1 Training Dynamics Underlying Language Model Scaling Laws: Loss Deceleration and Zero-Sum Learning This work aims to understand how scaling improves language models, specifically in terms of training dynamics. We find that language models undergo loss deceleration early in training; an abrupt slowdown in the rate of loss improvement, resulting in piecewise linear behaviour of the loss curve in log-log space. Scaling up the model mitigates this transition by (1) decreasing the loss at which deceleration occurs, and (2) improving the log-log rate of loss improvement after deceleration. We attribute loss deceleration to a type of degenerate training dynamics we term zero-sum learning (ZSL). In ZSL, per-example gradients become systematically opposed, leading to destructive interference in per-example changes in loss. As a result, improving loss on one subset of examples degrades it on another, bottlenecking overall progress. Loss deceleration and ZSL provide new insights into the training dynamics underlying language model scaling laws, and could potentially be targeted directly to improve language models independent of scale. We make our code and artefacts available at: https://github.com/mirandrom/zsl 5 authors · Jun 5, 2025
1 The Minary Primitive of Computational Autopoiesis We introduce Minary, a computational framework designed as a candidate for the first formally provable autopoietic primitive. Minary represents interacting probabilistic events as multi-dimensional vectors and combines them via linear superposition rather than multiplicative scalar operations, thereby preserving uncertainty and enabling constructive and destructive interference in the range [-1,1]. A fixed set of ``perspectives'' evaluates ``semantic dimensions'' according to hidden competencies, and their interactions drive two discrete-time stochastic processes. We model this system as an iterated random affine map and use the theory of iterated random functions to prove that it converges in distribution to a unique stationary law; we moreover obtain an explicit closed form for the limiting expectation in terms of row, column, and global averages of the competency matrix. We then derive exact formulas for the mean and variance of the normalized consensus conditioned on the activation of a given semantic dimension, revealing how consensus depends on competency structure rather than raw input signals. Finally, we argue that Minary is organizationally closed yet operationally open in the sense of Maturana and Varela, and we discuss implications for building self-maintaining, distributed, and parallelizable computational systems that house a uniquely subjective notion of identity. 2 authors · Jan 7
1 Experimental demonstration of superdirective spherical dielectric antenna An experimental demonstration of directivities exceeding the fundamental Kildal limit, a phenomenon called superdirectivity, is provided for spherical high-index dielectric antennas with an electric dipole excitation. A directivity factor of about 10 with a total efficiency of more than 80\% for an antenna having a size of a third of the wavelength was measured. High directivities are shown to be associated with constructive interference of particular electric and magnetic modes of an open spherical resonator. Both analytic solution for a point dipole and a full-wave rigorous simulation for a realistic dipole antenna were employed for optimization and analysis, yielding an excellent agreement between experimentally measured and numerically predicted directivities. The use of high-index low-loss ceramics can significantly reduce the physical size of such antennas while maintaining their overall high radiation efficiency. Such antennas can be attractive for various high-frequency applications, such as antennas for the Internet of things, smart city systems, 5G network systems, and others. The demonstrated concept can be scaled in frequency. 8 authors · Nov 30, 2022
- Two-photon interference: the Hong-Ou-Mandel effect Nearly 30 years ago, two-photon interference was observed, marking the beginning of a new quantum era. Indeed, two-photon interference has no classical analogue, giving it a distinct advantage for a range of applications. The peculiarities of quantum physics may now be used to our advantage to outperform classical computations, securely communicate information, simulate highly complex physical systems and increase the sensitivity of precise measurements. This separation from classical to quantum physics has motivated physicists to study two-particle interference for both fermionic and bosonic quantum objects. So far, two-particle interference has been observed with massive particles, among others, such as electrons and atoms, in addition to plasmons, demonstrating the extent of this effect to larger and more complex quantum systems. A wide array of novel applications to this quantum effect is to be expected in the future. This review will thus cover the progress and applications of two-photon (two-particle) interference over the last three decades. 8 authors · Jun 16, 2020
- Catastrophic Interference is Mitigated in Naturalistic Power-Law Learning Environments Neural networks often suffer from catastrophic interference (CI): performance on previously learned tasks drops off significantly when learning a new task. This contrasts strongly with humans, who can sequentially learn new tasks without appreciably forgetting previous tasks. Prior work has explored various techniques for mitigating CI such as regularization, rehearsal, generative replay, and distillation methods. The current work takes a different approach, one guided by cognitive science research showing that in naturalistic environments, the probability of encountering a task decreases as a power-law of the time since it was last performed. We argue that a realistic evaluation of techniques for the mitigation of CI should be performed in simulated naturalistic learning environments. Thus, we evaluate the extent of mitigation of CI when training simple rehearsal-based methods in power-law environments similar to the ones humans face. Our work explores this novel rehearsal-based approach for a domain-incremental task: learning permutations in the MNIST task. We compare our rehearsal environment with other baselines to show its efficacy in promoting continual learning. Additionally, we investigate whether this environment shows forward facilitation, i.e., faster learning of later tasks. Next, we explore the robustness of our learning environment to the number of tasks, model size, and amount of data rehearsed after each task. Notably, our results show that the performance is comparable or superior to that of models trained using popular regularization methods and also to rehearsals in non-power-law environments. The benefits of this training paradigm include simplicity and the lack of a need for extra neural circuitry. In addition, because our method is orthogonal to other methods, future research can combine training in power-law environments with other continual learning mechanisms. 4 authors · Jan 18, 2024
