Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeVisual In-Context Learning for Large Vision-Language Models
In Large Visual Language Models (LVLMs), the efficacy of In-Context Learning (ICL) remains limited by challenges in cross-modal interactions and representation disparities. To overcome these challenges, we introduce a novel Visual In-Context Learning (VICL) method comprising Visual Demonstration Retrieval, Intent-Oriented Image Summarization, and Intent-Oriented Demonstration Composition. Our approach retrieves images via ''Retrieval & Rerank'' paradigm, summarises images with task intent and task-specific visual parsing, and composes language-based demonstrations that reduce token count and alleviate cross-modal interaction problem. Experimental evaluations on five visual reasoning datasets demonstrate the effectiveness of our method. Moreover, our extensive experiments leverage information flow analysis to elucidate the effectiveness of our method, and investigate the impact of length and position of demonstrations for LVLM. The use of in-context unlearning further shows promise in resetting specific model knowledge without retraining.
Test-Time Visual In-Context Tuning
Visual in-context learning (VICL), as a new paradigm in computer vision, allows the model to rapidly adapt to various tasks with only a handful of prompts and examples. While effective, the existing VICL paradigm exhibits poor generalizability under distribution shifts. In this work, we propose test-time Visual In-Context Tuning (VICT), a method that can adapt VICL models on the fly with a single test sample. Specifically, we flip the role between the task prompts and the test sample and use a cycle consistency loss to reconstruct the original task prompt output. Our key insight is that a model should be aware of a new test distribution if it can successfully recover the original task prompts. Extensive experiments on six representative vision tasks ranging from high-level visual understanding to low-level image processing, with 15 common corruptions, demonstrate that our VICT can improve the generalizability of VICL to unseen new domains. In addition, we show the potential of applying VICT for unseen tasks at test time. Code: https://github.com/Jiahao000/VICT.
ConText: Driving In-context Learning for Text Removal and Segmentation
This paper presents the first study on adapting the visual in-context learning (V-ICL) paradigm to optical character recognition tasks, specifically focusing on text removal and segmentation. Most existing V-ICL generalists employ a reasoning-as-reconstruction approach: they turn to using a straightforward image-label compositor as the prompt and query input, and then masking the query label to generate the desired output. This direct prompt confines the model to a challenging single-step reasoning process. To address this, we propose a task-chaining compositor in the form of image-removal-segmentation, providing an enhanced prompt that elicits reasoning with enriched intermediates. Additionally, we introduce context-aware aggregation, integrating the chained prompt pattern into the latent query representation, thereby strengthening the model's in-context reasoning. We also consider the issue of visual heterogeneity, which complicates the selection of homogeneous demonstrations in text recognition. Accordingly, this is effectively addressed through a simple self-prompting strategy, preventing the model's in-context learnability from devolving into specialist-like, context-free inference. Collectively, these insights culminate in our ConText model, which achieves new state-of-the-art across both in- and out-of-domain benchmarks. The code is available at https://github.com/Ferenas/ConText.
VL-ICL Bench: The Devil in the Details of Benchmarking Multimodal In-Context Learning
Large language models (LLMs) famously exhibit emergent in-context learning (ICL) -- the ability to rapidly adapt to new tasks using few-shot examples provided as a prompt, without updating the model's weights. Built on top of LLMs, vision large language models (VLLMs) have advanced significantly in areas such as recognition, reasoning, and grounding. However, investigations into multimodal ICL have predominantly focused on few-shot visual question answering (VQA), and image captioning, which we will show neither exploit the strengths of ICL, nor test its limitations. The broader capabilities and limitations of multimodal ICL remain under-explored. In this study, we introduce a comprehensive benchmark VL-ICL Bench for multimodal in-context learning, encompassing a broad spectrum of tasks that involve both images and text as inputs and outputs, and different types of challenges, from {perception to reasoning and long context length}. We evaluate the abilities of state-of-the-art VLLMs against this benchmark suite, revealing their diverse strengths and weaknesses, and showing that even the most advanced models, such as GPT-4, find the tasks challenging. By highlighting a range of new ICL tasks, and the associated strengths and limitations of existing models, we hope that our dataset will inspire future work on enhancing the in-context learning capabilities of VLLMs, as well as inspire new applications that leverage VLLM ICL. The code and dataset are available at https://github.com/ys-zong/VL-ICL.
Towards More Unified In-context Visual Understanding
The rapid advancement of large language models (LLMs) has accelerated the emergence of in-context learning (ICL) as a cutting-edge approach in the natural language processing domain. Recently, ICL has been employed in visual understanding tasks, such as semantic segmentation and image captioning, yielding promising results. However, existing visual ICL framework can not enable producing content across multiple modalities, which limits their potential usage scenarios. To address this issue, we present a new ICL framework for visual understanding with multi-modal output enabled. First, we quantize and embed both text and visual prompt into a unified representational space, structured as interleaved in-context sequences. Then a decoder-only sparse transformer architecture is employed to perform generative modeling on them, facilitating in-context learning. Thanks to this design, the model is capable of handling in-context vision understanding tasks with multimodal output in a unified pipeline. Experimental results demonstrate that our model achieves competitive performance compared with specialized models and previous ICL baselines. Overall, our research takes a further step toward unified multimodal in-context learning.
VICON: Vision In-Context Operator Networks for Multi-Physics Fluid Dynamics Prediction
In-Context Operator Networks (ICONs) have demonstrated the ability to learn operators across diverse partial differential equations using few-shot, in-context learning. However, existing ICONs process each spatial point as an individual token, severely limiting computational efficiency when handling dense data in higher spatial dimensions. We propose Vision In-Context Operator Networks (VICON), which integrates vision transformer architectures to efficiently process 2D data through patch-wise operations while preserving ICON's adaptability to multiphysics systems and varying timesteps. Evaluated across three fluid dynamics benchmarks, VICON significantly outperforms state-of-the-art baselines: DPOT and MPP, reducing the averaged last-step rollout error by 37.9% compared to DPOT and 44.7% compared to MPP, while requiring only 72.5% and 34.8% of their respective inference times. VICON naturally supports flexible rollout strategies with varying timestep strides, enabling immediate deployment in imperfect measurement systems where sampling frequencies may differ or frames might be dropped - common challenges in real-world settings - without requiring retraining or interpolation. In these realistic scenarios, VICON exhibits remarkable robustness, experiencing only 24.41% relative performance degradation compared to 71.37%-74.49% degradation in baseline methods, demonstrating its versatility for deploying in realistic applications. Our scripts for processing datasets and code are publicly available at https://github.com/Eydcao/VICON.
VideoICL: Confidence-based Iterative In-context Learning for Out-of-Distribution Video Understanding
Recent advancements in video large multimodal models (LMMs) have significantly improved their video understanding and reasoning capabilities. However, their performance drops on out-of-distribution (OOD) tasks that are underrepresented in training data. Traditional methods like fine-tuning on OOD datasets are impractical due to high computational costs. While In-context learning (ICL) with demonstration examples has shown promising generalization performance in language tasks and image-language tasks without fine-tuning, applying ICL to video-language tasks faces challenges due to the limited context length in Video LMMs, as videos require longer token lengths. To address these issues, we propose VideoICL, a novel video in-context learning framework for OOD tasks that introduces a similarity-based relevant example selection strategy and a confidence-based iterative inference approach. This allows to select the most relevant examples and rank them based on similarity, to be used for inference. If the generated response has low confidence, our framework selects new examples and performs inference again, iteratively refining the results until a high-confidence response is obtained. This approach improves OOD video understanding performance by extending effective context length without incurring high costs. The experimental results on multiple benchmarks demonstrate significant performance gains, especially in domain-specific scenarios, laying the groundwork for broader video comprehension applications. Code will be released at https://github.com/KangsanKim07/VideoICL
ViCrit: A Verifiable Reinforcement Learning Proxy Task for Visual Perception in VLMs
Reinforcement learning (RL) has shown great effectiveness for fine-tuning large language models (LLMs) using tasks that are challenging yet easily verifiable, such as math reasoning or code generation. However, extending this success to visual perception in vision-language models (VLMs) has been impeded by the scarcity of vision-centric tasks that are simultaneously challenging and unambiguously verifiable. To this end, we introduce ViCrit (Visual Caption Hallucination Critic), an RL proxy task that trains VLMs to localize a subtle, synthetic visual hallucination injected into paragraphs of human-written image captions. Starting from a 200-word captions, we inject a single, subtle visual description error-altering a few words on objects, attributes, counts, or spatial relations-and task the model to pinpoint the corrupted span given the image and the modified caption. This formulation preserves the full perceptual difficulty while providing a binary, exact-match reward that is easy to compute and unambiguous. Models trained with the ViCrit Task exhibit substantial gains across a variety of VL benchmarks. Crucially, the improvements transfer beyond natural-image training data to abstract image reasoning and visual math, showing promises of learning to perceive rather than barely memorizing seen objects. To facilitate evaluation, we further introduce ViCrit-Bench, a category-balanced diagnostic benchmark that systematically probes perception errors across diverse image domains and error types. Together, our results demonstrate that fine-grained hallucination criticism is an effective and generalizable objective for enhancing visual perception in VLMs.
All in an Aggregated Image for In-Image Learning
This paper introduces a new in-context learning (ICL) mechanism called In-Image Learning (I^2L) that combines demonstration examples, visual cues, and chain-of-thought reasoning into an aggregated image to enhance the capabilities of Large Multimodal Models (e.g., GPT-4V) in multimodal reasoning tasks. Unlike previous approaches that rely on converting images to text or incorporating visual input into language models, I^2L consolidates all information into an aggregated image and leverages image processing, understanding, and reasoning abilities. This has several advantages: it reduces inaccurate textual descriptions of complex images, provides flexibility in positioning demonstration examples, and avoids multiple input images and lengthy prompts. We also introduce I^2L-Hybrid, a method that combines the strengths of I^2L with other ICL methods. Specifically, it uses an automatic strategy to select the most suitable method (I^2L or another certain ICL method) for a specific task instance. We conduct extensive experiments to assess the effectiveness of I^2L and I^2L-Hybrid on MathVista, which covers a variety of complex multimodal reasoning tasks. Additionally, we investigate the influence of image resolution, the number of demonstration examples in a single image, and the positions of these demonstrations in the aggregated image on the effectiveness of I^2L. Our code is publicly available at https://github.com/AGI-Edgerunners/IIL.
