with Minimax Optimization (DoReMi), which first trains a small proxy model using group distributionally robust optimization (Group DRO) over domains to produce domain weights (mixture proportions) without knowledge of downstream tasks. We then resample a dataset with these domain weights and train a larger, full-sized model. In our experiments, we use DoReMi on a 280M-parameter proxy model to find domain weights for training an 8B-parameter model (30x larger) more efficiently. On The Pile, DoReMi improves perplexity across all domains, even when it downweights a domain. DoReMi improves average few-shot downstream accuracy by 6.5% over a baseline model trained using The Pile's default domain weights and reaches the baseline accuracy with 2.6x fewer training steps. On the GLaM dataset, DoReMi, which has no knowledge of downstream tasks, even matches the performance of using domain weights tuned on downstream tasks.
DIDS: Domain Impact-aware Data Sampling for Large Language Model Training
Large language models (LLMs) are commonly trained on multi-domain datasets, where domain sampling strategies significantly impact model performance due to varying domain importance across downstream tasks. Existing approaches for optimizing domain-level sampling strategies struggle with maintaining intra-domain consistency and accurately measuring domain impact. In this paper, we present Domain Impact-aware Data Sampling (DIDS). To ensure intra-domain consistency, a gradient clustering algorithm is proposed to group training data based on their learning effects, where a proxy language model and dimensionality reduction are employed to reduce computational overhead. To accurately measure domain impact, we develop a Fisher Information Matrix (FIM) guided metric that quantifies how domain-specific parameter updates affect the model's output distributions on downstream tasks, with theoretical guarantees. Furthermore, to determine optimal sampling ratios, DIDS combines both the FIM-guided domain impact assessment and loss learning trajectories that indicate domain-specific potential, while accounting for diminishing marginal returns. Extensive experiments demonstrate that DIDS achieves 3.4% higher average performance while maintaining comparable training efficiency.
RegMix: Data Mixing Augmentation for Regression
Data augmentation is becoming essential for improving regression performance in critical applications including manufacturing, climate prediction, and finance. Existing techniques for data augmentation largely focus on classification tasks and do not readily apply to regression tasks. In particular, the recent Mixup techniques for classification have succeeded in improving the model performance, which is reasonable due to the characteristics of the classification task, but has limitations in regression. We show that mixing examples that have large data distances using linear interpolations may have increasingly-negative effects on model performance. Our key idea is thus to limit the distances between examples that are mixed. We propose RegMix, a data augmentation framework for regression that learns for each example how many nearest neighbors it should be mixed with for the best model performance using a validation set. Our experiments conducted both on synthetic and real datasets show that RegMix outperforms state-of-the-art data augmentation baselines applicable to regression.
AutoMix: Unveiling the Power of Mixup for Stronger Classifiers
Data mixing augmentation have proved to be effective in improving the generalization ability of deep neural networks. While early methods mix samples by hand-crafted policies (e.g., linear interpolation), recent methods utilize saliency information to match the mixed samples and labels via complex offline optimization. However, there arises a trade-off between precise mixing policies and optimization complexity. To address this challenge, we propose a novel automatic mixup (AutoMix) framework, where the mixup policy is parameterized and serves the ultimate classification goal directly. Specifically, AutoMix reformulates the mixup classification into two sub-tasks (i.e., mixed sample generation and mixup classification) with corresponding sub-networks and solves them in a bi-level optimization framework. For the generation, a learnable lightweight mixup generator, Mix Block, is designed to generate mixed samples by modeling patch-wise relationships under the direct supervision of the corresponding mixed labels. To prevent the degradation and instability of bi-level optimization, we further introduce a momentum pipeline to train AutoMix in an end-to-end manner. Extensive experiments on nine image benchmarks prove the superiority of AutoMix compared with state-of-the-art in various classification scenarios and downstream tasks.
Graph Mixup with Soft Alignments
We study graph data augmentation by mixup, which has been used successfully on images. A key operation of mixup is to compute a convex combination of a pair of inputs. This operation is straightforward for grid-like data, such as images, but challenging for graph data. The key difficulty lies in the fact that different graphs typically have different numbers of nodes, and thus there lacks a node-level correspondence between graphs. In this work, we propose S-Mixup, a simple yet effective mixup method for graph classification by soft alignments. Specifically, given a pair of graphs, we explicitly obtain node-level correspondence via computing a soft assignment matrix to match the nodes between two graphs. Based on the soft assignments, we transform the adjacency and node feature matrices of one graph, so that the transformed graph is aligned with the other graph. In this way, any pair of graphs can be mixed directly to generate an augmented graph. We conduct systematic experiments to show that S-Mixup can improve the performance and generalization of graph neural networks (GNNs) on various graph classification tasks. In addition, we show that S-Mixup can increase the robustness of GNNs against noisy labels.
Collaborative Training of Balanced Random Forests for Open Set Domain Adaptation
In this paper, we introduce a collaborative training algorithm of balanced random forests with convolutional neural networks for domain adaptation tasks. In real scenarios, most domain adaptation algorithms face the challenges from noisy, insufficient training data and open set categorization. In such cases, conventional methods suffer from overfitting and fail to successfully transfer the knowledge of the source to the target domain. To address these issues, the following two techniques are proposed. First, we introduce the optimized decision tree construction method with convolutional neural networks, in which the data at each node are split into equal sizes while maximizing the information gain. It generates balanced decision trees on deep features because of the even-split constraint, which contributes to enhanced discrimination power and reduced overfitting problem. Second, to tackle the domain misalignment problem, we propose the domain alignment loss which penalizes uneven splits of the source and target domain data. By collaboratively optimizing the information gain of the labeled source data as well as the entropy of unlabeled target data distributions, the proposed CoBRF algorithm achieves significantly better performance than the state-of-the-art methods.
RankMixup: Ranking-Based Mixup Training for Network Calibration
Network calibration aims to accurately estimate the level of confidences, which is particularly important for employing deep neural networks in real-world systems. Recent approaches leverage mixup to calibrate the network's predictions during training. However, they do not consider the problem that mixtures of labels in mixup may not accurately represent the actual distribution of augmented samples. In this paper, we present RankMixup, a novel mixup-based framework alleviating the problem of the mixture of labels for network calibration. To this end, we propose to use an ordinal ranking relationship between raw and mixup-augmented samples as an alternative supervisory signal to the label mixtures for network calibration. We hypothesize that the network should estimate a higher level of confidence for the raw samples than the augmented ones (Fig.1). To implement this idea, we introduce a mixup-based ranking loss (MRL) that encourages lower confidences for augmented samples compared to raw ones, maintaining the ranking relationship. We also propose to leverage the ranking relationship among multiple mixup-augmented samples to further improve the calibration capability. Augmented samples with larger mixing coefficients are expected to have higher confidences and vice versa (Fig.1). That is, the order of confidences should be aligned with that of mixing coefficients. To this end, we introduce a novel loss, M-NDCG, in order to reduce the number of misaligned pairs of the coefficients and confidences. Extensive experimental results on standard benchmarks for network calibration demonstrate the effectiveness of RankMixup.
SelecMix: Debiased Learning by Contradicting-pair Sampling
Neural networks trained with ERM (empirical risk minimization) sometimes learn unintended decision rules, in particular when their training data is biased, i.e., when training labels are strongly correlated with undesirable features. To prevent a network from learning such features, recent methods augment training data such that examples displaying spurious correlations (i.e., bias-aligned examples) become a minority, whereas the other, bias-conflicting examples become prevalent. However, these approaches are sometimes difficult to train and scale to real-world data because they rely on generative models or disentangled representations. We propose an alternative based on mixup, a popular augmentation that creates convex combinations of training examples. Our method, coined SelecMix, applies mixup to contradicting pairs of examples, defined as showing either (i) the same label but dissimilar biased features, or (ii) different labels but similar biased features. Identifying such pairs requires comparing examples with respect to unknown biased features. For this, we utilize an auxiliary contrastive model with the popular heuristic that biased features are learned preferentially during training. Experiments on standard benchmarks demonstrate the effectiveness of the method, in particular when label noise complicates the identification of bias-conflicting examples.
DualMix: Unleashing the Potential of Data Augmentation for Online Class-Incremental Learning
Online Class-Incremental (OCI) learning has sparked new approaches to expand the previously trained model knowledge from sequentially arriving data streams with new classes. Unfortunately, OCI learning can suffer from catastrophic forgetting (CF) as the decision boundaries for old classes can become inaccurate when perturbated by new ones. Existing literature have applied the data augmentation (DA) to alleviate the model forgetting, while the role of DA in OCI has not been well understood so far. In this paper, we theoretically show that augmented samples with lower correlation to the original data are more effective in preventing forgetting. However, aggressive augmentation may also reduce the consistency between data and corresponding labels, which motivates us to exploit proper DA to boost the OCI performance and prevent the CF problem. We propose the Enhanced Mixup (EnMix) method that mixes the augmented samples and their labels simultaneously, which is shown to enhance the sample diversity while maintaining strong consistency with corresponding labels. Further, to solve the class imbalance problem, we design an Adaptive Mixup (AdpMix) method to calibrate the decision boundaries by mixing samples from both old and new classes and dynamically adjusting the label mixing ratio. Our approach is demonstrated to be effective on several benchmark datasets through extensive experiments, and it is shown to be compatible with other replay-based techniques.
Gradient Matching for Domain Generalization
Machine learning systems typically assume that the distributions of training and test sets match closely. However, a critical requirement of such systems in the real world is their ability to generalize to unseen domains. Here, we propose an inter-domain gradient matching objective that targets domain generalization by maximizing the inner product between gradients from different domains. Since direct optimization of the gradient inner product can be computationally prohibitive -- requires computation of second-order derivatives -- we derive a simpler first-order algorithm named Fish that approximates its optimization. We demonstrate the efficacy of Fish on 6 datasets from the Wilds benchmark, which captures distribution shift across a diverse range of modalities. Our method produces competitive results on these datasets and surpasses all baselines on 4 of them. We perform experiments on both the Wilds benchmark, which captures distribution shift in the real world, as well as datasets in DomainBed benchmark that focuses more on synthetic-to-real transfer. Our method produces competitive results on both benchmarks, demonstrating its effectiveness across a wide range of domain generalization tasks.
SUMix: Mixup with Semantic and Uncertain Information
Mixup data augmentation approaches have been applied for various tasks of deep learning to improve the generalization ability of deep neural networks. Some existing approaches CutMix, SaliencyMix, etc. randomly replace a patch in one image with patches from another to generate the mixed image. Similarly, the corresponding labels are linearly combined by a fixed ratio lambda by l. The objects in two images may be overlapped during the mixing process, so some semantic information is corrupted in the mixed samples. In this case, the mixed image does not match the mixed label information. Besides, such a label may mislead the deep learning model training, which results in poor performance. To solve this problem, we proposed a novel approach named SUMix to learn the mixing ratio as well as the uncertainty for the mixed samples during the training process. First, we design a learnable similarity function to compute an accurate mix ratio. Second, an approach is investigated as a regularized term to model the uncertainty of the mixed samples. We conduct experiments on five image benchmarks, and extensive experimental results imply that our method is capable of improving the performance of classifiers with different cutting-based mixup approaches. The source code is available at https://github.com/JinXins/SUMix.