- A Dataset of Dynamic Reverberant Sound Scenes with Directional Interferers for Sound Event Localization and Detection This report presents the dataset and baseline of Task 3 of the DCASE2021 Challenge on Sound Event Localization and Detection (SELD). The dataset is based on emulation of real recordings of static or moving sound events under real conditions of reverberation and ambient noise, using spatial room impulse responses captured in a variety of rooms and delivered in two spatial formats. The acoustical synthesis remains the same as in the previous iteration of the challenge, however the new dataset brings more challenging conditions of polyphony and overlapping instances of the same class. The most important difference of the new dataset is the introduction of directional interferers, meaning sound events that are localized in space but do not belong to the target classes to be detected and are not annotated. Since such interfering events are expected in every real-world scenario of SELD, the new dataset aims to promote systems that deal with this condition effectively. A modified SELDnet baseline employing the recent ACCDOA representation of SELD problems accompanies the dataset and it is shown to outperform the previous one. The new dataset is shown to be significantly more challenging for both baselines according to all considered metrics. To investigate the individual and combined effects of ambient noise, interferers, and reverberation, we study the performance of the baseline on different versions of the dataset excluding or including combinations of these factors. The results indicate that by far the most detrimental effects are caused by directional interferers. 6 authors · Jun 13, 2021
- Weak localization in radiative transfer of acoustic waves in a randomly-fluctuating slab This paper concerns the derivation of radiative transfer equations for acoustic waves propagating in a randomly fluctuating slab (between two parallel planes) in the weak-scattering regime, and the study of boundary effects through an asymptotic analysis of the Wigner transform of the wave solution. These radiative transfer equations allow to model the transport of wave energy density, taking into account the scattering by random heterogeneities. The approach builds on the method of images, where the slab is extended to a full-space, with a periodic map of mechanical properties and a series of sources located along a periodic pattern. Two types of boundary effects, both on the (small) scale of the wavelength, are observed: one at the boundaries of the slab, and one inside the domain. The former impact the entire energy density (coherent as well as incoherent) and is also observed in half-spaces. The latter, more specific to slabs, corresponds to the constructive interference of waves that have reflected at least twice on the boundaries of the slab and only impacts the coherent part of the energy density. 3 authors · Aug 1, 2023
- Study of Robust Adaptive Beamforming with Covariance Matrix Reconstruction Based on Power Spectral Estimation and Uncertainty Region In this work, a simple and effective robust adaptive beamforming technique is proposed for uniform linear arrays, which is based on the power spectral estimation and uncertainty region (PSEUR) of the interference plus noise (IPN) components. In particular, two algorithms are presented to find the angular sector of interference in every snapshot based on the adopted spatial uncertainty region of the interference direction. Moreover, a power spectrum is introduced based on the estimation of the power of interference and noise components, which allows the development of a robust approach to IPN covariance matrix reconstruction. The proposed method has two main advantages. First, an angular region that contains the interference direction is updated based on the statistics of the array data. Secondly, the proposed IPN-PSEUR method avoids estimating the power spectrum of the whole range of possible directions of the interference sector. Simulation results show that the performance of the proposed IPN-PSEUR beamformer is almost always close to the optimal value across a wide range of signal-to-noise ratios. 4 authors · Mar 18, 2023
1 The SWAP test and the Hong-Ou-Mandel effect are equivalent We show that the Hong-Ou-Mandel effect from quantum optics is equivalent to the SWAP test, a quantum information primitive which compares two arbitrary states. We first derive a destructive SWAP test that doesn't need the ancillary qubit that appears in the usual quantum circuit. Then, we study the Hong-Ou-Mandel effect for two photons meeting at a beam splitter and prove it is, in fact, an optical implementation of the destructive SWAP test. This result offers both an interesting simple realization of a powerful quantum information primitive and an alternative way to understand and analyse the Hong-Ou-Mandel effect. 2 authors · Mar 27, 2013
- Sharp electromagnetically induced absorption via balanced interferometric excitation in a microwave resonator A cylindrical TM_{0,1,0} mode microwave cavity resonator was excited using a balanced interferometric configuration that allowed manipulation of the electric field and potential within the resonator by adjusting the phase and amplitude of the interferometer arms driving the resonator. With precise tuning of the phase and amplitude, 25 dB suppression of the electric field at the resonance frequency was achieved while simultaneously resonantly enhancing the time-varying electric-scalar potential. Under these conditions, the system demonstrated electromagnetically induced absorption in the cavity response due to the annulment of the electric field at the resonance frequency. This phenomena can be regarded as a form of extreme dispersion, and led to a sharp increase in the cavity phase versus frequency response by an order of magnitude when compared to the cavity Q-factor. This work presents an experimental setup that will allow the electric-scalar Aharonov-Bohm effect to be tested under conditions involving a time-varying electric-scalar potential, without the presence of an electric field or magnetic vector potential, an experiment that has not yet been realised. 5 authors · Oct 2, 2024