Vote-in-Context: Turning VLMs into Zero-Shot Rank Fusers
In the retrieval domain, candidates' fusion from heterogeneous retrievers is a long-standing challenge, particularly for complex, multi-modal data such as videos. While typical fusion techniques are training-free, they rely solely on rank or score signals, disregarding candidates' representations. This work introduces Vote-in-Context (ViC), a generalized, training-free framework that re-thinks list-wise reranking and fusion as a zero-shot reasoning task for a Vision-Language Model (VLM). The core insight is to serialize both content evidence and retriever metadata directly within the VLM's prompt, allowing the model to adaptively weigh retriever consensus against visual-linguistic content. We demonstrate the generality of this framework by applying it to the challenging domain of cross-modal video retrieval. To this end, we introduce the S-Grid, a compact serialization map that represents each video as an image grid, optionally paired with subtitles to enable list-wise reasoning over video candidates. ViC is evaluated both as a single-list reranker, where it dramatically improves the precision of individual retrievers, and as an ensemble fuser, where it consistently outperforms strong baselines like CombSUM. Across video retrieval benchmarks including ActivityNet and VATEX, the framework establishes new state-of-the-art zero-shot retrieval performance, demonstrating its effectiveness in handling complex visual and temporal signals alongside text. In zero-shot settings, ViC achieves Recall@1 scores of 87.1% (t2v) / 89.0% (v2t) on MSR-VTT and 99.6% (v2t) on VATEX, representing massive gains of up to +40 Recall@1 over previous state-of-the-art baselines. We present ViC as a simple, reproducible, and highly effective recipe for turning modern VLMs into powerful zero-shot rerankers and fusers. Code and resources are publicly available at: https://github.com/mohammad2012191/ViC
Lightweight In-Context Tuning for Multimodal Unified Models
In-context learning (ICL) involves reasoning from given contextual examples. As more modalities comes, this procedure is becoming more challenging as the interleaved input modalities convolutes the understanding process. This is exemplified by the observation that multimodal models often struggle to effectively extrapolate from contextual examples to perform ICL. To address these challenges, we introduce MultiModal In-conteXt Tuning (M^2IXT), a lightweight module to enhance the ICL capabilities of multimodal unified models. The proposed M^2IXT module perceives an expandable context window to incorporate various labeled examples of multiple modalities (e.g., text, image, and coordinates). It can be prepended to various multimodal unified models (e.g., OFA, Unival, LLaVA) of different architectures and trained via a mixed-tasks strategy to enable rapid few-shot adaption on multiple tasks and datasets. When tuned on as little as 50K multimodal data, M^2IXT can boost the few-shot ICL performance significantly (e.g., 18\% relative increase for OFA), and obtained state-of-the-art results across an array of tasks including visual question answering, image captioning, visual grounding, and visual entailment, while being considerably small in terms of model parameters (e.g., sim20times smaller than Flamingo or MMICL), highlighting the flexibility and effectiveness of M^2IXT as a multimodal in-context learner.
In-Context Learning Improves Compositional Understanding of Vision-Language Models
Vision-Language Models (VLMs) have shown remarkable capabilities in a large number of downstream tasks. Nonetheless, compositional image understanding remains a rather difficult task due to the object bias present in training data. In this work, we investigate the reasons for such a lack of capability by performing an extensive bench-marking of compositional understanding in VLMs. We compare contrastive models with generative ones and analyze their differences in architecture, pre-training data, and training tasks and losses. Furthermore, we leverage In-Context Learning (ICL) as a way to improve the ability of VLMs to perform more complex reasoning and understanding given an image. Our extensive experiments demonstrate that our proposed approach outperforms baseline models across multiple compositional understanding datasets.
V*: Guided Visual Search as a Core Mechanism in Multimodal LLMs
When we look around and perform complex tasks, how we see and selectively process what we see is crucial. However, the lack of this visual search mechanism in current multimodal LLMs (MLLMs) hinders their ability to focus on important visual details, especially when handling high-resolution and visually crowded images. To address this, we introduce V*, an LLM-guided visual search mechanism that employs the world knowledge in LLMs for efficient visual querying. When combined with an MLLM, this mechanism enhances collaborative reasoning, contextual understanding, and precise targeting of specific visual elements. This integration results in a new MLLM meta-architecture, named Show, sEArch, and TelL (SEAL). We further create V*Bench, a benchmark specifically designed to evaluate MLLMs in their ability to process high-resolution images and focus on visual details. Our study highlights the necessity of incorporating visual search capabilities into multimodal systems. The code is available https://github.com/penghao-wu/vstar.
What Factors Affect Multi-Modal In-Context Learning? An In-Depth Exploration
Recently, rapid advancements in Multi-Modal In-Context Learning (MM-ICL) have achieved notable success, which is capable of achieving superior performance across various tasks without requiring additional parameter tuning. However, the underlying rules for the effectiveness of MM-ICL remain under-explored. To fill this gap, this work aims to investigate the research question: "What factors affect the performance of MM-ICL?'' To this end, we investigate extensive experiments on the three core steps of MM-ICL including demonstration retrieval, demonstration ordering, and prompt construction using 6 vision large language models and 20 strategies. Our findings highlight (1) the necessity of a multi-modal retriever for demonstration retrieval, (2) the importance of intra-demonstration ordering over inter-demonstration ordering, and (3) the enhancement of task comprehension through introductory instructions in prompts. We hope this study can serve as a foundational guide for optimizing MM-ICL strategies in future research.
ViCor: Bridging Visual Understanding and Commonsense Reasoning with Large Language Models
In our work, we explore the synergistic capabilities of pre-trained vision-and-language models (VLMs) and large language models (LLMs) for visual commonsense reasoning (VCR). We categorize the problem of VCR into visual commonsense understanding (VCU) and visual commonsense inference (VCI). For VCU, which involves perceiving the literal visual content, pre-trained VLMs exhibit strong cross-dataset generalization. On the other hand, in VCI, where the goal is to infer conclusions beyond image content, VLMs face difficulties. We find that a baseline where VLMs provide perception results (image captions) to LLMs leads to improved performance on VCI. However, we identify a challenge with VLMs' passive perception, which often misses crucial context information, leading to incorrect or uncertain reasoning by LLMs. To mitigate this issue, we suggest a collaborative approach where LLMs, when uncertain about their reasoning, actively direct VLMs to concentrate on and gather relevant visual elements to support potential commonsense inferences. In our method, named ViCor, pre-trained LLMs serve as problem classifiers to analyze the problem category, VLM commanders to leverage VLMs differently based on the problem classification, and visual commonsense reasoners to answer the question. VLMs will perform visual recognition and understanding. We evaluate our framework on two VCR benchmark datasets and outperform all other methods that do not require in-domain supervised fine-tuning.
VisGym: Diverse, Customizable, Scalable Environments for Multimodal Agents
Modern Vision-Language Models (VLMs) remain poorly characterized in multi-step visual interactions, particularly in how they integrate perception, memory, and action over long horizons. We introduce VisGym, a gymnasium of 17 environments for evaluating and training VLMs. The suite spans symbolic puzzles, real-image understanding, navigation, and manipulation, and provides flexible controls over difficulty, input representation, planning horizon, and feedback. We also provide multi-step solvers that generate structured demonstrations, enabling supervised finetuning. Our evaluations show that all frontier models struggle in interactive settings, achieving low success rates in both the easy (46.6%) and hard (26.0%) configurations. Our experiments reveal notable limitations: models struggle to effectively leverage long context, performing worse with an unbounded history than with truncated windows. Furthermore, we find that several text-based symbolic tasks become substantially harder once rendered visually. However, explicit goal observations, textual feedback, and exploratory demonstrations in partially observable or unknown-dynamics settings for supervised finetuning yield consistent gains, highlighting concrete failure modes and pathways for improving multi-step visual decision-making. Code, data, and models can be found at: https://visgym.github.io/.
True Multimodal In-Context Learning Needs Attention to the Visual Context
Multimodal Large Language Models (MLLMs), built on powerful language backbones, have enabled Multimodal In-Context Learning (MICL)-adapting to new tasks from a few multimodal demonstrations consisting of images, questions, and answers. Despite showing noticeable improvement on standard vision-language datasets, current MLLMs struggle to leverage visual information in the demonstrations. Specifically, they tend to neglect visual cues and over-rely on textual patterns, leading to mere text imitation rather than genuine multimodal adaptation. This behavior makes MICL still unimodal and largely restricts its practical utility. More importantly, this limitation is often concealed by the improved performance on tasks that do not require understanding the visual context. As a result, how to effectively enhance MICL ability and reliably evaluate the MICL performance remains underexplored. To address these issues, we first introduce Dynamic Attention Reallocation (DARA), an efficient fine-tuning strategy that encourages models to attend to the visual context by rebalancing attention across visual and textual tokens. In addition, we present TrueMICL, an MICL-dedicated dataset with both support and test sets that explicitly requires the integration of multimodal information-particularly visual content-for correct task completion. Extensive experiments demonstrate the effectiveness of our holistic solution, showcasing substantial improvements in the true multimodal in-context learning capabilities. Code and datasets are available at https://chenxshuo.github.io/true-micl-colm .
From Illusion to Intention: Visual Rationale Learning for Vision-Language Reasoning
Recent advances in vision-language reasoning underscore the importance of thinking with images, where models actively ground their reasoning in visual evidence. Yet, prevailing frameworks treat visual actions as optional tools, boosting metrics but leaving reasoning ungrounded and crops ineffective. This gap gives rise to the illusion of thinking with images: models seem visually grounded but rely on context-agnostic actions that neither refine perception nor guide reasoning toward correct answers. We address this problem by reframing visual actions as core reasoning primitives rather than optional tools, which we term visual rationalization, the visual analogue of textual Chain-of-Thought. Building on this insight, we propose Visual Rationale Learning (ViRL), an end-to-end paradigm that grounds training in the visual rationale itself. ViRL integrates (1) Process Supervision with ground-truth rationales, (2) Objective Alignment via step-level reward shaping, and (3) Fine-Grained Credit Assignment to distinguish correct, redundant, and erroneous actions. By ensuring each action contributes meaningfully to the reasoning chain, ViRL enables models to "get the right answer for the right visual reason". Trained purely with end-to-end RL, ViRL achieves state-of-the-art results across benchmarks spanning perception, hallucination, and reasoning. This work establishes visual rationalization as a task-agnostic, process-grounded paradigm for building transparent, verifiable, and trustworthy vision-language models.
Towards Visuospatial Cognition via Hierarchical Fusion of Visual Experts
While Multimodal Large Language Models (MLLMs) excel at general vision-language tasks, visuospatial cognition - reasoning about spatial layouts, relations, and dynamics - remains a significant challenge. Existing models often lack the necessary architectural components and specialized training data for fine-grained spatial understanding. We introduce ViCA2 (Visuospatial Cognitive Assistant 2), a novel MLLM designed to enhance spatial reasoning. ViCA2 features a dual vision encoder architecture integrating SigLIP for semantics and Hiera for spatial structure, coupled with a token ratio control mechanism for efficiency. We also developed ViCA-322K, a new large-scale dataset with over 322,000 spatially grounded question-answer pairs for targeted instruction tuning. On the challenging VSI-Bench benchmark, our ViCA2-7B model achieves a state-of-the-art average score of 56.8, significantly surpassing larger open-source models (e.g., LLaVA-NeXT-Video-72B, 40.9) and leading proprietary models (Gemini-1.5 Pro, 45.4). This demonstrates the effectiveness of our approach in achieving strong visuospatial intelligence with a compact model. We release ViCA2, its codebase, and the ViCA-322K dataset to facilitate further research.