Data Augmentations in Deep Weight Spaces
Learning in weight spaces, where neural networks process the weights of other deep neural networks, has emerged as a promising research direction with applications in various fields, from analyzing and editing neural fields and implicit neural representations, to network pruning and quantization. Recent works designed architectures for effective learning in that space, which takes into account its unique, permutation-equivariant, structure. Unfortunately, so far these architectures suffer from severe overfitting and were shown to benefit from large datasets. This poses a significant challenge because generating data for this learning setup is laborious and time-consuming since each data sample is a full set of network weights that has to be trained. In this paper, we address this difficulty by investigating data augmentations for weight spaces, a set of techniques that enable generating new data examples on the fly without having to train additional input weight space elements. We first review several recently proposed data augmentation schemes %that were proposed recently and divide them into categories. We then introduce a novel augmentation scheme based on the Mixup method. We evaluate the performance of these techniques on existing benchmarks as well as new benchmarks we generate, which can be valuable for future studies.
GeT: Generative Target Structure Debiasing for Domain Adaptation
Domain adaptation (DA) aims to transfer knowledge from a fully labeled source to a scarcely labeled or totally unlabeled target under domain shift. Recently, semi-supervised learning-based (SSL) techniques that leverage pseudo labeling have been increasingly used in DA. Despite the competitive performance, these pseudo labeling methods rely heavily on the source domain to generate pseudo labels for the target domain and therefore still suffer considerably from source data bias. Moreover, class distribution bias in the target domain is also often ignored in the pseudo label generation and thus leading to further deterioration of performance. In this paper, we propose GeT that learns a non-bias target embedding distribution with high quality pseudo labels. Specifically, we formulate an online target generative classifier to induce the target distribution into distinctive Gaussian components weighted by their class priors to mitigate source data bias and enhance target class discriminability. We further propose a structure similarity regularization framework to alleviate target class distribution bias and further improve target class discriminability. Experimental results show that our proposed GeT is effective and achieves consistent improvements under various DA settings with and without class distribution bias. Our code is available at: https://lulusindazc.github.io/getproject/.
HMOE: Hypernetwork-based Mixture of Experts for Domain Generalization
Due to domain shift, machine learning systems typically fail to generalize well to domains different from those of training data, which is what domain generalization (DG) aims to address. Although various DG methods have been developed, most of them lack interpretability and require domain labels that are not available in many real-world scenarios. This paper presents a novel DG method, called HMOE: Hypernetwork-based Mixture of Experts (MoE), which does not rely on domain labels and is more interpretable. MoE proves effective in identifying heterogeneous patterns in data. For the DG problem, heterogeneity arises exactly from domain shift. HMOE uses hypernetworks taking vectors as input to generate experts' weights, which allows experts to share useful meta-knowledge and enables exploring experts' similarities in a low-dimensional vector space. We compare HMOE with other DG algorithms under a fair and unified benchmark-DomainBed. Our extensive experiments show that HMOE can divide mixed-domain data into distinct clusters that are surprisingly more consistent with human intuition than original domain labels. Compared to other DG methods, HMOE shows competitive performance and achieves SOTA results in some cases.
FMix: Enhancing Mixed Sample Data Augmentation
Mixed Sample Data Augmentation (MSDA) has received increasing attention in recent years, with many successful variants such as MixUp and CutMix. By studying the mutual information between the function learned by a VAE on the original data and on the augmented data we show that MixUp distorts learned functions in a way that CutMix does not. We further demonstrate this by showing that MixUp acts as a form of adversarial training, increasing robustness to attacks such as Deep Fool and Uniform Noise which produce examples similar to those generated by MixUp. We argue that this distortion prevents models from learning about sample specific features in the data, aiding generalisation performance. In contrast, we suggest that CutMix works more like a traditional augmentation, improving performance by preventing memorisation without distorting the data distribution. However, we argue that an MSDA which builds on CutMix to include masks of arbitrary shape, rather than just square, could further prevent memorisation whilst preserving the data distribution in the same way. To this end, we propose FMix, an MSDA that uses random binary masks obtained by applying a threshold to low frequency images sampled from Fourier space. These random masks can take on a wide range of shapes and can be generated for use with one, two, and three dimensional data. FMix improves performance over MixUp and CutMix, without an increase in training time, for a number of models across a range of data sets and problem settings, obtaining a new single model state-of-the-art result on CIFAR-10 without external data. Finally, we show that a consequence of the difference between interpolating MSDA such as MixUp and masking MSDA such as FMix is that the two can be combined to improve performance even further. Code for all experiments is provided at https://github.com/ecs-vlc/FMix .
Test-Time Style Shifting: Handling Arbitrary Styles in Domain Generalization
In domain generalization (DG), the target domain is unknown when the model is being trained, and the trained model should successfully work on an arbitrary (and possibly unseen) target domain during inference. This is a difficult problem, and despite active studies in recent years, it remains a great challenge. In this paper, we take a simple yet effective approach to tackle this issue. We propose test-time style shifting, which shifts the style of the test sample (that has a large style gap with the source domains) to the nearest source domain that the model is already familiar with, before making the prediction. This strategy enables the model to handle any target domains with arbitrary style statistics, without additional model update at test-time. Additionally, we propose style balancing, which provides a great platform for maximizing the advantage of test-time style shifting by handling the DG-specific imbalance issues. The proposed ideas are easy to implement and successfully work in conjunction with various other DG schemes. Experimental results on different datasets show the effectiveness of our methods.
Aggregation of Disentanglement: Reconsidering Domain Variations in Domain Generalization
Domain Generalization (DG) is a fundamental challenge for machine learning models, which aims to improve model generalization on various domains. Previous methods focus on generating domain invariant features from various source domains. However, we argue that the domain variantions also contain useful information, ie, classification-aware information, for downstream tasks, which has been largely ignored. Different from learning domain invariant features from source domains, we decouple the input images into Domain Expert Features and noise. The proposed domain expert features lie in a learned latent space where the images in each domain can be classified independently, enabling the implicit use of classification-aware domain variations. Based on the analysis, we proposed a novel paradigm called Domain Disentanglement Network (DDN) to disentangle the domain expert features from the source domain images and aggregate the source domain expert features for representing the target test domain. We also propound a new contrastive learning method to guide the domain expert features to form a more balanced and separable feature space. Experiments on the widely-used benchmarks of PACS, VLCS, OfficeHome, DomainNet, and TerraIncognita demonstrate the competitive performance of our method compared to the recently proposed alternatives.
Cross-Domain Ensemble Distillation for Domain Generalization
Domain generalization is the task of learning models that generalize to unseen target domains. We propose a simple yet effective method for domain generalization, named cross-domain ensemble distillation (XDED), that learns domain-invariant features while encouraging the model to converge to flat minima, which recently turned out to be a sufficient condition for domain generalization. To this end, our method generates an ensemble of the output logits from training data with the same label but from different domains and then penalizes each output for the mismatch with the ensemble. Also, we present a de-stylization technique that standardizes features to encourage the model to produce style-consistent predictions even in an arbitrary target domain. Our method greatly improves generalization capability in public benchmarks for cross-domain image classification, cross-dataset person re-ID, and cross-dataset semantic segmentation. Moreover, we show that models learned by our method are robust against adversarial attacks and image corruptions.
SelectMix: Enhancing Label Noise Robustness through Targeted Sample Mixing
Deep neural networks tend to memorize noisy labels, severely degrading their generalization performance. Although Mixup has demonstrated effectiveness in improving generalization and robustness, existing Mixup-based methods typically perform indiscriminate mixing without principled guidance on sample selection and mixing strategy, inadvertently propagating noisy supervision. To overcome these limitations, we propose SelectMix, a confidence-guided mixing framework explicitly tailored for noisy labels. SelectMix first identifies potentially noisy or ambiguous samples through confidence based mismatch analysis using K-fold cross-validation, then selectively blends identified uncertain samples with confidently predicted peers from their potential classes. Furthermore, SelectMix employs soft labels derived from all classes involved in the mixing process, ensuring the labels accurately represent the composition of the mixed samples, thus aligning supervision signals closely with the actual mixed inputs. Through extensive theoretical analysis and empirical evaluations on multiple synthetic (MNIST, Fashion-MNIST, CIFAR-10, CIFAR-100) and real-world benchmark datasets (CIFAR-N, MNIST and Clothing1M), we demonstrate that SelectMix consistently outperforms strong baseline methods, validating its effectiveness and robustness in learning with noisy labels.
Self-Evolution Learning for Mixup: Enhance Data Augmentation on Few-Shot Text Classification Tasks
Text classification tasks often encounter few shot scenarios with limited labeled data, and addressing data scarcity is crucial. Data augmentation with mixup has shown to be effective on various text classification tasks. However, most of the mixup methods do not consider the varying degree of learning difficulty in different stages of training and generate new samples with one hot labels, resulting in the model over confidence. In this paper, we propose a self evolution learning (SE) based mixup approach for data augmentation in text classification, which can generate more adaptive and model friendly pesudo samples for the model training. SE focuses on the variation of the model's learning ability. To alleviate the model confidence, we introduce a novel instance specific label smoothing approach, which linearly interpolates the model's output and one hot labels of the original samples to generate new soft for label mixing up. Through experimental analysis, in addition to improving classification accuracy, we demonstrate that SE also enhances the model's generalize ability.
Domain2Vec: Vectorizing Datasets to Find the Optimal Data Mixture without Training
We introduce~Domain2Vec, a novel approach that decomposes any dataset into a linear combination of several meta-domains, a new concept designed to capture the key underlying features of datasets. Domain2Vec maintains a vocabulary of meta-domains and uses a classifier to decompose any given dataset into a domain vector that corresponds to a distribution over this vocabulary. These domain vectors enable the identification of the optimal data mixture for language model (LM) pretraining in a training-free manner under the \textbf{Distribution Alignment Assumption} (DA^{2}), which suggests that when the data distributions of the training set and the validation set are better aligned, a lower validation loss is achieved. Moreover, Domain2vec can be seamlessly integrated into previous works to model the relationship between domain vectors and LM performance, greatly enhancing the efficiency and scalability of previous methods. Extensive experiments demonstrate that Domain2Vec helps find the data mixture that enhances downstream task performance with minimal computational overhead. Specifically, Domain2Vec achieves the same validation loss on Pile-CC using only 51.5% of the computation required when training on the original mixture of The Pile dataset. Under equivalent compute budget, Domain2Vec improves downstream performance by an average of 2.83%.
