new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 22

AmpleGCG-Plus: A Strong Generative Model of Adversarial Suffixes to Jailbreak LLMs with Higher Success Rates in Fewer Attempts

Although large language models (LLMs) are typically aligned, they remain vulnerable to jailbreaking through either carefully crafted prompts in natural language or, interestingly, gibberish adversarial suffixes. However, gibberish tokens have received relatively less attention despite their success in attacking aligned LLMs. Recent work, AmpleGCG~liao2024amplegcg, demonstrates that a generative model can quickly produce numerous customizable gibberish adversarial suffixes for any harmful query, exposing a range of alignment gaps in out-of-distribution (OOD) language spaces. To bring more attention to this area, we introduce AmpleGCG-Plus, an enhanced version that achieves better performance in fewer attempts. Through a series of exploratory experiments, we identify several training strategies to improve the learning of gibberish suffixes. Our results, verified under a strict evaluation setting, show that it outperforms AmpleGCG on both open-weight and closed-source models, achieving increases in attack success rate (ASR) of up to 17\% in the white-box setting against Llama-2-7B-chat, and more than tripling ASR in the black-box setting against GPT-4. Notably, AmpleGCG-Plus jailbreaks the newer GPT-4o series of models at similar rates to GPT-4, and, uncovers vulnerabilities against the recently proposed circuit breakers defense. We publicly release AmpleGCG-Plus along with our collected training datasets.

  • 4 authors
·
Oct 29, 2024

Early-Stage Prediction of Review Effort in AI-Generated Pull Requests

As autonomous AI agents transition from code completion tools to full-fledged teammates capable of opening pull requests (PRs) at scale, software maintainers face a new challenge: not just reviewing code, but managing complex interaction loops with non-human contributors. This paradigm shift raises a critical question: can we predict which agent-generated PRs will consume excessive review effort before any human interaction begins? Analyzing 33,707 agent-authored PRs from the AIDev dataset across 2,807 repositories, we uncover a striking two-regime behavioral pattern that fundamentally distinguishes autonomous agents from human developers. The first regime, representing 28.3 percent of all PRs, consists of instant merges (less than 1 minute), reflecting success on narrow automation tasks. The second regime involves iterative review cycles where agents frequently stall or abandon refinement (ghosting). We propose a Circuit Breaker triage model that predicts high-review-effort PRs (top 20 percent) at creation time using only static structural features. A LightGBM model achieves AUC 0.957 on a temporal split, while semantic text features (TF-IDF, CodeBERT) provide negligible predictive value. At a 20 percent review budget, the model intercepts 69 percent of total review effort, enabling zero-latency governance. Our findings challenge prevailing assumptions in AI-assisted code review: review burden is dictated by what agents touch, not what they say, highlighting the need for structural governance mechanisms in human-AI collaboration.

  • 7 authors
·
Jan 2