Efficient In-Context Learning in Vision-Language Models for Egocentric Videos
Recent advancements in text-only large language models (LLMs) have highlighted the benefit of in-context learning for adapting to new tasks with a few demonstrations. However, extending in-context learning to large vision-language models (VLMs) using a huge amount of naturalistic vision-language data has shown limited success, particularly for egocentric videos, due to high data collection costs. We propose a novel training method Efficient In-context Learning on Egocentric Videos (EILEV), which elicits in-context learning in VLMs for egocentric videos without requiring massive, naturalistic egocentric video datasets. EILEV involves architectural and training data adaptations to allow the model to process contexts interleaved with video clips and narrations, sampling of in-context examples with clusters of similar verbs and nouns, use of data with skewed marginal distributions with a long tail of infrequent verbs and nouns, as well as homonyms and synonyms. Our evaluations show that EILEV-trained models outperform larger VLMs trained on a huge amount of naturalistic data in in-context learning. Furthermore, they can generalize to not only out-of-distribution, but also novel, rare egocentric videos and texts via in-context learning, demonstrating potential for applications requiring cost-effective training, and rapid post-deployment adaptability. Our code and demo are available at https://github.com/yukw777/EILEV.
From Introspection to Best Practices: Principled Analysis of Demonstrations in Multimodal In-Context Learning
Motivated by in-context learning (ICL) capabilities of Large Language models (LLMs), multimodal LLMs with additional visual modality are also exhibited with similar ICL abilities when multiple image-text pairs are provided as demonstrations. However, relatively less work has been done to investigate the principles behind how and why multimodal ICL works. We conduct a systematic and principled evaluation of multimodal ICL for models of different scales on a broad spectrum of new yet critical tasks. Through perturbations over different modality information, we show that modalities matter differently across tasks in multimodal ICL. Considering such modality impact, we further utilize modality-driven demonstration strategies to boost ICL performance. We also identify that demonstration selection is closely related to the models' ability to capture task inductive biases from multimodal ICL. Our principled analysis provides a comprehensive way of understanding the role of demonstrations in multimodal in-context learning, and sheds light on effectively improving multimodal ICL on a wide range of tasks even if those tasks are not seen in or even contradict pretraining data.
VisRL: Intention-Driven Visual Perception via Reinforced Reasoning
Visual understanding is inherently intention-driven - humans selectively focus on different regions of a scene based on their goals. Recent advances in large multimodal models (LMMs) enable flexible expression of such intentions through natural language, allowing queries to guide visual reasoning processes. Frameworks like Visual Chain-of-Thought have demonstrated the benefit of incorporating explicit reasoning steps, where the model predicts a focus region before answering a query. However, existing approaches rely heavily on supervised training with annotated intermediate bounding boxes, which severely limits scalability due to the combinatorial explosion of intention-region pairs. To overcome this limitation, we propose VisRL, the first framework that applies reinforcement learning (RL) to the problem of intention-driven visual perception. VisRL optimizes the entire visual reasoning process using only reward signals. By treating intermediate focus selection as an internal decision optimized through trial-and-error, our method eliminates the need for costly region annotations while aligning more closely with how humans learn to perceive the world. Extensive experiments across multiple benchmarks show that VisRL consistently outperforms strong baselines, demonstrating both its effectiveness and its strong generalization across different LMMs. Our code is available at https://github.com/zhangquanchen/VisRL.
Learning to Localize Objects Improves Spatial Reasoning in Visual-LLMs
Integration of Large Language Models (LLMs) into visual domain tasks, resulting in visual-LLMs (V-LLMs), has enabled exceptional performance in vision-language tasks, particularly for visual question answering (VQA). However, existing V-LLMs (e.g. BLIP-2, LLaVA) demonstrate weak spatial reasoning and localization awareness. Despite generating highly descriptive and elaborate textual answers, these models fail at simple tasks like distinguishing a left vs right location. In this work, we explore how image-space coordinate based instruction fine-tuning objectives could inject spatial awareness into V-LLMs. We discover optimal coordinate representations, data-efficient instruction fine-tuning objectives, and pseudo-data generation strategies that lead to improved spatial awareness in V-LLMs. Additionally, our resulting model improves VQA across image and video domains, reduces undesired hallucination, and generates better contextual object descriptions. Experiments across 5 vision-language tasks involving 14 different datasets establish the clear performance improvements achieved by our proposed framework.
BiasICL: In-Context Learning and Demographic Biases of Vision Language Models
Vision language models (VLMs) show promise in medical diagnosis, but their performance across demographic subgroups when using in-context learning (ICL) remains poorly understood. We examine how the demographic composition of demonstration examples affects VLM performance in two medical imaging tasks: skin lesion malignancy prediction and pneumothorax detection from chest radiographs. Our analysis reveals that ICL influences model predictions through multiple mechanisms: (1) ICL allows VLMs to learn subgroup-specific disease base rates from prompts and (2) ICL leads VLMs to make predictions that perform differently across demographic groups, even after controlling for subgroup-specific disease base rates. Our empirical results inform best-practices for prompting current VLMs (specifically examining demographic subgroup performance, and matching base rates of labels to target distribution at a bulk level and within subgroups), while also suggesting next steps for improving our theoretical understanding of these models.
Retrieval-Augmented Decision Transformer: External Memory for In-context RL
In-context learning (ICL) is the ability of a model to learn a new task by observing a few exemplars in its context. While prevalent in NLP, this capability has recently also been observed in Reinforcement Learning (RL) settings. Prior in-context RL methods, however, require entire episodes in the agent's context. Given that complex environments typically lead to long episodes with sparse rewards, these methods are constrained to simple environments with short episodes. To address these challenges, we introduce Retrieval-Augmented Decision Transformer (RA-DT). RA-DT employs an external memory mechanism to store past experiences from which it retrieves only sub-trajectories relevant for the current situation. The retrieval component in RA-DT does not require training and can be entirely domain-agnostic. We evaluate the capabilities of RA-DT on grid-world environments, robotics simulations, and procedurally-generated video games. On grid-worlds, RA-DT outperforms baselines, while using only a fraction of their context length. Furthermore, we illuminate the limitations of current in-context RL methods on complex environments and discuss future directions. To facilitate future research, we release datasets for four of the considered environments.
V-LoL: A Diagnostic Dataset for Visual Logical Learning
Despite the successes of recent developments in visual AI, different shortcomings still exist; from missing exact logical reasoning, to abstract generalization abilities, to understanding complex and noisy scenes. Unfortunately, existing benchmarks, were not designed to capture more than a few of these aspects. Whereas deep learning datasets focus on visually complex data but simple visual reasoning tasks, inductive logic datasets involve complex logical learning tasks, however, lack the visual component. To address this, we propose the visual logical learning dataset, V-LoL, that seamlessly combines visual and logical challenges. Notably, we introduce the first instantiation of V-LoL, V-LoL-Trains, -- a visual rendition of a classic benchmark in symbolic AI, the Michalski train problem. By incorporating intricate visual scenes and flexible logical reasoning tasks within a versatile framework, V-LoL-Trains provides a platform for investigating a wide range of visual logical learning challenges. We evaluate a variety of AI systems including traditional symbolic AI, neural AI, as well as neuro-symbolic AI. Our evaluations demonstrate that even state-of-the-art AI faces difficulties in dealing with visual logical learning challenges, highlighting unique advantages and limitations specific to each methodology. Overall, V-LoL opens up new avenues for understanding and enhancing current abilities in visual logical learning for AI systems.
Teaching VLMs to Localize Specific Objects from In-context Examples
Vision-Language Models (VLMs) have shown remarkable capabilities across diverse visual tasks, including image recognition, video understanding, and Visual Question Answering (VQA) when explicitly trained for these tasks. Despite these advances, we find that current VLMs lack a fundamental cognitive ability: learning to localize objects in a scene by taking into account the context. In this work, we focus on the task of few-shot personalized localization, where a model is given a small set of annotated images (in-context examples) -- each with a category label and bounding box -- and is tasked with localizing the same object type in a query image. To provoke personalized localization abilities in models, we present a data-centric solution that fine-tunes them using carefully curated data from video object tracking datasets. By leveraging sequences of frames tracking the same object across multiple shots, we simulate instruction-tuning dialogues that promote context awareness. To reinforce this, we introduce a novel regularization technique that replaces object labels with pseudo-names, ensuring the model relies on visual context rather than prior knowledge. Our method significantly enhances few-shot localization performance without sacrificing generalization, as demonstrated on several benchmarks tailored to personalized localization. This work is the first to explore and benchmark personalized few-shot localization for VLMs, laying a foundation for future research in context-driven vision-language applications. The code for our project is available at https://github.com/SivanDoveh/IPLoc
Meta-Adaptive Prompt Distillation for Few-Shot Visual Question Answering
Large Multimodal Models (LMMs) often rely on in-context learning (ICL) to perform new tasks with minimal supervision. However, ICL performance, especially in smaller LMMs, is inconsistent and does not always improve monotonically with increasing examples. We hypothesize that this occurs due to the LMM being overwhelmed by additional information present in the image embeddings, which is not required for the downstream task. To address this, we propose a meta-learning approach that provides an alternative for inducing few-shot capabilities in LMMs, using a fixed set of soft prompts that are distilled from task-relevant image features and can be adapted at test time using a few examples. To facilitate this distillation, we introduce an attention-mapper module that can be easily integrated with the popular LLaVA v1.5 architecture and is jointly learned with soft prompts, enabling task adaptation in LMMs under low-data regimes with just a few gradient steps. Evaluation on the VL-ICL Bench shows that our method consistently outperforms ICL and related prompt-tuning approaches, even under image perturbations, improving task induction and reasoning across visual question answering tasks.
Visuospatial Cognitive Assistant
Video-based spatial cognition is vital for robotics and embodied AI but challenges current Vision-Language Models (VLMs). This paper makes two key contributions. First, we introduce ViCA (Visuospatial Cognitive Assistant)-322K, a diverse dataset of 322,003 QA pairs from real-world indoor videos (ARKitScenes, ScanNet, ScanNet++), offering supervision for 3D metadata-grounded queries and video-based complex reasoning. Second, we develop ViCA-7B, fine-tuned on ViCA-322K, which achieves new state-of-the-art on all eight VSI-Bench tasks, outperforming existing models, including larger ones (e.g., +26.1 on Absolute Distance). For interpretability, we present ViCA-Thinking-2.68K, a dataset with explicit reasoning chains, and fine-tune ViCA-7B to create ViCA-7B-Thinking, a model that articulates its spatial reasoning. Our work highlights the importance of targeted data and suggests paths for improved temporal-spatial modeling. We release all resources to foster research in robust visuospatial intelligence.