StyleDomain: Efficient and Lightweight Parameterizations of StyleGAN for One-shot and Few-shot Domain Adaptation
Domain adaptation of GANs is a problem of fine-tuning the state-of-the-art GAN models (e.g. StyleGAN) pretrained on a large dataset to a specific domain with few samples (e.g. painting faces, sketches, etc.). While there are a great number of methods that tackle this problem in different ways, there are still many important questions that remain unanswered. In this paper, we provide a systematic and in-depth analysis of the domain adaptation problem of GANs, focusing on the StyleGAN model. First, we perform a detailed exploration of the most important parts of StyleGAN that are responsible for adapting the generator to a new domain depending on the similarity between the source and target domains. As a result of this in-depth study, we propose new efficient and lightweight parameterizations of StyleGAN for domain adaptation. Particularly, we show there exist directions in StyleSpace (StyleDomain directions) that are sufficient for adapting to similar domains and they can be reduced further. For dissimilar domains, we propose Affine+ and AffineLight+ parameterizations that allows us to outperform existing baselines in few-shot adaptation with low data regime. Finally, we examine StyleDomain directions and discover their many surprising properties that we apply for domain mixing and cross-domain image morphing.
DEMix Layers: Disentangling Domains for Modular Language Modeling
We introduce a new domain expert mixture (DEMix) layer that enables conditioning a language model (LM) on the domain of the input text. A DEMix layer is a collection of expert feedforward networks, each specialized to a domain, that makes the LM modular: experts can be mixed, added or removed after initial training. Extensive experiments with autoregressive transformer LMs (up to 1.3B parameters) show that DEMix layers reduce test-time perplexity, increase training efficiency, and enable rapid adaptation with little overhead. We show that mixing experts during inference, using a parameter-free weighted ensemble, allows the model to better generalize to heterogeneous or unseen domains. We also show that experts can be added to iteratively incorporate new domains without forgetting older ones, and that experts can be removed to restrict access to unwanted domains, without additional training. Overall, these results demonstrate benefits of explicitly conditioning on textual domains during language modeling.
On Balancing Bias and Variance in Unsupervised Multi-Source-Free Domain Adaptation
Due to privacy, storage, and other constraints, there is a growing need for unsupervised domain adaptation techniques in machine learning that do not require access to the data used to train a collection of source models. Existing methods for multi-source-free domain adaptation (MSFDA) typically train a target model using pseudo-labeled data produced by the source models, which focus on improving the pseudo-labeling techniques or proposing new training objectives. Instead, we aim to analyze the fundamental limits of MSFDA. In particular, we develop an information-theoretic bound on the generalization error of the resulting target model, which illustrates an inherent bias-variance trade-off. We then provide insights on how to balance this trade-off from three perspectives, including domain aggregation, selective pseudo-labeling, and joint feature alignment, which leads to the design of novel algorithms. Experiments on multiple datasets validate our theoretical analysis and demonstrate the state-of-art performance of the proposed algorithm, especially on some of the most challenging datasets, including Office-Home and DomainNet.
Selecting and Merging: Towards Adaptable and Scalable Named Entity Recognition with Large Language Models
Supervised fine-tuning (SFT) is widely used to align large language models (LLMs) with information extraction (IE) tasks, such as named entity recognition (NER). However, annotating such fine-grained labels and training domain-specific models is costly. Existing works typically train a unified model across multiple domains, but such approaches lack adaptation and scalability since not all training data benefits target domains and scaling trained models remains challenging. We propose the SaM framework, which dynamically Selects and Merges expert models at inference time. Specifically, for a target domain, we select domain-specific experts pre-trained on existing domains based on (i) domain similarity to the target domain and (ii) performance on sampled instances, respectively. The experts are then merged to create task-specific models optimized for the target domain. By dynamically merging experts beneficial to target domains, we improve generalization across various domains without extra training. Additionally, experts can be added or removed conveniently, leading to great scalability. Extensive experiments on multiple benchmarks demonstrate our framework's effectiveness, which outperforms the unified model by an average of 10%. We further provide insights into potential improvements, practical experience, and extensions of our framework.
Pareto Domain Adaptation
Domain adaptation (DA) attempts to transfer the knowledge from a labeled source domain to an unlabeled target domain that follows different distribution from the source. To achieve this, DA methods include a source classification objective to extract the source knowledge and a domain alignment objective to diminish the domain shift, ensuring knowledge transfer. Typically, former DA methods adopt some weight hyper-parameters to linearly combine the training objectives to form an overall objective. However, the gradient directions of these objectives may conflict with each other due to domain shift. Under such circumstances, the linear optimization scheme might decrease the overall objective value at the expense of damaging one of the training objectives, leading to restricted solutions. In this paper, we rethink the optimization scheme for DA from a gradient-based perspective. We propose a Pareto Domain Adaptation (ParetoDA) approach to control the overall optimization direction, aiming to cooperatively optimize all training objectives. Specifically, to reach a desirable solution on the target domain, we design a surrogate loss mimicking target classification. To improve target-prediction accuracy to support the mimicking, we propose a target-prediction refining mechanism which exploits domain labels via Bayes' theorem. On the other hand, since prior knowledge of weighting schemes for objectives is often unavailable to guide optimization to approach the optimal solution on the target domain, we propose a dynamic preference mechanism to dynamically guide our cooperative optimization by the gradient of the surrogate loss on a held-out unlabeled target dataset. Extensive experiments on image classification and semantic segmentation benchmarks demonstrate the effectiveness of ParetoDA
Order-preserving Consistency Regularization for Domain Adaptation and Generalization
Deep learning models fail on cross-domain challenges if the model is oversensitive to domain-specific attributes, e.g., lightning, background, camera angle, etc. To alleviate this problem, data augmentation coupled with consistency regularization are commonly adopted to make the model less sensitive to domain-specific attributes. Consistency regularization enforces the model to output the same representation or prediction for two views of one image. These constraints, however, are either too strict or not order-preserving for the classification probabilities. In this work, we propose the Order-preserving Consistency Regularization (OCR) for cross-domain tasks. The order-preserving property for the prediction makes the model robust to task-irrelevant transformations. As a result, the model becomes less sensitive to the domain-specific attributes. The comprehensive experiments show that our method achieves clear advantages on five different cross-domain tasks.
DoGE: Domain Reweighting with Generalization Estimation
The coverage and composition of the pretraining data significantly impacts the generalization ability of Large Language Models (LLMs). Despite its importance, recent LLMs still rely on heuristics and trial and error to increase or reduce the influence of data-domains. We propose DOmain reweighting with Generalization Estimation (DoGE), which optimizes the probability of sampling from each domain (domain weights) in a principled way. Our approach is a two-stage process consisting of (i) training a proxy model to obtain domain weights using a bi-level optimization algorithm; (ii) training a larger base model by sampling training domains according to the learned domain weights. In our experiments, we extensively show how DoGE improves the generalization of the base model to any target data mixture. On the SlimPajama dataset, our base model gets better perplexity and few-shot reasoning accuracies across 6 tasks compared to baseline methods. Moreover, aiming to generalize to out-of-domain target tasks, which is unseen in the pretraining corpus (OOD domain), DoGE can effectively identify inter-domain dependencies, and consistently achieves better test perplexity on the target domain.
Meta-DMoE: Adapting to Domain Shift by Meta-Distillation from Mixture-of-Experts
In this paper, we tackle the problem of domain shift. Most existing methods perform training on multiple source domains using a single model, and the same trained model is used on all unseen target domains. Such solutions are sub-optimal as each target domain exhibits its own specialty, which is not adapted. Furthermore, expecting single-model training to learn extensive knowledge from multiple source domains is counterintuitive. The model is more biased toward learning only domain-invariant features and may result in negative knowledge transfer. In this work, we propose a novel framework for unsupervised test-time adaptation, which is formulated as a knowledge distillation process to address domain shift. Specifically, we incorporate Mixture-of-Experts (MoE) as teachers, where each expert is separately trained on different source domains to maximize their specialty. Given a test-time target domain, a small set of unlabeled data is sampled to query the knowledge from MoE. As the source domains are correlated to the target domains, a transformer-based aggregator then combines the domain knowledge by examining the interconnection among them. The output is treated as a supervision signal to adapt a student prediction network toward the target domain. We further employ meta-learning to enforce the aggregator to distill positive knowledge and the student network to achieve fast adaptation. Extensive experiments demonstrate that the proposed method outperforms the state-of-the-art and validates the effectiveness of each proposed component. Our code is available at https://github.com/n3il666/Meta-DMoE.
Contrastive Learning and Mixture of Experts Enables Precise Vector Embeddings
The advancement of transformer neural networks has significantly elevated the capabilities of sentence similarity models, particularly in creating effective vector representations of natural language inputs. However, these models face notable challenges in domain-specific contexts, especially in highly specialized scientific sub-fields. Traditional methods often struggle in this regime, either overgeneralizing similarities within a niche or being overly sensitive to minor differences, resulting in inaccurate text classification and subpar vector representation. In an era where retrieval augmentation and search are increasingly crucial, precise and concise numerical representations are essential. In this paper, we target this issue by assembling niche datasets using co-citations as a similarity metric, focusing on biomedical domains. We employ two key strategies for fine-tuning state-of-the-art models: 1. Domain-specific Fine-Tuning, which tailors pretrained models to a single domain, and 2. Universal Applicability with Mixture of Experts (MoE), adapting pretrained models with enforced routing for multiple domains simultaneously. Our training approach emphasizes the use of abstracts for faster training, incorporating Multiple Negative Rankings loss for efficient contrastive learning. Notably, our MoE variants, equipped with N experts, achieve the efficacy of N individual models, heralding a new era of versatile, One-Size-Fits-All transformer networks for various tasks. This methodology marks significant advancements in scientific text classification metrics and holds promise for enhancing vector database search and compilation.
Adversarial AutoMixup
Data mixing augmentation has been widely applied to improve the generalization ability of deep neural networks. Recently, offline data mixing augmentation, e.g. handcrafted and saliency information-based mixup, has been gradually replaced by automatic mixing approaches. Through minimizing two sub-tasks, namely, mixed sample generation and mixup classification in an end-to-end way, AutoMix significantly improves accuracy on image classification tasks. However, as the optimization objective is consistent for the two sub-tasks, this approach is prone to generating consistent instead of diverse mixed samples, which results in overfitting for target task training. In this paper, we propose AdAutomixup, an adversarial automatic mixup augmentation approach that generates challenging samples to train a robust classifier for image classification, by alternatively optimizing the classifier and the mixup sample generator. AdAutomixup comprises two modules, a mixed example generator, and a target classifier. The mixed sample generator aims to produce hard mixed examples to challenge the target classifier, while the target classifier's aim is to learn robust features from hard mixed examples to improve generalization. To prevent the collapse of the inherent meanings of images, we further introduce an exponential moving average (EMA) teacher and cosine similarity to train AdAutomixup in an end-to-end way. Extensive experiments on seven image benchmarks consistently prove that our approach outperforms the state of the art in various classification scenarios. The source code is available at https://github.com/JinXins/Adversarial-AutoMixup.
