- Does Unlearning Truly Unlearn? A Black Box Evaluation of LLM Unlearning Methods Large language model unlearning aims to remove harmful information that LLMs have learnt to prevent their use for malicious purposes. LLMU and RMU have been proposed as two methods for LLM unlearning, achieving impressive results on unlearning benchmarks. We study in detail the impact of unlearning on LLM performance metrics using the WMDP dataset as well as a new biology dataset we create. We show that unlearning has a notable impact on general model capabilities, with the performance degradation being more significant in general for LLMU. We further test the robustness of the two methods and find that doing 5-shot prompting or rephrasing the question in simple ways can lead to an over ten-fold increase in accuracy on unlearning benchmarks. Finally, we show that training on unrelated data can almost completely recover pre-unlearning performance, demonstrating that these methods fail at truly unlearning. Our methodology serves as an evaluation framework for LLM unlearning methods. The code is available at: https://github.com/JaiDoshi/Knowledge-Erasure. 2 authors · Nov 18, 2024
1 Towards LLM Unlearning Resilient to Relearning Attacks: A Sharpness-Aware Minimization Perspective and Beyond The LLM unlearning technique has recently been introduced to comply with data regulations and address the safety and ethical concerns of LLMs by removing the undesired data-model influence. However, state-of-the-art unlearning methods face a critical vulnerability: they are susceptible to ``relearning'' the removed information from a small number of forget data points, known as relearning attacks. In this paper, we systematically investigate how to make unlearned models robust against such attacks. For the first time, we establish a connection between robust unlearning and sharpness-aware minimization (SAM) through a unified robust optimization framework, in an analogy to adversarial training designed to defend against adversarial attacks. Our analysis for SAM reveals that smoothness optimization plays a pivotal role in mitigating relearning attacks. Thus, we further explore diverse smoothing strategies to enhance unlearning robustness. Extensive experiments on benchmark datasets, including WMDP and MUSE, demonstrate that SAM and other smoothness optimization approaches consistently improve the resistance of LLM unlearning to relearning attacks. Notably, smoothness-enhanced unlearning also helps defend against (input-level) jailbreaking attacks, broadening our proposal's impact in robustifying LLM unlearning. Codes are available at https://github.com/OPTML-Group/Unlearn-Smooth. 6 authors · Feb 7
1 The WMDP Benchmark: Measuring and Reducing Malicious Use With Unlearning The White House Executive Order on Artificial Intelligence highlights the risks of large language models (LLMs) empowering malicious actors in developing biological, cyber, and chemical weapons. To measure these risks of malicious use, government institutions and major AI labs are developing evaluations for hazardous capabilities in LLMs. However, current evaluations are private, preventing further research into mitigating risk. Furthermore, they focus on only a few, highly specific pathways for malicious use. To fill these gaps, we publicly release the Weapons of Mass Destruction Proxy (WMDP) benchmark, a dataset of 4,157 multiple-choice questions that serve as a proxy measurement of hazardous knowledge in biosecurity, cybersecurity, and chemical security. WMDP was developed by a consortium of academics and technical consultants, and was stringently filtered to eliminate sensitive information prior to public release. WMDP serves two roles: first, as an evaluation for hazardous knowledge in LLMs, and second, as a benchmark for unlearning methods to remove such hazardous knowledge. To guide progress on unlearning, we develop CUT, a state-of-the-art unlearning method based on controlling model representations. CUT reduces model performance on WMDP while maintaining general capabilities in areas such as biology and computer science, suggesting that unlearning may be a concrete path towards reducing malicious use from LLMs. We release our benchmark and code publicly at https://wmdp.ai 53 authors · Mar 5, 2024