VRAG-RL: Empower Vision-Perception-Based RAG for Visually Rich Information Understanding via Iterative Reasoning with Reinforcement Learning
Effectively retrieving, reasoning and understanding visually rich information remains a challenge for RAG methods. Traditional text-based methods cannot handle visual-related information. On the other hand, current vision-based RAG approaches are often limited by fixed pipelines and frequently struggle to reason effectively due to the insufficient activation of the fundamental capabilities of models. As RL has been proven to be beneficial for model reasoning, we introduce VRAG-RL, a novel RL framework tailored for complex reasoning across visually rich information. With this framework, VLMs interact with search engines, autonomously sampling single-turn or multi-turn reasoning trajectories with the help of visual perception tokens and undergoing continual optimization based on these samples. Our approach highlights key limitations of RL in RAG domains: (i) Prior Multi-modal RAG approaches tend to merely incorporate images into the context, leading to insufficient reasoning token allocation and neglecting visual-specific perception; and (ii) When models interact with search engines, their queries often fail to retrieve relevant information due to the inability to articulate requirements, thereby leading to suboptimal performance. To address these challenges, we define an action space tailored for visually rich inputs, with actions including cropping and scaling, allowing the model to gather information from a coarse-to-fine perspective. Furthermore, to bridge the gap between users' original inquiries and the retriever, we employ a simple yet effective reward that integrates query rewriting and retrieval performance with a model-based reward. Our VRAG-RL optimizes VLMs for RAG tasks using specially designed RL strategies, aligning the model with real-world applications. The code is available at https://github.com/Alibaba-NLP/VRAG.
What Makes Multimodal In-Context Learning Work?
Large Language Models have demonstrated remarkable performance across various tasks, exhibiting the capacity to swiftly acquire new skills, such as through In-Context Learning (ICL) with minimal demonstration examples. In this work, we present a comprehensive framework for investigating Multimodal ICL (M-ICL) in the context of Large Multimodal Models. We consider the best open-source multimodal models (e.g., IDEFICS, OpenFlamingo) and a wide range of multimodal tasks. Our study unveils several noteworthy findings: (1) M-ICL primarily relies on text-driven mechanisms, showing little to no influence from the image modality. (2) When used with advanced-ICL strategy (like RICES), M-ICL is not better than a simple strategy based on majority voting over context examples. Moreover, we identify several biases and limitations of M-ICL that warrant consideration prior to deployment. Code available at https://gitlab.com/folbaeni/multimodal-icl
Video In-context Learning
In-context learning for vision data has been underexplored compared with that in natural language. Previous works studied image in-context learning, urging models to generate a single image guided by demonstrations. In this paper, we propose and study video in-context learning, where the model starts from an existing video clip and generates diverse potential future sequences, each semantically guided by the prompted video demonstrations. To achieve this, we provide a clear definition of the task, and train an autoregressive Transformer on video datasets. We thoroughly analyze the effect of different datasets and represent frames as discrete tokens, and then model them by next token predictions. We design various evaluation metrics, including both objective and subjective measures, to demonstrate the visual quality and semantic accuracy of generation results. Our model follows the scaling law and generates high-quality video clips that accurately align with the semantic guidance provided by in-context examples.
HoneyBee: Data Recipes for Vision-Language Reasoners
Recent advances in vision-language models (VLMs) have made them highly effective at reasoning tasks. However, the principles underlying the construction of performant VL reasoning training datasets remain poorly understood. In this work, we introduce several data curation approaches and study their impacts on VL reasoning capabilities by carefully controlling training and evaluation setups. We analyze the effects of context (image and question pair) sources, implement targeted data interventions, and explore scaling up images, questions, and chain-of-thought (CoT) solutions. Our findings reveal that (a) context source strategies significantly affect VLM performance, (b) interventions such as auxiliary signals from image captions and the inclusion of text-only reasoning yield substantial gains, and (c) scaling all data dimensions (e.g., unique questions per image and unique CoTs per image-question pair) consistently improves reasoning capability. Motivated by these insights, we introduce HoneyBee, a large-scale, high-quality CoT reasoning dataset with 2.5M examples consisting 350K image-question pairs. VLMs trained with HoneyBee outperform state-of-the-art models across model sizes. For instance, a HoneyBee-trained VLM with 3B parameters outperforms the SOTA model and the base model by 7.8% and 24.8%, respectively, on MathVerse. Furthermore, we propose a test-time scaling strategy that reduces decoding cost by 73% without sacrificing accuracy. Overall, this work presents improved strategies for VL reasoning dataset curation research.
MMICL: Empowering Vision-language Model with Multi-Modal In-Context Learning
Starting from the resurgence of deep learning, vision-language models (VLMs) benefiting from large language models (LLMs) have never been so popular. However, while LLMs can utilize extensive background knowledge and task information with in-context learning, most VLMs still struggle with understanding complex multi-modal prompts with multiple images. The issue can traced back to the architectural design of VLMs or pre-training data. Specifically, the current VLMs primarily emphasize utilizing multi-modal data with a single image some, rather than multi-modal prompts with interleaved multiple images and text. Even though some newly proposed VLMs could handle user prompts with multiple images, pre-training data does not provide more sophisticated multi-modal prompts than interleaved image and text crawled from the web. We propose MMICL to address the issue by considering both the model and data perspectives. We introduce a well-designed architecture capable of seamlessly integrating visual and textual context in an interleaved manner and MIC dataset to reduce the gap between the training data and the complex user prompts in real-world applications, including: 1) multi-modal context with interleaved images and text, 2) textual references for each image, and 3) multi-image data with spatial, logical, or temporal relationships. Our experiments confirm that MMICL achieves new stat-of-the-art zero-shot and few-shot performance on a wide range of general vision-language tasks, especially for complex reasoning benchmarks including MME and MMBench. Our analysis demonstrates that MMICL effectively deals with the challenge of complex multi-modal prompt understanding. The experiments on ScienceQA-IMG also show that MMICL successfully alleviates the issue of language bias in VLMs, which we believe is the reason behind the advanced performance of MMICL.
IllusionVQA: A Challenging Optical Illusion Dataset for Vision Language Models
The advent of Vision Language Models (VLM) has allowed researchers to investigate the visual understanding of a neural network using natural language. Beyond object classification and detection, VLMs are capable of visual comprehension and common-sense reasoning. This naturally led to the question: How do VLMs respond when the image itself is inherently unreasonable? To this end, we present IllusionVQA: a diverse dataset of challenging optical illusions and hard-to-interpret scenes to test the capability of VLMs in two distinct multiple-choice VQA tasks - comprehension and soft localization. GPT4V, the best-performing VLM, achieves 62.99% accuracy (4-shot) on the comprehension task and 49.7% on the localization task (4-shot and Chain-of-Thought). Human evaluation reveals that humans achieve 91.03% and 100% accuracy in comprehension and localization. We discover that In-Context Learning (ICL) and Chain-of-Thought reasoning substantially degrade the performance of GeminiPro on the localization task. Tangentially, we discover a potential weakness in the ICL capabilities of VLMs: they fail to locate optical illusions even when the correct answer is in the context window as a few-shot example.
Reinforced Visual Perception with Tools
Visual reasoning, a cornerstone of human intelligence, encompasses complex perceptual and logical processes essential for solving diverse visual problems. While advances in computer vision have produced powerful models for various perceptual tasks, leveraging these for general visual reasoning remains challenging. Prior work demonstrates that augmenting LLMs with vision models via supervised finetuning improves performance, but faces key limitations such as expensive data generation, reliance on careful data filtering, and poor generalization. To address these issues, we propose ReVPT to enhance multi-modal LLMs' abilities to reason about and use visual tools through reinforcement learning. We introduce a novel RL algorithm based on GRPO, designed to train models to reason with a suite of four visual tools. Through extensive experiments, we show that our method achieves state-of-the-art performance on several perception-heavy benchmarks, including SAT, CV-Bench, BLINK and MMStar, significantly outperforming the supervised and text-based RL finetuning baselines. Notably, Our ReVPT-3B and ReVPT-7B outperform the instruct models by 9.03% and 9.44% on CV-Bench. Finally, we bring to the community new insights on RL-based visual tool-usage through extensive ablations. Our code is available at https://github.com/ls-kelvin/REVPT.
Exploring the Zero-Shot Capabilities of Vision-Language Models for Improving Gaze Following
Contextual cues related to a person's pose and interactions with objects and other people in the scene can provide valuable information for gaze following. While existing methods have focused on dedicated cue extraction methods, in this work we investigate the zero-shot capabilities of Vision-Language Models (VLMs) for extracting a wide array of contextual cues to improve gaze following performance. We first evaluate various VLMs, prompting strategies, and in-context learning (ICL) techniques for zero-shot cue recognition performance. We then use these insights to extract contextual cues for gaze following, and investigate their impact when incorporated into a state of the art model for the task. Our analysis indicates that BLIP-2 is the overall top performing VLM and that ICL can improve performance. We also observe that VLMs are sensitive to the choice of the text prompt although ensembling over multiple text prompts can provide more robust performance. Additionally, we discover that using the entire image along with an ellipse drawn around the target person is the most effective strategy for visual prompting. For gaze following, incorporating the extracted cues results in better generalization performance, especially when considering a larger set of cues, highlighting the potential of this approach.
ContextVLA: Vision-Language-Action Model with Amortized Multi-Frame Context
Leveraging temporal context is crucial for success in partially observable robotic tasks. However, prior work in behavior cloning has demonstrated inconsistent performance gains when using multi-frame observations. In this paper, we introduce ContextVLA, a policy model that robustly improves robotic task performance by effectively leveraging multi-frame observations. Our approach is motivated by the key observation that Vision-Language-Action models (VLA), i.e., policy models built upon a Vision-Language Model (VLM), more effectively utilize multi-frame observations for action generation. This suggests that VLMs' inherent temporal understanding capability enables them to extract more meaningful context from multi-frame observations. However, the high dimensionality of video inputs introduces significant computational overhead, making VLA training and inference inefficient. To address this, ContextVLA compresses past observations into a single context token, allowing the policy to efficiently leverage temporal context for action generation. Our experiments show that ContextVLA consistently improves over single-frame VLAs and achieves the benefits of full multi-frame training but with reduced training and inference times.
ICAL: Continual Learning of Multimodal Agents by Transforming Trajectories into Actionable Insights
Large-scale generative language and vision-language models (LLMs and VLMs) excel in few-shot in-context learning for decision making and instruction following. However, they require high-quality exemplar demonstrations to be included in their context window. In this work, we ask: Can LLMs and VLMs generate their own prompt examples from generic, sub-optimal demonstrations? We propose In-Context Abstraction Learning (ICAL), a method that builds a memory of multimodal experience insights from sub-optimal demonstrations and human feedback. Given a noisy demonstration in a new domain, VLMs abstract the trajectory into a general program by fixing inefficient actions and annotating cognitive abstractions: task relationships, object state changes, temporal subgoals, and task construals. These abstractions are refined and adapted interactively through human feedback while the agent attempts to execute the trajectory in a similar environment. The resulting abstractions, when used as exemplars in the prompt, significantly improve decision-making in retrieval-augmented LLM and VLM agents. Our ICAL agent surpasses the state-of-the-art in dialogue-based instruction following in TEACh, multimodal web agents in VisualWebArena, and action anticipation in Ego4D. In TEACh, we achieve a 12.6% improvement in goal-condition success. In VisualWebArena, our task success rate improves over the SOTA from 14.3% to 22.7%. In Ego4D action forecasting, we improve over few-shot GPT-4V and remain competitive with supervised models. We show finetuning our retrieval-augmented in-context agent yields additional improvements. Our approach significantly reduces reliance on expert-crafted examples and consistently outperforms in-context learning from action plans that lack such insights.