MergeME: Model Merging Techniques for Homogeneous and Heterogeneous MoEs
The recent success of specialized Large Language Models (LLMs) in domains such as mathematical reasoning and coding has led to growing interest in methods for merging these expert LLMs into a unified Mixture-of-Experts (MoE) model, with the goal of enhancing performance in each domain while retaining effectiveness on general tasks. However, the effective merging of expert models remains an open challenge, especially for models with highly divergent weight parameters or different architectures. State-of-the-art MoE merging methods only work with homogeneous model architectures and rely on simple unweighted averaging to merge expert layers, which does not address parameter interference and requires extensive fine-tuning of the merged MoE to restore performance. To address these limitations, this paper introduces new MoE merging techniques, including strategies to mitigate parameter interference, routing heuristics to reduce the need for MoE fine-tuning, and a novel method for merging experts with different architectures. Extensive experiments across multiple domains demonstrate the effectiveness of our proposed methods, reducing fine-tuning costs, improving performance over state-of-the-art methods, and expanding the applicability of MoE merging.
Confidence Score for Source-Free Unsupervised Domain Adaptation
Source-free unsupervised domain adaptation (SFUDA) aims to obtain high performance in the unlabeled target domain using the pre-trained source model, not the source data. Existing SFUDA methods assign the same importance to all target samples, which is vulnerable to incorrect pseudo-labels. To differentiate between sample importance, in this study, we propose a novel sample-wise confidence score, the Joint Model-Data Structure (JMDS) score for SFUDA. Unlike existing confidence scores that use only one of the source or target domain knowledge, the JMDS score uses both knowledge. We then propose a Confidence score Weighting Adaptation using the JMDS (CoWA-JMDS) framework for SFUDA. CoWA-JMDS consists of the JMDS scores as sample weights and weight Mixup that is our proposed variant of Mixup. Weight Mixup promotes the model make more use of the target domain knowledge. The experimental results show that the JMDS score outperforms the existing confidence scores. Moreover, CoWA-JMDS achieves state-of-the-art performance on various SFUDA scenarios: closed, open, and partial-set scenarios.
DataMan: Data Manager for Pre-training Large Language Models
The performance emergence of large language models (LLMs) driven by data scaling laws makes the selection of pre-training data increasingly important. However, existing methods rely on limited heuristics and human intuition, lacking comprehensive and clear guidelines. To address this, we are inspired by ``reverse thinking'' -- prompting LLMs to self-identify which criteria benefit its performance. As its pre-training capabilities are related to perplexity (PPL), we derive 14 quality criteria from the causes of text perplexity anomalies and introduce 15 common application domains to support domain mixing. In this paper, we train a Data Manager (DataMan) to learn quality ratings and domain recognition from pointwise rating, and use it to annotate a 447B token pre-training corpus with 14 quality ratings and domain type. Our experiments validate our approach, using DataMan to select 30B tokens to train a 1.3B-parameter language model, demonstrating significant improvements in in-context learning (ICL), perplexity, and instruction-following ability over the state-of-the-art baseline. The best-performing model, based on the Overall Score l=5 surpasses a model trained with 50% more data using uniform sampling. We continue pre-training with high-rated, domain-specific data annotated by DataMan to enhance domain-specific ICL performance and thus verify DataMan's domain mixing ability. Our findings emphasize the importance of quality ranking, the complementary nature of quality criteria, and their low correlation with perplexity, analyzing misalignment between PPL and ICL performance. We also thoroughly analyzed our pre-training dataset, examining its composition, the distribution of quality ratings, and the original document sources.
UDALM: Unsupervised Domain Adaptation through Language Modeling
In this work we explore Unsupervised Domain Adaptation (UDA) of pretrained language models for downstream tasks. We introduce UDALM, a fine-tuning procedure, using a mixed classification and Masked Language Model loss, that can adapt to the target domain distribution in a robust and sample efficient manner. Our experiments show that performance of models trained with the mixed loss scales with the amount of available target data and the mixed loss can be effectively used as a stopping criterion during UDA training. Furthermore, we discuss the relationship between A-distance and the target error and explore some limitations of the Domain Adversarial Training approach. Our method is evaluated on twelve domain pairs of the Amazon Reviews Sentiment dataset, yielding 91.74% accuracy, which is an 1.11% absolute improvement over the state-of-the-art.
Improving Both Domain Robustness and Domain Adaptability in Machine Translation
We consider two problems of NMT domain adaptation using meta-learning. First, we want to reach domain robustness, i.e., we want to reach high quality on both domains seen in the training data and unseen domains. Second, we want our systems to be adaptive, i.e., making it possible to finetune systems with just hundreds of in-domain parallel sentences. We study the domain adaptability of meta-learning when improving the domain robustness of the model. In this paper, we propose a novel approach, RMLNMT (Robust Meta-Learning Framework for Neural Machine Translation Domain Adaptation), which improves the robustness of existing meta-learning models. More specifically, we show how to use a domain classifier in curriculum learning and we integrate the word-level domain mixing model into the meta-learning framework with a balanced sampling strategy. Experiments on EnglishrightarrowGerman and EnglishrightarrowChinese translation show that RMLNMT improves in terms of both domain robustness and domain adaptability in seen and unseen domains. Our source code is available at https://github.com/lavine-lmu/RMLNMT.
How to Alleviate Catastrophic Forgetting in LLMs Finetuning? Hierarchical Layer-Wise and Element-Wise Regularization
Large Language Models (LLMs) exhibit strong general language capabilities. However, fine-tuning these models on domain-specific tasks often leads to catastrophic forgetting, where the model overwrites or loses essential knowledge acquired during pretraining. This phenomenon significantly limits the broader applicability of LLMs. To address this challenge, we propose a novel approach to compute the element-wise importance of model parameters crucial for preserving general knowledge during fine-tuning. Our method utilizes a dual-objective optimization strategy: (1) regularization loss based on element-wise parameter importance, which constrains the updates to parameters crucial for general knowledge; (2) cross-entropy loss to adapt to domain-specific tasks. Additionally, we introduce layer-wise coefficients to account for the varying contributions of different layers, dynamically balancing the dual-objective optimization. Extensive experiments on scientific, medical, and physical tasks using GPT-J and LLaMA-3 demonstrate that our approach mitigates catastrophic forgetting while enhancing model adaptability. Compared to previous methods, our solution is approximately 20 times faster and requires only 10-15% of the storage, highlighting the practical efficiency. The code will be released.
Grounding Stylistic Domain Generalization with Quantitative Domain Shift Measures and Synthetic Scene Images
Domain Generalization (DG) is a challenging task in machine learning that requires a coherent ability to comprehend shifts across various domains through extraction of domain-invariant features. DG performance is typically evaluated by performing image classification in domains of various image styles. However, current methodology lacks quantitative understanding about shifts in stylistic domain, and relies on a vast amount of pre-training data, such as ImageNet1K, which are predominantly in photo-realistic style with weakly supervised class labels. Such a data-driven practice could potentially result in spurious correlation and inflated performance on DG benchmarks. In this paper, we introduce a new DG paradigm to address these risks. We first introduce two new quantitative measures ICV and IDD to describe domain shifts in terms of consistency of classes within one domain and similarity between two stylistic domains. We then present SuperMarioDomains (SMD), a novel synthetic multi-domain dataset sampled from video game scenes with more consistent classes and sufficient dissimilarity compared to ImageNet1K. We demonstrate our DG method SMOS. SMOS first uses SMD to train a precursor model, which is then used to ground the training on a DG benchmark. We observe that SMOS contributes to state-of-the-art performance across five DG benchmarks, gaining large improvements to performances on abstract domains along with on-par or slight improvements to those on photo-realistic domains. Our qualitative analysis suggests that these improvements can be attributed to reduced distributional divergence between originally distant domains. Our data are available at https://github.com/fpsluozi/SMD-SMOS .
GAPrune: Gradient-Alignment Pruning for Domain-Aware Embeddings
Domain-specific embedding models have shown promise for applications that require specialized semantic understanding, such as coding agents and financial retrieval systems, often achieving higher performance gains than general models. However, state-of-the-art embedding models are typically based on LLMs, which contain billions of parameters, making deployment challenging in resource-constrained environments. Model compression through pruning offers a promising solution, but existing pruning methods treat all parameters uniformly, failing to distinguish between general semantic representations and domain-specific patterns, leading to suboptimal pruning decisions. Thus, we propose GAPrune, a pruning framework that addresses this challenge by considering both domain importance and preserving general linguistic foundation. Our method uses Fisher Information to measure importance and general-domain gradient alignment to assess parameter behavior, then combines these signals using our Domain Alignment Importance (DAI) scoring. Lower DAI scores indicate that the parameter is either less important for the domain task or creates conflicts between domain and general objectives. Experiments on two domain benchmarks, FinMTEB and ChemTEB, show that GAPrune maintains performance within 2.5% of dense models in one-shot pruning at 50% sparsity, while outperforming all baselines. With retraining in 100 steps, GAPrune achieves +4.51% improvement on FinMTEB and +1.73% on ChemTEB, demonstrating that our pruning strategy not only preserves but enhances domain-specific capabilities. Our findings demonstrate that principled pruning strategies can achieve model compression and enhanced domain specialization, providing the research community with a new approach for development.
Pseudo-Labeling and Confirmation Bias in Deep Semi-Supervised Learning
Semi-supervised learning, i.e. jointly learning from labeled and unlabeled samples, is an active research topic due to its key role on relaxing human supervision. In the context of image classification, recent advances to learn from unlabeled samples are mainly focused on consistency regularization methods that encourage invariant predictions for different perturbations of unlabeled samples. We, conversely, propose to learn from unlabeled data by generating soft pseudo-labels using the network predictions. We show that a naive pseudo-labeling overfits to incorrect pseudo-labels due to the so-called confirmation bias and demonstrate that mixup augmentation and setting a minimum number of labeled samples per mini-batch are effective regularization techniques for reducing it. The proposed approach achieves state-of-the-art results in CIFAR-10/100, SVHN, and Mini-ImageNet despite being much simpler than other methods. These results demonstrate that pseudo-labeling alone can outperform consistency regularization methods, while the opposite was supposed in previous work. Source code is available at https://git.io/fjQsC.
Mix-CPT: A Domain Adaptation Framework via Decoupling Knowledge Learning and Format Alignment
Adapting general large language models (LLMs) to specialized domains presents great challenges due to varied data distributions. This adaptation typically requires continual pre-training on massive domain-specific corpora to facilitate knowledge memorization, followed by training to apply this knowledge following human instructions and preferences. However, this method may result in inefficient knowledge memorization due to a lack of awareness of knowledge utilization and imposes substantial demands on LLMs to simultaneously learn knowledge utilization and format alignment with limited training samples. To facilitate the domain adaptation of LLM, we revise this process and propose a new domain adaptation framework including domain knowledge learning and general format alignment, called Mix-CPT. Specifically, we first conduct a knowledge mixture continual pre-training that concurrently focuses on knowledge memorization and utilization, allowing for mutual reinforcement. To avoid catastrophic forgetting during the continual pre-training process, we further incorporate a logit swap self-distillation constraint. Subsequently, leveraging the knowledge and capabilities acquired during continual pre-training, we efficiently perform instruction tuning and alignment with a few general training samples to achieve format alignment. Extensive experiments demonstrate that our proposed Mix-CPT framework can simultaneously improve the task-solving capabilities of LLMs on the target and general domains compared to the traditional adaptation methods.
Does your data spark joy? Performance gains from domain upsampling at the end of training
Pretraining datasets for large language models (LLMs) have grown to trillions of tokens composed of large amounts of CommonCrawl (CC) web scrape along with smaller, domain-specific datasets. It is expensive to understand the impact of these domain-specific datasets on model capabilities as training at large FLOP scales is required to reveal significant changes to difficult and emergent benchmarks. Given the increasing cost of experimenting with pretraining data, how does one determine the optimal balance between the diversity in general web scrapes and the information density of domain specific data? In this work, we show how to leverage the smaller domain specific datasets by upsampling them relative to CC at the end of training to drive performance improvements on difficult benchmarks. This simple technique allows us to improve up to 6.90 pp on MMLU, 8.26 pp on GSM8K, and 6.17 pp on HumanEval relative to the base data mix for a 7B model trained for 1 trillion (T) tokens, thus rivaling Llama-2 (7B)x2014a model trained for twice as long. We experiment with ablating the duration of domain upsampling from 5% to 30% of training and find that 10% to 20% percent is optimal for navigating the tradeoff between general language modeling capabilities and targeted benchmarks. We also use domain upsampling to characterize at scale the utility of individual datasets for improving various benchmarks by removing them during this final phase of training. This tool opens up the ability to experiment with the impact of different pretraining datasets at scale, but at an order of magnitude lower cost compared to full pretraining runs.
Unsupervised Cross-Domain Image Generation
We study the problem of transferring a sample in one domain to an analog sample in another domain. Given two related domains, S and T, we would like to learn a generative function G that maps an input sample from S to the domain T, such that the output of a given function f, which accepts inputs in either domains, would remain unchanged. Other than the function f, the training data is unsupervised and consist of a set of samples from each domain. The Domain Transfer Network (DTN) we present employs a compound loss function that includes a multiclass GAN loss, an f-constancy component, and a regularizing component that encourages G to map samples from T to themselves. We apply our method to visual domains including digits and face images and demonstrate its ability to generate convincing novel images of previously unseen entities, while preserving their identity.
Train Till You Drop: Towards Stable and Robust Source-free Unsupervised 3D Domain Adaptation
We tackle the challenging problem of source-free unsupervised domain adaptation (SFUDA) for 3D semantic segmentation. It amounts to performing domain adaptation on an unlabeled target domain without any access to source data; the available information is a model trained to achieve good performance on the source domain. A common issue with existing SFUDA approaches is that performance degrades after some training time, which is a by product of an under-constrained and ill-posed problem. We discuss two strategies to alleviate this issue. First, we propose a sensible way to regularize the learning problem. Second, we introduce a novel criterion based on agreement with a reference model. It is used (1) to stop the training when appropriate and (2) as validator to select hyperparameters without any knowledge on the target domain. Our contributions are easy to implement and readily amenable for all SFUDA methods, ensuring stable improvements over all baselines. We validate our findings on various 3D lidar settings, achieving state-of-the-art performance. The project repository (with code) is: github.com/valeoai/TTYD.
Moderately Distributional Exploration for Domain Generalization
Domain generalization (DG) aims to tackle the distribution shift between training domains and unknown target domains. Generating new domains is one of the most effective approaches, yet its performance gain depends on the distribution discrepancy between the generated and target domains. Distributionally robust optimization is promising to tackle distribution discrepancy by exploring domains in an uncertainty set. However, the uncertainty set may be overwhelmingly large, leading to low-confidence prediction in DG. It is because a large uncertainty set could introduce domains containing semantically different factors from training domains. To address this issue, we propose to perform a moderately distributional exploration (MODE) for domain generalization. Specifically, MODE performs distribution exploration in an uncertainty subset that shares the same semantic factors with the training domains. We show that MODE can endow models with provable generalization performance on unknown target domains. The experimental results show that MODE achieves competitive performance compared to state-of-the-art baselines.
SoMA: Singular Value Decomposed Minor Components Adaptation for Domain Generalizable Representation Learning
Domain generalization (DG) aims to adapt a model using one or multiple source domains to ensure robust performance in unseen target domains. Recently, Parameter-Efficient Fine-Tuning (PEFT) of foundation models has shown promising results in the context of DG problem. Nevertheless, existing PEFT methods still struggle to strike a balance between preserving generalizable components of the pre-trained model and learning task-specific features. To gain insights into the distribution of generalizable components, we begin by analyzing the pre-trained weights through the lens of singular value decomposition. Building on these insights, we introduce Singular Value Decomposed Minor Components Adaptation (SoMA), an approach that selectively tunes minor singular components while keeping the residual parts frozen. SoMA effectively retains the generalization ability of the pre-trained model while efficiently acquiring task-specific skills. Moreover, we freeze domain-generalizable blocks and employ an annealing weight decay strategy, thereby achieving an optimal balance in the delicate trade-off between generalizability and discriminability. SoMA attains state-of-the-art results on multiple benchmarks that span both domain generalized semantic segmentation to domain generalized object detection. In addition, our methods introduce no additional inference overhead or regularization loss, maintain compatibility with any backbone or head, and are designed to be versatile, allowing easy integration into a wide range of tasks.
RegMix: Data Mixture as Regression for Language Model Pre-training
The data mixture for large language model pre-training significantly impacts performance, yet how to determine an effective mixture remains unclear. We propose RegMix to automatically identify a high-performing data mixture by formulating it as a regression task. RegMix involves training a set of small models with diverse data mixtures and fitting a regression model to predict their performance given their respective mixtures. With the fitted regression model, we simulate the top-ranked mixture and use it to train a large-scale model with orders of magnitude more compute. To empirically validate RegMix, we train 512 models with 1M parameters for 1B tokens of different mixtures to fit the regression model and find the optimal mixture. Using this mixture we train a 1B parameter model for 25B tokens (i.e. 1000x larger and 25x longer) which we find performs best among 64 candidate 1B parameter models with other mixtures. Further, our method demonstrates superior performance compared to human selection and achieves results that match or surpass DoReMi, while utilizing only 10% of the compute budget. Our experiments also show that (1) Data mixtures significantly impact performance with single-task performance variations of up to 14.6%; (2) Web corpora rather than data perceived as high-quality like Wikipedia have the strongest positive correlation with downstream performance; (3) Domains interact in complex ways often contradicting common sense, thus automatic approaches like RegMix are needed; (4) Data mixture effects transcend scaling laws, and our approach captures the complexity by considering all domains together. Our code is available at https://github.com/sail-sg/regmix.
M2D2: A Massively Multi-domain Language Modeling Dataset
We present M2D2, a fine-grained, massively multi-domain corpus for studying domain adaptation in language models (LMs). M2D2 consists of 8.5B tokens and spans 145 domains extracted from Wikipedia and Semantic Scholar. Using ontologies derived from Wikipedia and ArXiv categories, we organize the domains in each data source into 22 groups. This two-level hierarchy enables the study of relationships between domains and their effects on in- and out-of-domain performance after adaptation. We also present a number of insights into the nature of effective domain adaptation in LMs, as examples of the new types of studies M2D2 enables. To improve in-domain performance, we show the benefits of adapting the LM along a domain hierarchy; adapting to smaller amounts of fine-grained domain-specific data can lead to larger in-domain performance gains than larger amounts of weakly relevant data. We further demonstrate a trade-off between in-domain specialization and out-of-domain generalization within and across ontologies, as well as a strong correlation between out-of-domain performance and lexical overlap between domains.
The Highs and Lows of Simple Lexical Domain Adaptation Approaches for Neural Machine Translation
Machine translation systems are vulnerable to domain mismatch, especially in a low-resource scenario. Out-of-domain translations are often of poor quality and prone to hallucinations, due to exposure bias and the decoder acting as a language model. We adopt two approaches to alleviate this problem: lexical shortlisting restricted by IBM statistical alignments, and hypothesis re-ranking based on similarity. The methods are computationally cheap, widely known, but not extensively experimented on domain adaptation. We demonstrate success on low-resource out-of-domain test sets, however, the methods are ineffective when there is sufficient data or too great domain mismatch. This is due to both the IBM model losing its advantage over the implicitly learned neural alignment, and issues with subword segmentation of out-of-domain words.
Towards domain-invariant Self-Supervised Learning with Batch Styles Standardization
In Self-Supervised Learning (SSL), models are typically pretrained, fine-tuned, and evaluated on the same domains. However, they tend to perform poorly when evaluated on unseen domains, a challenge that Unsupervised Domain Generalization (UDG) seeks to address. Current UDG methods rely on domain labels, which are often challenging to collect, and domain-specific architectures that lack scalability when confronted with numerous domains, making the current methodology impractical and rigid. Inspired by contrastive-based UDG methods that mitigate spurious correlations by restricting comparisons to examples from the same domain, we hypothesize that eliminating style variability within a batch could provide a more convenient and flexible way to reduce spurious correlations without requiring domain labels. To verify this hypothesis, we introduce Batch Styles Standardization (BSS), a relatively simple yet powerful Fourier-based method to standardize the style of images in a batch specifically designed for integration with SSL methods to tackle UDG. Combining BSS with existing SSL methods offers serious advantages over prior UDG methods: (1) It eliminates the need for domain labels or domain-specific network components to enhance domain-invariance in SSL representations, and (2) offers flexibility as BSS can be seamlessly integrated with diverse contrastive-based but also non-contrastive-based SSL methods. Experiments on several UDG datasets demonstrate that it significantly improves downstream task performances on unseen domains, often outperforming or rivaling with UDG methods. Finally, this work clarifies the underlying mechanisms contributing to BSS's effectiveness in improving domain-invariance in SSL representations and performances on unseen domain.
Multi-Distillation from Speech and Music Representation Models
Real-world audio often mixes speech and music, yet models typically handle only one domain. This paper introduces a multi-teacher distillation framework that unifies speech and music models into a single one while significantly reducing model size. Our approach leverages the strengths of domain-specific teacher models, such as HuBERT for speech and MERT for music, and explores various strategies to balance both domains. Experiments across diverse tasks demonstrate that our model matches the performance of domain-specific models, showing the effectiveness of cross-domain distillation. Additionally, we conduct few-shot learning experiments, highlighting the need for general models in real-world scenarios where labeled data is limited. Our results show that our model not only performs on par with specialized models but also outperforms them in few-shot scenarios, proving that a cross-domain approach is essential and effective for diverse tasks with limited data.