Teaching RL Agents to Act Better: VLM as Action Advisor for Online Reinforcement Learning
Online reinforcement learning in complex tasks is time-consuming, as massive interaction steps are needed to learn the optimal Q-function.Vision-language action (VLA) policies represent a promising direction for solving diverse tasks; however, their performance on low-level control remains limited, and effective deployment often requires task-specific expert demonstrations for fine-tuning. In this paper, we propose VARL (VLM as Action advisor for online Reinforcement Learning), a framework that leverages the domain knowledge of vision-language models (VLMs) to provide action suggestions for reinforcement learning agents. Unlike previous methods, VARL provides action suggestions rather than designing heuristic rewards, thereby guaranteeing unchanged optimality and convergence. The suggested actions increase sample diversity and ultimately improve sample efficiency, especially in sparse-reward tasks. To validate the effectiveness of VARL, we evaluate it across diverse environments and agent settings. Results show that VARL greatly improves sample efficiency without introducing significant computational overhead. These advantages make VARL a general framework for online reinforcement learning and make it feasible to directly apply reinforcement learning from scratch in real-world environments.
Losing Visual Needles in Image Haystacks: Vision Language Models are Easily Distracted in Short and Long Contexts
We present LoCoVQA, a dynamic benchmark generator for evaluating long-context extractive reasoning in vision language models (VLMs). LoCoVQA augments test examples for mathematical reasoning, VQA, and character recognition tasks with increasingly long visual contexts composed of both in-distribution and out-of-distribution distractor images. Across these tasks, a diverse set of VLMs rapidly lose performance as the visual context length grows, often exhibiting a striking exponential decay trend. This test assesses how well VLMs can ignore irrelevant information when answering queries -- a task that is quite easy for language models (LMs) in the text domain -- demonstrating that current state-of-the-art VLMs lack this essential capability for many long-context applications.
Unveiling Visual Biases in Audio-Visual Localization Benchmarks
Audio-Visual Source Localization (AVSL) aims to localize the source of sound within a video. In this paper, we identify a significant issue in existing benchmarks: the sounding objects are often easily recognized based solely on visual cues, which we refer to as visual bias. Such biases hinder these benchmarks from effectively evaluating AVSL models. To further validate our hypothesis regarding visual biases, we examine two representative AVSL benchmarks, VGG-SS and EpicSounding-Object, where the vision-only models outperform all audiovisual baselines. Our findings suggest that existing AVSL benchmarks need further refinement to facilitate audio-visual learning.
Grounded Reinforcement Learning for Visual Reasoning
While reinforcement learning (RL) over chains of thought has significantly advanced language models in tasks such as mathematics and coding, visual reasoning introduces added complexity by requiring models to direct visual attention, interpret perceptual inputs, and ground abstract reasoning in spatial evidence. We introduce ViGoRL (Visually Grounded Reinforcement Learning), a vision-language model trained with RL to explicitly anchor each reasoning step to specific visual coordinates. Inspired by human visual decision-making, ViGoRL learns to produce spatially grounded reasoning traces, guiding visual attention to task-relevant regions at each step. When fine-grained exploration is required, our novel multi-turn RL framework enables the model to dynamically zoom into predicted coordinates as reasoning unfolds. Across a diverse set of visual reasoning benchmarks--including SAT-2 and BLINK for spatial reasoning, V*bench for visual search, and ScreenSpot and VisualWebArena for web-based grounding--ViGoRL consistently outperforms both supervised fine-tuning and conventional RL baselines that lack explicit grounding mechanisms. Incorporating multi-turn RL with zoomed-in visual feedback significantly improves ViGoRL's performance on localizing small GUI elements and visual search, achieving 86.4% on V*Bench. Additionally, we find that grounding amplifies other visual behaviors such as region exploration, grounded subgoal setting, and visual verification. Finally, human evaluations show that the model's visual references are not only spatially accurate but also helpful for understanding model reasoning steps. Our results show that visually grounded RL is a strong paradigm for imbuing models with general-purpose visual reasoning.
Vocabulary-free Image Classification
Recent advances in large vision-language models have revolutionized the image classification paradigm. Despite showing impressive zero-shot capabilities, a pre-defined set of categories, a.k.a. the vocabulary, is assumed at test time for composing the textual prompts. However, such assumption can be impractical when the semantic context is unknown and evolving. We thus formalize a novel task, termed as Vocabulary-free Image Classification (VIC), where we aim to assign to an input image a class that resides in an unconstrained language-induced semantic space, without the prerequisite of a known vocabulary. VIC is a challenging task as the semantic space is extremely large, containing millions of concepts, with hard-to-discriminate fine-grained categories. In this work, we first empirically verify that representing this semantic space by means of an external vision-language database is the most effective way to obtain semantically relevant content for classifying the image. We then propose Category Search from External Databases (CaSED), a method that exploits a pre-trained vision-language model and an external vision-language database to address VIC in a training-free manner. CaSED first extracts a set of candidate categories from captions retrieved from the database based on their semantic similarity to the image, and then assigns to the image the best matching candidate category according to the same vision-language model. Experiments on benchmark datasets validate that CaSED outperforms other complex vision-language frameworks, while being efficient with much fewer parameters, paving the way for future research in this direction.
VDGD: Mitigating LVLM Hallucinations in Cognitive Prompts by Bridging the Visual Perception Gap
Recent interest in Large Vision-Language Models (LVLMs) for practical applications is moderated by the significant challenge of hallucination or the inconsistency between the factual information and the generated text. In this paper, we first perform an in-depth analysis of hallucinations and discover several novel insights about how and when LVLMs hallucinate. From our analysis, we show that: (1) The community's efforts have been primarily targeted towards reducing hallucinations related to visual recognition (VR) prompts (e.g., prompts that only require describing the image), thereby ignoring hallucinations for cognitive prompts (e.g., prompts that require additional skills like reasoning on contents of the image). (2) LVLMs lack visual perception, i.e., they can see but not necessarily understand or perceive the input image. We analyze responses to cognitive prompts and show that LVLMs hallucinate due to a perception gap: although LVLMs accurately recognize visual elements in the input image and possess sufficient cognitive skills, they struggle to respond accurately and hallucinate. To overcome this shortcoming, we propose Visual Description Grounded Decoding (VDGD), a simple, robust, and training-free method for alleviating hallucinations. Specifically, we first describe the image and add it as a prefix to the instruction. Next, during auto-regressive decoding, we sample from the plausible candidates according to their KL-Divergence (KLD) to the description, where lower KLD is given higher preference. Experimental results on several benchmarks and LVLMs show that VDGD improves significantly over other baselines in reducing hallucinations. We also propose VaLLu, a benchmark for the comprehensive evaluation of the cognitive capabilities of LVLMs.
Exploring Diverse In-Context Configurations for Image Captioning
After discovering that Language Models (LMs) can be good in-context few-shot learners, numerous strategies have been proposed to optimize in-context sequence configurations. Recently, researchers in Vision-Language (VL) domains also develop their few-shot learners, while they only use the simplest way, ie., randomly sampling, to configure in-context image-text pairs. In order to explore the effects of varying configurations on VL in-context learning, we devised four strategies for image selection and four for caption assignment to configure in-context image-text pairs for image captioning. Here Image Captioning is used as the case study since it can be seen as the visually-conditioned LM. Our comprehensive experiments yield two counter-intuitive but valuable insights, highlighting the distinct characteristics of VL in-context learning due to multi-modal synergy, as compared to the NLP case. Furthermore, in our exploration of optimal combination strategies, we observed an average performance enhancement of 20.9 of CIDEr scores compared to the baseline. The code is given in https://github.com/yongliang-wu/ExploreCfg.
Don't Look Only Once: Towards Multimodal Interactive Reasoning with Selective Visual Revisitation
We present v1, a lightweight extension to Multimodal Large Language Models (MLLMs) that enables selective visual revisitation during inference. While current MLLMs typically consume visual input only once and reason purely over internal memory, v1 introduces a simple point-and-copy mechanism that allows the model to dynamically retrieve relevant image regions throughout the reasoning process. This mechanism augments existing architectures with minimal modifications, enabling contextual access to visual tokens based on the model's evolving hypotheses. To train this capability, we construct v1g, a dataset of 300K multimodal reasoning traces with interleaved visual grounding annotations. Experiments on three multimodal mathematical reasoning benchmarks -- MathVista, MathVision, and MathVerse -- demonstrate that v1 consistently improves performance over comparable baselines, particularly on tasks requiring fine-grained visual reference and multi-step reasoning. Our results suggest that dynamic visual access is a promising direction for enhancing grounded multimodal reasoning. Code, models, and data will be released to support future research.
Multimodal Task Vectors Enable Many-Shot Multimodal In-Context Learning
The recent success of interleaved Large Multimodal Models (LMMs) in few-shot learning suggests that in-context learning (ICL) with many examples can be promising for learning new tasks. However, this many-shot multimodal ICL setting has one crucial problem: it is fundamentally limited by the model's context length set at pretraining. The problem is especially prominent in the multimodal domain, which processes both text and images, requiring additional tokens. This motivates the need for a multimodal method to compress many shots into fewer tokens without finetuning. In this work, we enable LMMs to perform multimodal, many-shot in-context learning by leveraging Multimodal Task Vectors (MTV)--compact implicit representations of in-context examples compressed in the model's attention heads. Specifically, we first demonstrate the existence of such MTV in LMMs and then leverage these extracted MTV to enable many-shot in-context learning for various vision-and-language tasks. Our experiments suggest that MTV can scale in performance with the number of compressed shots and generalize to similar out-of-domain tasks without additional context length for inference.
No Labels, No Problem: Training Visual Reasoners with Multimodal Verifiers
Visual reasoning is challenging, requiring both precise object grounding and understanding complex spatial relationships. Existing methods fall into two camps: language-only chain-of-thought approaches, which demand large-scale (image, query, answer) supervision, and program-synthesis approaches which use pre-trained models and avoid training, but suffer from flawed logic and erroneous grounding. We propose an annotation-free training framework that improves both reasoning and grounding. Our framework uses AI-powered verifiers: an LLM verifier refines LLM reasoning via reinforcement learning, while a VLM verifier strengthens visual grounding through automated hard-negative mining, eliminating the need for ground truth labels. This design combines the strengths of modern AI systems: advanced language-only reasoning models for decomposing spatial queries into simpler subtasks, and strong vision specialist models improved via performant VLM critics. We evaluate our approach across diverse spatial reasoning tasks, and show that our method improves visual reasoning and surpasses open-source and proprietary models, while with our improved visual grounding model we further outperform recent text-only visual reasoning methods. Project webpage: https://glab-caltech.github.io/valor/
IV-Bench: A Benchmark for Image-Grounded Video Perception and Reasoning in Multimodal LLMs
Existing evaluation frameworks for Multimodal Large Language Models (MLLMs) primarily focus on image reasoning or general video understanding tasks, largely overlooking the significant role of image context in video comprehension. To bridge this gap, we propose IV-Bench, the first comprehensive benchmark for evaluating Image-Grounded Video Perception and Reasoning. IV-Bench consists of 967 videos paired with 2,585 meticulously annotated image-text queries across 13 tasks (7 perception and 6 reasoning tasks) and 5 representative categories. Extensive evaluations of state-of-the-art open-source (e.g., InternVL2.5, Qwen2.5-VL) and closed-source (e.g., GPT-4o, Gemini2-Flash and Gemini2-Pro) MLLMs demonstrate that current models substantially underperform in image-grounded video Perception and Reasoning, merely achieving at most 28.9% accuracy. Further analysis reveals key factors influencing model performance on IV-Bench, including inference pattern, frame number, and resolution. Additionally, through a simple data synthesis approach, we demonstratethe challenges of IV- Bench extend beyond merely aligning the data format in the training proecss. These findings collectively provide valuable insights for future research. Our codes and data are released in https://github.com/multimodal-art-projection/IV-Bench.