Domain-Specific Risk Minimization for Out-of-Distribution Generalization
Recent domain generalization (DG) approaches typically use the hypothesis learned on source domains for inference on the unseen target domain. However, such a hypothesis can be arbitrarily far from the optimal one for the target domain, induced by a gap termed ``adaptivity gap''. Without exploiting the domain information from the unseen test samples, adaptivity gap estimation and minimization are intractable, which hinders us to robustify a model to any unknown distribution. In this paper, we first establish a generalization bound that explicitly considers the adaptivity gap. Our bound motivates two strategies to reduce the gap: the first one is ensembling multiple classifiers to enrich the hypothesis space, then we propose effective gap estimation methods for guiding the selection of a better hypothesis for the target. The other method is minimizing the gap directly by adapting model parameters using online target samples. We thus propose Domain-specific Risk Minimization (DRM). During training, DRM models the distributions of different source domains separately; for inference, DRM performs online model steering using the source hypothesis for each arriving target sample. Extensive experiments demonstrate the effectiveness of the proposed DRM for domain generalization with the following advantages: 1) it significantly outperforms competitive baselines on different distributional shift settings; 2) it achieves either comparable or superior accuracies on all source domains compared to vanilla empirical risk minimization; 3) it remains simple and efficient during training, and 4) it is complementary to invariant learning approaches.
Intra-Cluster Mixup: An Effective Data Augmentation Technique for Complementary-Label Learning
In this paper, we investigate the challenges of complementary-label learning (CLL), a specialized form of weakly-supervised learning (WSL) where models are trained with labels indicating classes to which instances do not belong, rather than standard ordinary labels. This alternative supervision is appealing because collecting complementary labels is generally cheaper and less labor-intensive. Although most existing research in CLL emphasizes the development of novel loss functions, the potential of data augmentation in this domain remains largely underexplored. In this work, we uncover that the widely-used Mixup data augmentation technique is ineffective when directly applied to CLL. Through in-depth analysis, we identify that the complementary-label noise generated by Mixup negatively impacts the performance of CLL models. We then propose an improved technique called Intra-Cluster Mixup (ICM), which only synthesizes augmented data from nearby examples, to mitigate the noise effect. ICM carries the benefits of encouraging complementary label sharing of nearby examples, and leads to substantial performance improvements across synthetic and real-world labeled datasets. In particular, our wide spectrum of experimental results on both balanced and imbalanced CLL settings justifies the potential of ICM in allying with state-of-the-art CLL algorithms, achieving significant accuracy increases of 30% and 10% on MNIST and CIFAR datasets, respectively.
M2QA: Multi-domain Multilingual Question Answering
Generalization and robustness to input variation are core desiderata of machine learning research. Language varies along several axes, most importantly, language instance (e.g. French) and domain (e.g. news). While adapting NLP models to new languages within a single domain, or to new domains within a single language, is widely studied, research in joint adaptation is hampered by the lack of evaluation datasets. This prevents the transfer of NLP systems from well-resourced languages and domains to non-dominant language-domain combinations. To address this gap, we introduce M2QA, a multi-domain multilingual question answering benchmark. M2QA includes 13,500 SQuAD 2.0-style question-answer instances in German, Turkish, and Chinese for the domains of product reviews, news, and creative writing. We use M2QA to explore cross-lingual cross-domain performance of fine-tuned models and state-of-the-art LLMs and investigate modular approaches to domain and language adaptation. We witness 1) considerable performance variations across domain-language combinations within model classes and 2) considerable performance drops between source and target language-domain combinations across all model sizes. We demonstrate that M2QA is far from solved, and new methods to effectively transfer both linguistic and domain-specific information are necessary. We make M2QA publicly available at https://github.com/UKPLab/m2qa.
Domain Generalization via Balancing Training Difficulty and Model Capability
Domain generalization (DG) aims to learn domain-generalizable models from one or multiple source domains that can perform well in unseen target domains. Despite its recent progress, most existing work suffers from the misalignment between the difficulty level of training samples and the capability of contemporarily trained models, leading to over-fitting or under-fitting in the trained generalization model. We design MoDify, a Momentum Difficulty framework that tackles the misalignment by balancing the seesaw between the model's capability and the samples' difficulties along the training process. MoDify consists of two novel designs that collaborate to fight against the misalignment while learning domain-generalizable models. The first is MoDify-based Data Augmentation which exploits an RGB Shuffle technique to generate difficulty-aware training samples on the fly. The second is MoDify-based Network Optimization which dynamically schedules the training samples for balanced and smooth learning with appropriate difficulty. Without bells and whistles, a simple implementation of MoDify achieves superior performance across multiple benchmarks. In addition, MoDify can complement existing methods as a plug-in, and it is generic and can work for different visual recognition tasks.
MixMix: All You Need for Data-Free Compression Are Feature and Data Mixing
User data confidentiality protection is becoming a rising challenge in the present deep learning research. Without access to data, conventional data-driven model compression faces a higher risk of performance degradation. Recently, some works propose to generate images from a specific pretrained model to serve as training data. However, the inversion process only utilizes biased feature statistics stored in one model and is from low-dimension to high-dimension. As a consequence, it inevitably encounters the difficulties of generalizability and inexact inversion, which leads to unsatisfactory performance. To address these problems, we propose MixMix based on two simple yet effective techniques: (1) Feature Mixing: utilizes various models to construct a universal feature space for generalized inversion; (2) Data Mixing: mixes the synthesized images and labels to generate exact label information. We prove the effectiveness of MixMix from both theoretical and empirical perspectives. Extensive experiments show that MixMix outperforms existing methods on the mainstream compression tasks, including quantization, knowledge distillation, and pruning. Specifically, MixMix achieves up to 4% and 20% accuracy uplift on quantization and pruning, respectively, compared to existing data-free compression work.
On the Limitations of Temperature Scaling for Distributions with Overlaps
Despite the impressive generalization capabilities of deep neural networks, they have been repeatedly shown to be overconfident when they are wrong. Fixing this issue is known as model calibration, and has consequently received much attention in the form of modified training schemes and post-training calibration procedures such as temperature scaling. While temperature scaling is frequently used because of its simplicity, it is often outperformed by modified training schemes. In this work, we identify a specific bottleneck for the performance of temperature scaling. We show that for empirical risk minimizers for a general set of distributions in which the supports of classes have overlaps, the performance of temperature scaling degrades with the amount of overlap between classes, and asymptotically becomes no better than random when there are a large number of classes. On the other hand, we prove that optimizing a modified form of the empirical risk induced by the Mixup data augmentation technique can in fact lead to reasonably good calibration performance, showing that training-time calibration may be necessary in some situations. We also verify that our theoretical results reflect practice by showing that Mixup significantly outperforms empirical risk minimization (with respect to multiple calibration metrics) on image classification benchmarks with class overlaps introduced in the form of label noise.
Generalizable Decision Boundaries: Dualistic Meta-Learning for Open Set Domain Generalization
Domain generalization (DG) is proposed to deal with the issue of domain shift, which occurs when statistical differences exist between source and target domains. However, most current methods do not account for a common realistic scenario where the source and target domains have different classes. To overcome this deficiency, open set domain generalization (OSDG) then emerges as a more practical setting to recognize unseen classes in unseen domains. An intuitive approach is to use multiple one-vs-all classifiers to define decision boundaries for each class and reject the outliers as unknown. However, the significant class imbalance between positive and negative samples often causes the boundaries biased towards positive ones, resulting in misclassification for known samples in the unseen target domain. In this paper, we propose a novel meta-learning-based framework called dualistic MEta-learning with joint DomaIn-Class matching (MEDIC), which considers gradient matching towards inter-domain and inter-class splits simultaneously to find a generalizable boundary balanced for all tasks. Experimental results demonstrate that MEDIC not only outperforms previous methods in open set scenarios, but also maintains competitive close set generalization ability at the same time. Our code is available at https://github.com/zzwdx/MEDIC.
Mix-LN: Unleashing the Power of Deeper Layers by Combining Pre-LN and Post-LN
Large Language Models (LLMs) have achieved remarkable success, yet recent findings reveal that their deeper layers often contribute minimally and can be pruned without affecting overall performance. While some view this as an opportunity for model compression, we identify it as a training shortfall rooted in the widespread use of Pre-Layer Normalization (Pre-LN). We demonstrate that Pre-LN, commonly employed in models like GPT and LLaMA, leads to diminished gradient norms in its deeper layers, reducing their effectiveness. In contrast, Post-Layer Normalization (Post-LN) preserves larger gradient norms in deeper layers but suffers from vanishing gradients in earlier layers. To address this, we introduce Mix-LN, a novel normalization technique that combines the strengths of Pre-LN and Post-LN within the same model. Mix-LN applies Post-LN to the earlier layers and Pre-LN to the deeper layers, ensuring more uniform gradients across layers. This allows all parts of the network--both shallow and deep layers--to contribute effectively to training. Extensive experiments with various model sizes from 70M to 7B demonstrate that Mix-LN consistently outperforms both Pre-LN and Post-LN, promoting more balanced, healthier gradient norms throughout the network, and enhancing the overall quality of LLM pre-training. Furthermore, we demonstrate that models pre-trained with Mix-LN learn better compared to those using Pre-LN or Post-LN during supervised fine-tuning (SFT) and reinforcement learning from human feedback (RLHF), highlighting the critical importance of high-quality deep layers. By effectively addressing the inefficiencies of deep layers in current LLMs, Mix-LN unlocks their potential, enhancing model capacity without increasing model size. Our code is available at https://github.com/pixeli99/MixLN.
Towards Identifiable Unsupervised Domain Translation: A Diversified Distribution Matching Approach
Unsupervised domain translation (UDT) aims to find functions that convert samples from one domain (e.g., sketches) to another domain (e.g., photos) without changing the high-level semantic meaning (also referred to as ``content''). The translation functions are often sought by probability distribution matching of the transformed source domain and target domain. CycleGAN stands as arguably the most representative approach among this line of work. However, it was noticed in the literature that CycleGAN and variants could fail to identify the desired translation functions and produce content-misaligned translations. This limitation arises due to the presence of multiple translation functions -- referred to as ``measure-preserving automorphism" (MPA) -- in the solution space of the learning criteria. Despite awareness of such identifiability issues, solutions have remained elusive. This study delves into the core identifiability inquiry and introduces an MPA elimination theory. Our analysis shows that MPA is unlikely to exist, if multiple pairs of diverse cross-domain conditional distributions are matched by the learning function. Our theory leads to a UDT learner using distribution matching over auxiliary variable-induced subsets of the domains -- other than over the entire data domains as in the classical approaches. The proposed framework is the first to rigorously establish translation identifiability under reasonable UDT settings, to our best knowledge. Experiments corroborate with our theoretical claims.
Only-IF:Revealing the Decisive Effect of Instruction Diversity on Generalization
Understanding and accurately following instructions is critical for large language models (LLMs) to be effective across diverse tasks. In this work, we rigorously examine the key factors that enable models to generalize to unseen instructions, providing insights to guide the collection of data for instruction-tuning. Through controlled experiments, inspired by the Turing-complete Markov algorithm, we demonstrate that such generalization only emerges when training data is diversified enough across semantic domains. Our findings also reveal that merely diversifying within limited domains fails to ensure robust generalization. In contrast, cross-domain data diversification, even under constrained data budgets, significantly enhances a model's adaptability. We further extend our analysis to real-world scenarios, including fine-tuning of $textbf{specialist} and textbf{generalist}$ models. In both cases, we demonstrate that 1) better performance can be achieved by increasing the diversity of an established dataset while keeping the data size constant, and 2) when scaling up the data, diversifying the semantics of instructions is more effective than simply increasing the quantity of similar data. Our research provides important insights for dataset collation, particularly when optimizing model performance by expanding training data for both specialist and generalist scenarios. We show that careful consideration of data diversification is key: training specialist models with data extending beyond their core domain leads to significant performance improvements, while generalist models benefit from diverse data mixtures that enhance their overall instruction-following capabilities across a wide range of applications. Our results highlight the critical role of strategic diversification and offer clear guidelines for improving data quality.