Thinking Before Looking: Improving Multimodal LLM Reasoning via Mitigating Visual Hallucination
Multimodal large language models (MLLMs) have advanced the integration of visual and linguistic modalities, establishing themselves as the dominant paradigm for visual-language tasks. Current approaches like chain of thought (CoT) reasoning have augmented the cognitive capabilities of large language models (LLMs), yet their adaptation to MLLMs is hindered by heightened risks of hallucination in cross-modality comprehension. In this paper, we find that the thinking while looking paradigm in current multimodal CoT approaches--where reasoning chains are generated alongside visual input--fails to mitigate hallucinations caused by misleading images. To address these limitations, we propose the Visual Inference Chain (VIC) framework, a novel approach that constructs reasoning chains using textual context alone before introducing visual input, effectively reducing cross-modal biases and enhancing multimodal reasoning accuracy. Comprehensive evaluations demonstrate that VIC significantly improves zero-shot performance across various vision-related tasks, mitigating hallucinations while refining the reasoning capabilities of MLLMs. Our code repository can be found at https://github.com/Terry-Xu-666/visual_inference_chain.
Learning without Forgetting for Vision-Language Models
Class-Incremental Learning (CIL) or continual learning is a desired capability in the real world, which requires a learning system to adapt to new tasks without forgetting former ones. While traditional CIL methods focus on visual information to grasp core features, recent advances in Vision-Language Models (VLM) have shown promising capabilities in learning generalizable representations with the aid of textual information. However, when continually trained with new classes, VLMs often suffer from catastrophic forgetting of former knowledge. Applying VLMs to CIL poses two major challenges: 1) how to adapt the model without forgetting; and 2) how to make full use of the multi-modal information. To this end, we propose PROjectiOn Fusion (PROOF) that enables VLMs to learn without forgetting. To handle the first challenge, we propose training task-specific projections based on the frozen image/text encoders. When facing new tasks, new projections are expanded and former projections are fixed, alleviating the forgetting of old concepts. For the second challenge, we propose the fusion module to better utilize the cross-modality information. By jointly adjusting visual and textual features, the model can capture semantic information with stronger representation ability. Extensive experiments on nine benchmark datasets validate PROOF achieves state-of-the-art performance.
Localized Symbolic Knowledge Distillation for Visual Commonsense Models
Instruction following vision-language (VL) models offer a flexible interface that supports a broad range of multimodal tasks in a zero-shot fashion. However, interfaces that operate on full images do not directly enable the user to "point to" and access specific regions within images. This capability is important not only to support reference-grounded VL benchmarks, but also, for practical applications that require precise within-image reasoning. We build Localized Visual Commonsense models, which allow users to specify (multiple) regions as input. We train our model by sampling localized commonsense knowledge from a large language model (LLM): specifically, we prompt an LLM to collect commonsense knowledge given a global literal image description and a local literal region description automatically generated by a set of VL models. With a separately trained critic model that selects high-quality examples, we find that training on the localized commonsense corpus can successfully distill existing VL models to support a reference-as-input interface. Empirical results and human evaluations in a zero-shot setup demonstrate that our distillation method results in more precise VL models of reasoning compared to a baseline of passing a generated referring expression to an LLM.
SINC: Self-Supervised In-Context Learning for Vision-Language Tasks
Large Pre-trained Transformers exhibit an intriguing capacity for in-context learning. Without gradient updates, these models can rapidly construct new predictors from demonstrations presented in the inputs. Recent works promote this ability in the vision-language domain by incorporating visual information into large language models that can already make in-context predictions. However, these methods could inherit issues in the language domain, such as template sensitivity and hallucination. Also, the scale of these language models raises a significant demand for computations, making learning and operating these models resource-intensive. To this end, we raise a question: ``How can we enable in-context learning without relying on the intrinsic in-context ability of large language models?". To answer it, we propose a succinct and general framework, Self-supervised IN-Context learning (SINC), that introduces a meta-model to learn on self-supervised prompts consisting of tailored demonstrations. The learned models can be transferred to downstream tasks for making in-context predictions on-the-fly. Extensive experiments show that SINC outperforms gradient-based methods in various vision-language tasks under few-shot settings. Furthermore, the designs of SINC help us investigate the benefits of in-context learning across different tasks, and the analysis further reveals the essential components for the emergence of in-context learning in the vision-language domain.
ViCaS: A Dataset for Combining Holistic and Pixel-level Video Understanding using Captions with Grounded Segmentation
Recent advances in multimodal large language models (MLLMs) have expanded research in video understanding, primarily focusing on high-level tasks such as video captioning and question-answering. Meanwhile, a smaller body of work addresses dense, pixel-precise segmentation tasks, which typically involve category-guided or referral-based object segmentation. Although both research directions are essential for developing models with human-level video comprehension, they have largely evolved separately, with distinct benchmarks and architectures. This paper aims to unify these efforts by introducing ViCaS, a new dataset containing thousands of challenging videos, each annotated with detailed, human-written captions and temporally consistent, pixel-accurate masks for multiple objects with phrase grounding. Our benchmark evaluates models on both holistic/high-level understanding and language-guided, pixel-precise segmentation. We also present carefully validated evaluation measures and propose an effective model architecture that can tackle our benchmark. Project page: https://ali2500.github.io/vicas-project/
ViC-MAE: Self-Supervised Representation Learning from Images and Video with Contrastive Masked Autoencoders
We propose ViC-MAE, a model that combines both Masked AutoEncoders (MAE) and contrastive learning. ViC-MAE is trained using a global featured obtained by pooling the local representations learned under an MAE reconstruction loss and leveraging this representation under a contrastive objective across images and video frames. We show that visual representations learned under ViC-MAE generalize well to both video and image classification tasks. Particularly, ViC-MAE obtains state-of-the-art transfer learning performance from video to images on Imagenet-1k compared to the recently proposed OmniMAE by achieving a top-1 accuracy of 86% (+1.3% absolute improvement) when trained on the same data and 87.1% (+2.4% absolute improvement) when training on extra data. At the same time ViC-MAE outperforms most other methods on video benchmarks by obtaining 75.9% top-1 accuracy on the challenging Something something-v2 video benchmark . When training on videos and images from a diverse combination of datasets, our method maintains a balanced transfer-learning performance between video and image classification benchmarks, coming only as a close second to the best supervised method.
Chain-of-Focus: Adaptive Visual Search and Zooming for Multimodal Reasoning via RL
Vision language models (VLMs) have achieved impressive performance across a variety of computer vision tasks. However, the multimodal reasoning capability has not been fully explored in existing models. In this paper, we propose a Chain-of-Focus (CoF) method that allows VLMs to perform adaptive focusing and zooming in on key image regions based on obtained visual cues and the given questions, achieving efficient multimodal reasoning. To enable this CoF capability, we present a two-stage training pipeline, including supervised fine-tuning (SFT) and reinforcement learning (RL). In the SFT stage, we construct the MM-CoF dataset, comprising 3K samples derived from a visual agent designed to adaptively identify key regions to solve visual tasks with different image resolutions and questions. We use MM-CoF to fine-tune the Qwen2.5-VL model for cold start. In the RL stage, we leverage the outcome accuracies and formats as rewards to update the Qwen2.5-VL model, enabling further refining the search and reasoning strategy of models without human priors. Our model achieves significant improvements on multiple benchmarks. On the V* benchmark that requires strong visual reasoning capability, our model outperforms existing VLMs by 5% among 8 image resolutions ranging from 224 to 4K, demonstrating the effectiveness of the proposed CoF method and facilitating the more efficient deployment of VLMs in practical applications.
InternVid: A Large-scale Video-Text Dataset for Multimodal Understanding and Generation
This paper introduces InternVid, a large-scale video-centric multimodal dataset that enables learning powerful and transferable video-text representations for multimodal understanding and generation. The InternVid dataset contains over 7 million videos lasting nearly 760K hours, yielding 234M video clips accompanied by detailed descriptions of total 4.1B words. Our core contribution is to develop a scalable approach to autonomously build a high-quality video-text dataset with large language models (LLM), thereby showcasing its efficacy in learning video-language representation at scale. Specifically, we utilize a multi-scale approach to generate video-related descriptions. Furthermore, we introduce ViCLIP, a video-text representation learning model based on ViT-L. Learned on InternVid via contrastive learning, this model demonstrates leading zero-shot action recognition and competitive video retrieval performance. Beyond basic video understanding tasks like recognition and retrieval, our dataset and model have broad applications. They are particularly beneficial for generating interleaved video-text data for learning a video-centric dialogue system, advancing video-to-text and text-to-video generation research. These proposed resources provide a tool for researchers and practitioners interested in multimodal video understanding and generation.
On the Feasibility of Vision-Language Models for Time-Series Classification
We build upon time-series classification by leveraging the capabilities of Vision Language Models (VLMs). We find that VLMs produce competitive results after two or less epochs of fine-tuning. We develop a novel approach that incorporates graphical data representations as images in conjunction with numerical data. This approach is rooted in the hypothesis that graphical representations can provide additional contextual information that numerical data alone may not capture. Additionally, providing a graphical representation can circumvent issues such as limited context length faced by LLMs. To further advance this work, we implemented a scalable end-to-end pipeline for training on different scenarios, allowing us to isolate the most effective strategies for transferring learning capabilities from LLMs to Time Series Classification (TSC) tasks. Our approach works with univariate and multivariate time-series data. In addition, we conduct extensive and practical experiments to show how this approach works for time-series classification and generative labels.
Mimic In-Context Learning for Multimodal Tasks
Recently, In-context Learning (ICL) has become a significant inference paradigm in Large Multimodal Models (LMMs), utilizing a few in-context demonstrations (ICDs) to prompt LMMs for new tasks. However, the synergistic effects in multimodal data increase the sensitivity of ICL performance to the configurations of ICDs, stimulating the need for a more stable and general mapping function. Mathematically, in Transformer-based models, ICDs act as ``shift vectors'' added to the hidden states of query tokens. Inspired by this, we introduce Mimic In-Context Learning (MimIC) to learn stable and generalizable shift effects from ICDs. Specifically, compared with some previous shift vector-based methods, MimIC more strictly approximates the shift effects by integrating lightweight learnable modules into LMMs with four key enhancements: 1) inserting shift vectors after attention layers, 2) assigning a shift vector to each attention head, 3) making shift magnitude query-dependent, and 4) employing a layer-wise alignment loss. Extensive experiments on two LMMs (Idefics-9b and Idefics2-8b-base) across three multimodal tasks (VQAv2, OK-VQA, Captioning) demonstrate that MimIC outperforms existing shift vector-based methods. The code is available at https://github.com/Kamichanw/MimIC.