Complementary Domain Adaptation and Generalization for Unsupervised Continual Domain Shift Learning
Continual domain shift poses a significant challenge in real-world applications, particularly in situations where labeled data is not available for new domains. The challenge of acquiring knowledge in this problem setting is referred to as unsupervised continual domain shift learning. Existing methods for domain adaptation and generalization have limitations in addressing this issue, as they focus either on adapting to a specific domain or generalizing to unseen domains, but not both. In this paper, we propose Complementary Domain Adaptation and Generalization (CoDAG), a simple yet effective learning framework that combines domain adaptation and generalization in a complementary manner to achieve three major goals of unsupervised continual domain shift learning: adapting to a current domain, generalizing to unseen domains, and preventing forgetting of previously seen domains. Our approach is model-agnostic, meaning that it is compatible with any existing domain adaptation and generalization algorithms. We evaluate CoDAG on several benchmark datasets and demonstrate that our model outperforms state-of-the-art models in all datasets and evaluation metrics, highlighting its effectiveness and robustness in handling unsupervised continual domain shift learning.
Understanding Domain Generalization: A Noise Robustness Perspective
Despite the rapid development of machine learning algorithms for domain generalization (DG), there is no clear empirical evidence that the existing DG algorithms outperform the classic empirical risk minimization (ERM) across standard benchmarks. To better understand this phenomenon, we investigate whether there are benefits of DG algorithms over ERM through the lens of label noise. Specifically, our finite-sample analysis reveals that label noise exacerbates the effect of spurious correlations for ERM, undermining generalization. Conversely, we illustrate that DG algorithms exhibit implicit label-noise robustness during finite-sample training even when spurious correlation is present. Such desirable property helps mitigate spurious correlations and improve generalization in synthetic experiments. However, additional comprehensive experiments on real-world benchmark datasets indicate that label-noise robustness does not necessarily translate to better performance compared to ERM. We conjecture that the failure mode of ERM arising from spurious correlations may be less pronounced in practice.
QT-DoG: Quantization-aware Training for Domain Generalization
A key challenge in Domain Generalization (DG) is preventing overfitting to source domains, which can be mitigated by finding flatter minima in the loss landscape. In this work, we propose Quantization-aware Training for Domain Generalization (QT-DoG) and demonstrate that weight quantization effectively leads to flatter minima in the loss landscape, thereby enhancing domain generalization. Unlike traditional quantization methods focused on model compression, QT-DoG exploits quantization as an implicit regularizer by inducing noise in model weights, guiding the optimization process toward flatter minima that are less sensitive to perturbations and overfitting. We provide both an analytical perspective and empirical evidence demonstrating that quantization inherently encourages flatter minima, leading to better generalization across domains. Moreover, with the benefit of reducing the model size through quantization, we demonstrate that an ensemble of multiple quantized models further yields superior accuracy than the state-of-the-art DG approaches with no computational or memory overheads. Code is released at: https://saqibjaved1.github.io/QT_DoG/.
SimMMDG: A Simple and Effective Framework for Multi-modal Domain Generalization
In real-world scenarios, achieving domain generalization (DG) presents significant challenges as models are required to generalize to unknown target distributions. Generalizing to unseen multi-modal distributions poses even greater difficulties due to the distinct properties exhibited by different modalities. To overcome the challenges of achieving domain generalization in multi-modal scenarios, we propose SimMMDG, a simple yet effective multi-modal DG framework. We argue that mapping features from different modalities into the same embedding space impedes model generalization. To address this, we propose splitting the features within each modality into modality-specific and modality-shared components. We employ supervised contrastive learning on the modality-shared features to ensure they possess joint properties and impose distance constraints on modality-specific features to promote diversity. In addition, we introduce a cross-modal translation module to regularize the learned features, which can also be used for missing-modality generalization. We demonstrate that our framework is theoretically well-supported and achieves strong performance in multi-modal DG on the EPIC-Kitchens dataset and the novel Human-Animal-Cartoon (HAC) dataset introduced in this paper. Our source code and HAC dataset are available at https://github.com/donghao51/SimMMDG.
Learning Conditional Invariances through Non-Commutativity
Invariance learning algorithms that conditionally filter out domain-specific random variables as distractors, do so based only on the data semantics, and not the target domain under evaluation. We show that a provably optimal and sample-efficient way of learning conditional invariances is by relaxing the invariance criterion to be non-commutatively directed towards the target domain. Under domain asymmetry, i.e., when the target domain contains semantically relevant information absent in the source, the risk of the encoder varphi^* that is optimal on average across domains is strictly lower-bounded by the risk of the target-specific optimal encoder Phi^*_tau. We prove that non-commutativity steers the optimization towards Phi^*_tau instead of varphi^*, bringing the H-divergence between domains down to zero, leading to a stricter bound on the target risk. Both our theory and experiments demonstrate that non-commutative invariance (NCI) can leverage source domain samples to meet the sample complexity needs of learning Phi^*_tau, surpassing SOTA invariance learning algorithms for domain adaptation, at times by over 2%, approaching the performance of an oracle. Implementation is available at https://github.com/abhrac/nci.
DomainDrop: Suppressing Domain-Sensitive Channels for Domain Generalization
Deep Neural Networks have exhibited considerable success in various visual tasks. However, when applied to unseen test datasets, state-of-the-art models often suffer performance degradation due to domain shifts. In this paper, we introduce a novel approach for domain generalization from a novel perspective of enhancing the robustness of channels in feature maps to domain shifts. We observe that models trained on source domains contain a substantial number of channels that exhibit unstable activations across different domains, which are inclined to capture domain-specific features and behave abnormally when exposed to unseen target domains. To address the issue, we propose a DomainDrop framework to continuously enhance the channel robustness to domain shifts, where a domain discriminator is used to identify and drop unstable channels in feature maps of each network layer during forward propagation. We theoretically prove that our framework could effectively lower the generalization bound. Extensive experiments on several benchmarks indicate that our framework achieves state-of-the-art performance compared to other competing methods. Our code is available at https://github.com/lingeringlight/DomainDrop.
PLeaS -- Merging Models with Permutations and Least Squares
The democratization of machine learning systems has made the process of fine-tuning accessible to practitioners, leading to a wide range of open-source models fine-tuned on specialized tasks and datasets. Recent work has proposed to merge such models to combine their functionalities. However, prior approaches are usually restricted to models that are fine-tuned from the same base model. Furthermore, the final merged model is typically required to be of the same size as the original models. In this work, we propose a new two-step algorithm to merge models -- termed PLeaS -- which relaxes these constraints. First, leveraging the Permutation symmetries inherent in the two models, PLeaS partially matches nodes in each layer by maximizing alignment. Next, PLeaS computes the weights of the merged model as a layer-wise Least Squares solution to minimize the approximation error between the features of the merged model and the permuted features of the original models. PLeaS allows a practitioner to merge two models sharing the same architecture into a single performant model of a desired size, even when the two original models are fine-tuned from different base models. We also demonstrate how our method can be extended to address a challenging scenario where no data is available from the fine-tuning domains. We demonstrate our method to merge ResNet and ViT models trained with shared and different label spaces, and show improvement over the state-of-the-art merging methods of up to 15 percentage points for the same target compute while merging models trained on DomainNet and fine-grained classification tasks. Our code is open-sourced at https://github.com/SewoongLab/PLeaS-Merging .
Fixing MoE Over-Fitting on Low-Resource Languages in Multilingual Machine Translation
Sparsely gated Mixture of Experts (MoE) models have been shown to be a compute-efficient method to scale model capacity for multilingual machine translation. However, for low-resource tasks, MoE models severely over-fit. We show effective regularization strategies, namely dropout techniques for MoE layers in EOM and FOM, Conditional MoE Routing and Curriculum Learning methods that prevent over-fitting and improve the performance of MoE models on low-resource tasks without adversely affecting high-resource tasks. On a massively multilingual machine translation benchmark, our strategies result in about +1 chrF++ improvement in very low resource language pairs. We perform an extensive analysis of the learned MoE routing to better understand the impact of our regularization methods and how we can improve them.
SFT Doesn't Always Hurt General Capabilities: Revisiting Domain-Specific Fine-Tuning in LLMs
Supervised Fine-Tuning (SFT) on domain-specific datasets is a common approach to adapt Large Language Models (LLMs) to specialized tasks but is often believed to degrade their general capabilities. In this work, we revisit this trade-off and present both empirical and theoretical insights. First, we show that SFT does not always hurt: using a smaller learning rate can substantially mitigate general performance degradation while preserving comparable target-domain performance. We then provide a theoretical analysis that explains these phenomena and further motivates a new method, Token-Adaptive Loss Reweighting (TALR). Building on this, and recognizing that smaller learning rates alone do not fully eliminate general-performance degradation in all cases, we evaluate a range of strategies for reducing general capability loss, including L2 regularization, LoRA, model averaging, FLOW, and our proposed TALR. Experimental results demonstrate that while no method completely eliminates the trade-off, TALR consistently outperforms these baselines in balancing domain-specific gains and general capabilities. Finally, we distill our findings into practical guidelines for adapting LLMs to new domains: (i) using a small learning rate to achieve a favorable trade-off, and (ii) when a stronger balance is further desired, adopt TALR as an effective strategy.
Investigating Regularization of Self-Play Language Models
This paper explores the effects of various forms of regularization in the context of language model alignment via self-play. While both reinforcement learning from human feedback (RLHF) and direct preference optimization (DPO) require to collect costly human-annotated pairwise preferences, the self-play fine-tuning (SPIN) approach replaces the rejected answers by data generated from the previous iterate. However, the SPIN method presents a performance instability issue in the learning phase, which can be mitigated by playing against a mixture of the two previous iterates. In the same vein, we propose in this work to address this issue from two perspectives: first, by incorporating an additional Kullback-Leibler (KL) regularization to stay at the proximity of the reference policy; second, by using the idea of fictitious play which smoothens the opponent policy across all previous iterations. In particular, we show that the KL-based regularizer boils down to replacing the previous policy by its geometric mixture with the base policy inside of the SPIN loss function. We finally discuss empirical results on MT-Bench as well as on the Hugging Face Open LLM Leaderboard.