Position-guided Text Prompt for Vision-Language Pre-training
Vision-Language Pre-Training (VLP) has shown promising capabilities to align image and text pairs, facilitating a broad variety of cross-modal learning tasks. However, we observe that VLP models often lack the visual grounding/localization capability which is critical for many downstream tasks such as visual reasoning. In this work, we propose a novel Position-guided Text Prompt (PTP) paradigm to enhance the visual grounding ability of cross-modal models trained with VLP. Specifically, in the VLP phase, PTP divides the image into Ntimes N blocks, and identifies the objects in each block through the widely used object detector in VLP. It then reformulates the visual grounding task into a fill-in-the-blank problem given a PTP by encouraging the model to predict the objects in the given blocks or regress the blocks of a given object, e.g. filling `P" or ``O" in aPTP ``The block P has a O". This mechanism improves the visual grounding capability of VLP models and thus helps them better handle various downstream tasks. By introducing PTP into several state-of-the-art VLP frameworks, we observe consistently significant improvements across representative cross-modal learning model architectures and several benchmarks, e.g. zero-shot Flickr30K Retrieval (+4.8 in average recall@1) for ViLT vilt baseline, and COCO Captioning (+5.3 in CIDEr) for SOTA BLIP blip baseline. Moreover, PTP achieves comparable results with object-detector based methods, and much faster inference speed since PTP discards its object detector for inference while the later cannot. Our code and pre-trained weight will be released at https://github.com/sail-sg/ptp.
Scaling Agentic Reinforcement Learning for Tool-Integrated Reasoning in VLMs
While recent vision-language models (VLMs) demonstrate strong image understanding, their ability to "think with images", i.e., to reason through multi-step visual interactions, remains limited. We introduce VISTA-Gym, a scalable training environment for incentivizing tool-integrated visual reasoning capabilities in VLMs. VISTA-Gym unifies diverse real-world multimodal reasoning tasks (7 tasks from 13 datasets in total) with a standardized interface for visual tools (e.g., grounding, parsing), executable interaction loops, verifiable feedback signals, and efficient trajectory logging, enabling visual agentic reinforcement learning at scale. While recent VLMs exhibit strong text-only reasoning, both proprietary and open-source models still struggle with tool selection, invocation, and coordination. With VISTA-Gym, we train VISTA-R1 to interleave tool-use with agentic reasoning via multi-turn trajectory sampling and end-to-end reinforcement learning. Extensive experiments across 11 public reasoning-intensive VQA benchmarks show that VISTA-R1-8B outperforms state-of-the-art baselines with similar sizes by 9.51%-18.72%, demonstrating VISTA-Gym as an effective training ground to unlock the tool-integrated reasoning capabilities for VLMs.
VIOLA: Towards Video In-Context Learning with Minimal Annotations
Generalizing Multimodal Large Language Models (MLLMs) to novel video domains is essential for real-world deployment but remains challenging due to the scarcity of labeled data. While In-Context Learning (ICL) offers a training-free adaptation path, standard methods rely on large annotated pools, which are often impractical in specialized environments like industrial or surgical settings since they require the experts' annotations. To bridge this gap, we introduce VIOLA (Video In-cOntext Learning with minimal Annotation), a label-efficient framework that synergizes minimal expert supervision with abundant unlabeled data. First, to maximize the efficiency of a strict annotation budget, we propose density-uncertainty-weighted sampling. Unlike standard diversity or uncertainty strategies that risk selecting visual outliers, our method leverages density estimation to identify samples that are simultaneously diverse, representative, and informative. Second, to utilize the remaining unlabeled data without noise propagation, we construct a hybrid pool and introduce confidence-aware retrieval and confidence-aware prompting. These mechanisms explicitly model label reliability, retrieving demonstrations based on a composite score of similarity and confidence while enabling the MLLM to adaptively distinguish between verified ground truths and noisy pseudo-labels. Extensive experiments across nine diverse benchmarks using four MLLMs demonstrate that our framework significantly outperforms various baselines in low-resource settings, achieving robust adaptation with minimal annotation costs.
Vision-Language Pre-training: Basics, Recent Advances, and Future Trends
This paper surveys vision-language pre-training (VLP) methods for multimodal intelligence that have been developed in the last few years. We group these approaches into three categories: (i) VLP for image-text tasks, such as image captioning, image-text retrieval, visual question answering, and visual grounding; (ii) VLP for core computer vision tasks, such as (open-set) image classification, object detection, and segmentation; and (iii) VLP for video-text tasks, such as video captioning, video-text retrieval, and video question answering. For each category, we present a comprehensive review of state-of-the-art methods, and discuss the progress that has been made and challenges still being faced, using specific systems and models as case studies. In addition, for each category, we discuss advanced topics being actively explored in the research community, such as big foundation models, unified modeling, in-context few-shot learning, knowledge, robustness, and computer vision in the wild, to name a few.
VicaSplat: A Single Run is All You Need for 3D Gaussian Splatting and Camera Estimation from Unposed Video Frames
We present VicaSplat, a novel framework for joint 3D Gaussians reconstruction and camera pose estimation from a sequence of unposed video frames, which is a critical yet underexplored task in real-world 3D applications. The core of our method lies in a novel transformer-based network architecture. In particular, our model starts with an image encoder that maps each image to a list of visual tokens. All visual tokens are concatenated with additional inserted learnable camera tokens. The obtained tokens then fully communicate with each other within a tailored transformer decoder. The camera tokens causally aggregate features from visual tokens of different views, and further modulate them frame-wisely to inject view-dependent features. 3D Gaussian splats and camera pose parameters can then be estimated via different prediction heads. Experiments show that VicaSplat surpasses baseline methods for multi-view inputs, and achieves comparable performance to prior two-view approaches. Remarkably, VicaSplat also demonstrates exceptional cross-dataset generalization capability on the ScanNet benchmark, achieving superior performance without any fine-tuning. Project page: https://lizhiqi49.github.io/VicaSplat.
Measuring Pointwise V-Usable Information In-Context-ly
In-context learning (ICL) is a new learning paradigm that has gained popularity along with the development of large language models. In this work, we adapt a recently proposed hardness metric, pointwise V-usable information (PVI), to an in-context version (in-context PVI). Compared to the original PVI, in-context PVI is more efficient in that it requires only a few exemplars and does not require fine-tuning. We conducted a comprehensive empirical analysis to evaluate the reliability of in-context PVI. Our findings indicate that in-context PVI estimates exhibit similar characteristics to the original PVI. Specific to the in-context setting, we show that in-context PVI estimates remain consistent across different exemplar selections and numbers of shots. The variance of in-context PVI estimates across different exemplar selections is insignificant, which suggests that in-context PVI are stable. Furthermore, we demonstrate how in-context PVI can be employed to identify challenging instances. Our work highlights the potential of in-context PVI and provides new insights into the capabilities of ICL.
UP-VLA: A Unified Understanding and Prediction Model for Embodied Agent
Recent advancements in Vision-Language-Action (VLA) models have leveraged pre-trained Vision-Language Models (VLMs) to improve the generalization capabilities. VLMs, typically pre-trained on vision-language understanding tasks, provide rich semantic knowledge and reasoning abilities. However, prior research has shown that VLMs often focus on high-level semantic content and neglect low-level features, limiting their ability to capture detailed spatial information and understand physical dynamics. These aspects, which are crucial for embodied control tasks, remain underexplored in existing pre-training paradigms. In this paper, we investigate the training paradigm for VLAs, and introduce UP-VLA, a Unified VLA model training with both multi-modal Understanding and future Prediction objectives, enhancing both high-level semantic comprehension and low-level spatial understanding. Experimental results show that UP-VLA achieves a 33% improvement on the Calvin ABC-D benchmark compared to the previous state-of-the-art method. Additionally, UP-VLA demonstrates improved success rates in real-world manipulation tasks, particularly those requiring precise spatial information.
Vision Language Models are In-Context Value Learners
Predicting temporal progress from visual trajectories is important for intelligent robots that can learn, adapt, and improve. However, learning such progress estimator, or temporal value function, across different tasks and domains requires both a large amount of diverse data and methods which can scale and generalize. To address these challenges, we present Generative Value Learning (\GVL), a universal value function estimator that leverages the world knowledge embedded in vision-language models (VLMs) to predict task progress. Naively asking a VLM to predict values for a video sequence performs poorly due to the strong temporal correlation between successive frames. Instead, GVL poses value estimation as a temporal ordering problem over shuffled video frames; this seemingly more challenging task encourages VLMs to more fully exploit their underlying semantic and temporal grounding capabilities to differentiate frames based on their perceived task progress, consequently producing significantly better value predictions. Without any robot or task specific training, GVL can in-context zero-shot and few-shot predict effective values for more than 300 distinct real-world tasks across diverse robot platforms, including challenging bimanual manipulation tasks. Furthermore, we demonstrate that GVL permits flexible multi-modal in-context learning via examples from heterogeneous tasks and embodiments, such as human videos. The generality of GVL enables various downstream applications pertinent to visuomotor policy learning, including dataset filtering, success detection, and advantage-weighted regression -- all without any model training or finetuning.
PictSure: Pretraining Embeddings Matters for In-Context Learning Image Classifiers
Building image classification models remains cumbersome in data-scarce domains, where collecting large labeled datasets is impractical. In-context learning (ICL) has emerged as a promising paradigm for few-shot image classification (FSIC), enabling models to generalize across domains without gradient-based adaptation. However, prior work has largely overlooked a critical component of ICL-based FSIC pipelines: the role of image embeddings. In this work, we present PictSure, an ICL framework that places the embedding model -- its architecture, pretraining, and training dynamics -- at the center of analysis. We systematically examine the effects of different visual encoder types, pretraining objectives, and fine-tuning strategies on downstream FSIC performance. Our experiments show that the training success and the out-of-domain performance are highly dependent on how the embedding models are pretrained. Consequently, PictSure manages to outperform existing ICL-based FSIC models on out-of-domain benchmarks that differ significantly from the training distribution, while maintaining comparable results on in-domain tasks. Code can be found at https://github.com/PictSure/pictsure-library.
Look Less, Reason More: Rollout-Guided Adaptive Pixel-Space Reasoning
Vision-Language Models (VLMs) excel at many multimodal tasks, yet they frequently struggle with tasks requiring precise understanding and handling of fine-grained visual elements. This is mainly due to information loss during image encoding or insufficient attention to critical regions. Recent work has shown promise by incorporating pixel-level visual information into the reasoning process, enabling VLMs to access high-resolution visual details during their thought process. However, this pixel-level information is often overused, leading to inefficiency and distraction from irrelevant visual details. To address these challenges, we propose the first framework for adaptive pixel reasoning that dynamically determines necessary pixel-level operations based on the input query. Specifically, we first apply operation-aware supervised fine-tuning to establish baseline competence in textual reasoning and visual operations, then design a novel rollout-guided reinforcement learning framework relying on feedback of the model's own responses, which enables the VLM to determine when pixel operations should be invoked based on query difficulty. Experiments on extensive multimodal reasoning benchmarks show that our model achieves superior performance while significantly reducing unnecessary visual operations. Impressively, our model achieves 73.4\% accuracy on HR-Bench 4K while maintaining a tool usage ratio of only 20.1\%, improving accuracy and simultaneously reducing tool usage by 66.5\% compared to the previous methods.