Flatness-Aware Minimization for Domain Generalization
Domain generalization (DG) seeks to learn robust models that generalize well under unknown distribution shifts. As a critical aspect of DG, optimizer selection has not been explored in depth. Currently, most DG methods follow the widely used benchmark, DomainBed, and utilize Adam as the default optimizer for all datasets. However, we reveal that Adam is not necessarily the optimal choice for the majority of current DG methods and datasets. Based on the perspective of loss landscape flatness, we propose a novel approach, Flatness-Aware Minimization for Domain Generalization (FAD), which can efficiently optimize both zeroth-order and first-order flatness simultaneously for DG. We provide theoretical analyses of the FAD's out-of-distribution (OOD) generalization error and convergence. Our experimental results demonstrate the superiority of FAD on various DG datasets. Additionally, we confirm that FAD is capable of discovering flatter optima in comparison to other zeroth-order and first-order flatness-aware optimization methods.
Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing
Unsupervised domain adaptation which aims to adapt models trained on a labeled source domain to a completely unlabeled target domain has attracted much attention in recent years. While many domain adaptation techniques have been proposed for images, the problem of unsupervised domain adaptation in videos remains largely underexplored. In this paper, we introduce Contrast and Mix (CoMix), a new contrastive learning framework that aims to learn discriminative invariant feature representations for unsupervised video domain adaptation. First, unlike existing methods that rely on adversarial learning for feature alignment, we utilize temporal contrastive learning to bridge the domain gap by maximizing the similarity between encoded representations of an unlabeled video at two different speeds as well as minimizing the similarity between different videos played at different speeds. Second, we propose a novel extension to the temporal contrastive loss by using background mixing that allows additional positives per anchor, thus adapting contrastive learning to leverage action semantics shared across both domains. Moreover, we also integrate a supervised contrastive learning objective using target pseudo-labels to enhance discriminability of the latent space for video domain adaptation. Extensive experiments on several benchmark datasets demonstrate the superiority of our proposed approach over state-of-the-art methods. Project page: https://cvir.github.io/projects/comix
A Unified Data Augmentation Framework for Low-Resource Multi-Domain Dialogue Generation
Current state-of-the-art dialogue systems heavily rely on extensive training datasets. However, challenges arise in domains where domain-specific training datasets are insufficient or entirely absent. To tackle this challenge, we propose a novel data Augmentation framework for Multi-Domain Dialogue Generation, referred to as AMD^2G. The AMD^2G framework consists of a data augmentation process and a two-stage training approach: domain-agnostic training and domain adaptation training. We posit that domain corpora are a blend of domain-agnostic and domain-specific features, with certain representation patterns shared among diverse domains. Domain-agnostic training aims to enable models to learn these common expressive patterns. To construct domain-agnostic dialogue corpora, we employ a \textbf{de-domaining} data processing technique used to remove domain-specific features. By mitigating the effects of domain-specific features, the model trained on the de-domained corpora can effectively learn common expression patterns in different domains. Subsequently, we adapt the learned domain-agnostic features to the target domain through domain adaptation training. We conduct experiments on Chinese dialogue datasets from five different domains and show that AMD^2G achieves superior performance compared to both direct training on the target domain corpus and collective training on all five domain corpora. Our work underscores AMD^2G as a viable alternative solution for low-resource multi-domain dialogue generation. Code and data associated with our work are available on GitHub repository^{text 1}.
Comparison of semi-supervised deep learning algorithms for audio classification
In this article, we adapted five recent SSL methods to the task of audio classification. The first two methods, namely Deep Co-Training (DCT) and Mean Teacher (MT), involve two collaborative neural networks. The three other algorithms, called MixMatch (MM), ReMixMatch (RMM), and FixMatch (FM), are single-model methods that rely primarily on data augmentation strategies. Using the Wide-ResNet-28-2 architecture in all our experiments, 10% of labeled data and the remaining 90% as unlabeled data for training, we first compare the error rates of the five methods on three standard benchmark audio datasets: Environmental Sound Classification (ESC-10), UrbanSound8K (UBS8K), and Google Speech Commands (GSC). In all but one cases, MM, RMM, and FM outperformed MT and DCT significantly, MM and RMM being the best methods in most experiments. On UBS8K and GSC, MM achieved 18.02% and 3.25% error rate (ER), respectively, outperforming models trained with 100% of the available labeled data, which reached 23.29% and 4.94%, respectively. RMM achieved the best results on ESC-10 (12.00% ER), followed by FM which reached 13.33%. Second, we explored adding the mixup augmentation, used in MM and RMM, to DCT, MT, and FM. In almost all cases, mixup brought consistent gains. For instance, on GSC, FM reached 4.44% and 3.31% ER without and with mixup. Our PyTorch code will be made available upon paper acceptance at https:// github. com/ Labbe ti/ SSLH.
SHIELD: Secure Hypernetworks for Incremental Expansion Learning Defense
Continual learning under adversarial conditions remains an open problem, as existing methods often compromise either robustness, scalability, or both. We propose a novel framework that integrates Interval Bound Propagation (IBP) with a hypernetwork-based architecture to enable certifiably robust continual learning across sequential tasks. Our method, SHIELD, generates task-specific model parameters via a shared hypernetwork conditioned solely on compact task embeddings, eliminating the need for replay buffers or full model copies and enabling efficient over time. To further enhance robustness, we introduce Interval MixUp, a novel training strategy that blends virtual examples represented as ell_{infty} balls centered around MixUp points. Leveraging interval arithmetic, this technique guarantees certified robustness while mitigating the wrapping effect, resulting in smoother decision boundaries. We evaluate SHIELD under strong white-box adversarial attacks, including PGD and AutoAttack, across multiple benchmarks. It consistently outperforms existing robust continual learning methods, achieving state-of-the-art average accuracy while maintaining both scalability and certification. These results represent a significant step toward practical and theoretically grounded continual learning in adversarial settings.
DONOD: Robust and Generalizable Instruction Fine-Tuning for LLMs via Model-Intrinsic Dataset Pruning
Ad-hoc instruction fine-tuning of large language models (LLMs) is widely adopted for domain-specific adaptation. While domain-specific supervised fine-tuning (SFT) is effective and efficient, it often weakens cross-domain generalization and struggles with noisy training data. To address these challenges, we propose DONOD, a lightweight model-intrinsic data pruning method. Our approach evaluates data using two model-parameter-based metrics: Delta of Norm (DON), which captures the cumulative influence on model weights, and Norm of Delta (NOD), which quantifies weight instability. Moreover, by employing the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) algorithm, we effectively filter noisy, unlearnable, and generalization-harming samples without relying on auxiliary models during the SFT process. Experiments on mathematical tasks demonstrate that data selected by DONOD achieve superior fine-tuning efficiency and improved robustness against noisy data. By filtering out 70% of the full dataset, we improve target-domain accuracy by 14.90% and cross-domain accuracy by 5.67%. Meanwhile, our selected data present superior cross-architecture generalization. Data pruned by smaller models (e.g., Llama 3.1-8B) generalize effectively on larger models (e.g., Llama 2-13B). Compared to existing related methodologies, DONOD demonstrates comparable or superior performance while remaining dataset-agnostic, enabling broader applicability.
Domain-Specific Text Generation for Machine Translation
Preservation of domain knowledge from the source to target is crucial in any translation workflow. It is common in the translation industry to receive highly specialized projects, where there is hardly any parallel in-domain data. In such scenarios where there is insufficient in-domain data to fine-tune Machine Translation (MT) models, producing translations that are consistent with the relevant context is challenging. In this work, we propose a novel approach to domain adaptation leveraging state-of-the-art pretrained language models (LMs) for domain-specific data augmentation for MT, simulating the domain characteristics of either (a) a small bilingual dataset, or (b) the monolingual source text to be translated. Combining this idea with back-translation, we can generate huge amounts of synthetic bilingual in-domain data for both use cases. For our investigation, we use the state-of-the-art Transformer architecture. We employ mixed fine-tuning to train models that significantly improve translation of in-domain texts. More specifically, in both scenarios, our proposed methods achieve improvements of approximately 5-6 BLEU and 2-3 BLEU, respectively, on the Arabic-to-English and English-to-Arabic language pairs. Furthermore, the outcome of human evaluation corroborates the automatic evaluation results.
Towards Principled Disentanglement for Domain Generalization
A fundamental challenge for machine learning models is generalizing to out-of-distribution (OOD) data, in part due to spurious correlations. To tackle this challenge, we first formalize the OOD generalization problem as constrained optimization, called Disentanglement-constrained Domain Generalization (DDG). We relax this non-trivial constrained optimization problem to a tractable form with finite-dimensional parameterization and empirical approximation. Then a theoretical analysis of the extent to which the above transformations deviates from the original problem is provided. Based on the transformation, we propose a primal-dual algorithm for joint representation disentanglement and domain generalization. In contrast to traditional approaches based on domain adversarial training and domain labels, DDG jointly learns semantic and variation encoders for disentanglement, enabling flexible manipulation and augmentation on training data. DDG aims to learn intrinsic representations of semantic concepts that are invariant to nuisance factors and generalizable across domains. Comprehensive experiments on popular benchmarks show that DDG can achieve competitive OOD performance and uncover interpretable salient structures within data.
Deeper, Broader and Artier Domain Generalization
The problem of domain generalization is to learn from multiple training domains, and extract a domain-agnostic model that can then be applied to an unseen domain. Domain generalization (DG) has a clear motivation in contexts where there are target domains with distinct characteristics, yet sparse data for training. For example recognition in sketch images, which are distinctly more abstract and rarer than photos. Nevertheless, DG methods have primarily been evaluated on photo-only benchmarks focusing on alleviating the dataset bias where both problems of domain distinctiveness and data sparsity can be minimal. We argue that these benchmarks are overly straightforward, and show that simple deep learning baselines perform surprisingly well on them. In this paper, we make two main contributions: Firstly, we build upon the favorable domain shift-robust properties of deep learning methods, and develop a low-rank parameterized CNN model for end-to-end DG learning. Secondly, we develop a DG benchmark dataset covering photo, sketch, cartoon and painting domains. This is both more practically relevant, and harder (bigger domain shift) than existing benchmarks. The results show that our method outperforms existing DG alternatives, and our dataset provides a more significant DG challenge to drive future research.
UniHDA: Towards Universal Hybrid Domain Adaptation of Image Generators
Generative domain adaptation has achieved remarkable progress, enabling us to adapt a pre-trained generator to a new target domain. However, existing methods simply adapt the generator to a single target domain and are limited to a single modality, either text-driven or image-driven. Moreover, they are prone to overfitting domain-specific attributes, which inevitably compromises cross-domain consistency. In this paper, we propose UniHDA, a unified and versatile framework for generative hybrid domain adaptation with multi-modal references from multiple domains. We use CLIP encoder to project multi-modal references into a unified embedding space and then linear interpolate the direction vectors from multiple target domains to achieve hybrid domain adaptation. To ensure the cross-domain consistency, we propose a novel cross-domain spatial structure (CSS) loss that maintains detailed spatial structure information between source and target generator. Experiments show that the adapted generator can synthesise realistic images with various attribute compositions. Additionally, our framework is versatile to multiple generators, \eg, StyleGAN2 and Diffusion Models.