MAPL: Parameter-Efficient Adaptation of Unimodal Pre-Trained Models for Vision-Language Few-Shot Prompting
Large pre-trained models have proved to be remarkable zero- and (prompt-based) few-shot learners in unimodal vision and language tasks. We propose MAPL, a simple and parameter-efficient method that reuses frozen pre-trained unimodal models and leverages their strong generalization capabilities in multimodal vision-language (VL) settings. MAPL learns a lightweight mapping between the representation spaces of unimodal models using aligned image-text data, and can generalize to unseen VL tasks from just a few in-context examples. The small number of trainable parameters makes MAPL effective at low-data and in-domain learning. Moreover, MAPL's modularity enables easy extension to other pre-trained models. Extensive experiments on several visual question answering and image captioning benchmarks show that MAPL achieves superior or competitive performance compared to similar methods while training orders of magnitude fewer parameters. MAPL can be trained in just a few hours using modest computational resources and public datasets. We release our code and pre-trained model weights at https://github.com/mair-lab/mapl.
Select2Plan: Training-Free ICL-Based Planning through VQA and Memory Retrieval
This study explores the potential of off-the-shelf Vision-Language Models (VLMs) for high-level robot planning in the context of autonomous navigation. Indeed, while most of existing learning-based approaches for path planning require extensive task-specific training/fine-tuning, we demonstrate how such training can be avoided for most practical cases. To do this, we introduce Select2Plan (S2P), a novel training-free framework for high-level robot planning which completely eliminates the need for fine-tuning or specialised training. By leveraging structured Visual Question-Answering (VQA) and In-Context Learning (ICL), our approach drastically reduces the need for data collection, requiring a fraction of the task-specific data typically used by trained models, or even relying only on online data. Our method facilitates the effective use of a generally trained VLM in a flexible and cost-efficient way, and does not require additional sensing except for a simple monocular camera. We demonstrate its adaptability across various scene types, context sources, and sensing setups. We evaluate our approach in two distinct scenarios: traditional First-Person View (FPV) and infrastructure-driven Third-Person View (TPV) navigation, demonstrating the flexibility and simplicity of our method. Our technique significantly enhances the navigational capabilities of a baseline VLM of approximately 50% in TPV scenario, and is comparable to trained models in the FPV one, with as few as 20 demonstrations.
Probing Visual Language Priors in VLMs
Despite recent advances in Vision-Language Models (VLMs), many still over-rely on visual language priors present in their training data rather than true visual reasoning. To examine the situation, we introduce ViLP, a visual question answering (VQA) benchmark that pairs each question with three potential answers and three corresponding images: one image whose answer can be inferred from text alone, and two images that demand visual reasoning. By leveraging image generative models, we ensure significant variation in texture, shape, conceptual combinations, hallucinated elements, and proverb-based contexts, making our benchmark images distinctly out-of-distribution. While humans achieve near-perfect accuracy, modern VLMs falter; for instance, GPT-4 achieves only 66.17% on ViLP. To alleviate this, we propose a self-improving framework in which models generate new VQA pairs and images, then apply pixel-level and semantic corruptions to form "good-bad" image pairs for self-training. Our training objectives compel VLMs to focus more on actual visual inputs and have demonstrated their effectiveness in enhancing the performance of open-source VLMs, including LLaVA-v1.5 and Cambrian.
ViCO: A Training Strategy towards Semantic Aware Dynamic High-Resolution
Existing Multimodal Large Language Models (MLLMs) suffer from increased inference costs due to the additional vision tokens introduced by image inputs. In this work, we propose Visual Consistency Learning (ViCO), a novel training algorithm that enables the model to represent images of varying semantic complexities using different numbers of vision tokens. The key idea behind our method is to employ multiple MLP connectors, each with a different image compression ratio, to downsample the vision tokens based on the semantic complexity of the image. During training, we minimize the KL divergence between the responses conditioned on different MLP connectors. At inference time, we introduce an image router, termed Visual Resolution Router (ViR), that automatically selects the appropriate compression rate for each image patch. Compared with existing dynamic high-resolution strategies, which adjust the number of visual tokens based on image resolutions, our method dynamically adapts the number of visual tokens according to semantic complexity. Experimental results demonstrate that our method can reduce the number of vision tokens by up to 50% while maintaining the model's perception, reasoning, and OCR capabilities. We hope this work will contribute to the development of more efficient MLLMs. The code and models will be released to facilitate future research.
OpenThinkIMG: Learning to Think with Images via Visual Tool Reinforcement Learning
While humans can flexibly leverage interactive visual cognition for complex problem-solving, enabling Large Vision-Language Models (LVLMs) to learn similarly adaptive behaviors with visual tools remains challenging. A significant hurdle is the current lack of standardized infrastructure, which hinders integrating diverse tools, generating rich interaction data, and training robust agents effectively. To address these gaps, we introduce OpenThinkIMG, the first open-source, comprehensive end-to-end framework for tool-augmented LVLMs. It features standardized vision tool interfaces, scalable trajectory generation for policy initialization, and a flexible training environment. Furthermore, considering supervised fine-tuning (SFT) on static demonstrations offers limited policy generalization for dynamic tool invocation, we propose a novel reinforcement learning (RL) framework V-ToolRL to train LVLMs to learn adaptive policies for invoking external vision tools. V-ToolRL enables LVLMs to autonomously discover optimal tool-usage strategies by directly optimizing for task success using feedback from tool interactions. We empirically validate V-ToolRL on challenging chart reasoning tasks. Our RL-trained agent, built upon a Qwen2-VL-2B, significantly outperforms its SFT-initialized counterpart (+28.83 points) and surpasses established supervised tool-learning baselines like Taco and CogCom by an average of +12.7 points. Notably, it also surpasses prominent closed-source models like GPT-4.1 by +8.68 accuracy points. We hope OpenThinkIMG can serve as a foundational framework for advancing dynamic, tool-augmented visual reasoning, helping the community develop AI agents that can genuinely "think with images".
V-DPO: Mitigating Hallucination in Large Vision Language Models via Vision-Guided Direct Preference Optimization
Large vision-language models (LVLMs) suffer from hallucination, resulting in misalignment between the output textual response and the input visual content. Recent research indicates that the over-reliance on the Large Language Model (LLM) backbone, as one cause of the LVLM hallucination, inherently introduces bias from language priors, leading to insufficient context attention to the visual inputs. We tackle this issue of hallucination by mitigating such over-reliance through preference learning. We propose Vision-guided Direct Preference Optimization (V-DPO) to enhance visual context learning at training time. To interpret the effectiveness and generalizability of V-DPO on different types of training data, we construct a synthetic dataset containing both response- and image-contrast preference pairs, compared against existing human-annotated hallucination samples. Our approach achieves significant improvements compared with baseline methods across various hallucination benchmarks. Our analysis indicates that V-DPO excels in learning from image-contrast preference data, demonstrating its superior ability to elicit and understand nuances of visual context. Our code is publicly available at https://github.com/YuxiXie/V-DPO.
Mixtures of In-Context Learners
In-context learning (ICL) adapts LLMs by providing demonstrations without fine-tuning the model parameters; however, it does not differentiate between demonstrations and quadratically increases the complexity of Transformer LLMs, exhausting the memory. As a solution, we propose Mixtures of In-Context Learners (MoICL), a novel approach to treat subsets of demonstrations as experts and learn a weighting function to merge their output distributions based on a training set. In our experiments, we show performance improvements on 5 out of 7 classification datasets compared to a set of strong baselines (up to +13\% compared to ICL and LENS). Moreover, we enhance the Pareto frontier of ICL by reducing the inference time needed to achieve the same performance with fewer demonstrations. Finally, MoICL is more robust to out-of-domain (up to +11\%), imbalanced (up to +49\%), or noisy demonstrations (up to +38\%) or can filter these out from datasets. Overall, MoICL is a more expressive approach to learning from demonstrations without exhausting the context window or memory.
MetaVLA: Unified Meta Co-training For Efficient Embodied Adaption
Vision-Language-Action (VLA) models show promise in embodied reasoning, yet remain far from true generalists-they often require task-specific fine-tuning, incur high compute costs, and generalize poorly to unseen tasks. We propose MetaVLA, a unified, backbone-agnostic post-training framework for efficient and scalable alignment. MetaVLA introduces Context-Aware Meta Co-Training, which consolidates diverse target tasks into a single fine-tuning stage while leveraging structurally diverse auxiliary tasks to improve in-domain generalization. Unlike naive multi-task SFT, MetaVLA integrates a lightweight meta-learning mechanism-derived from Attentive Neural Processes-to enable rapid adaptation from diverse contexts with minimal architectural change or inference overhead. On the LIBERO benchmark, MetaVLA with six auxiliary tasks outperforms OpenVLA by up to 8.0% on long-horizon tasks, reduces training steps from 240K to 75K, and cuts GPU time by ~76%. These results show that scalable, low-resource post-training is achievable-paving the way toward general-purpose embodied agents. Code will be available.
I Know About "Up"! Enhancing Spatial Reasoning in Visual Language Models Through 3D Reconstruction
Visual Language Models (VLMs) are essential for various tasks, particularly visual reasoning tasks, due to their robust multi-modal information integration, visual reasoning capabilities, and contextual awareness. However, existing ' visual spatial reasoning capabilities are often inadequate, struggling even with basic tasks such as distinguishing left from right. To address this, we propose the model, designed to enhance the visual spatial reasoning abilities of VLMS. ZeroVLM employs Zero-1-to-3, a 3D reconstruction model for obtaining different views of the input images and incorporates a prompting mechanism to further improve visual spatial reasoning. Experimental results on four visual spatial reasoning datasets show that our achieves up to 19.48% accuracy improvement, which indicates the effectiveness of the 3D reconstruction and prompting mechanisms of our ZeroVLM.
In-Context Learning with Long-Context Models: An In-Depth Exploration
As model context lengths continue to increase, the number of demonstrations that can be provided in-context approaches the size of entire training datasets. We study the behavior of in-context learning (ICL) at this extreme scale on multiple datasets and models. We show that, for many datasets with large label spaces, performance continues to increase with hundreds or thousands of demonstrations. We contrast this with example retrieval and finetuning: example retrieval shows excellent performance at low context lengths but has diminished gains with more demonstrations; finetuning is more data hungry than ICL but can sometimes exceed long-context ICL performance with additional data. We use this ICL setting as a testbed to study several properties of both in-context learning and long-context models. We show that long-context ICL is less sensitive to random input shuffling than short-context ICL, that grouping of same-label examples can negatively impact performance, and that the performance boosts we see do not arise from cumulative gain from encoding many examples together. We conclude that although long-context ICL can be surprisingly effective, most of this gain comes from attending back to similar examples rather than task learning.
VLM4D: Towards Spatiotemporal Awareness in Vision Language Models
Vision language models (VLMs) have shown remarkable capabilities in integrating linguistic and visual reasoning but remain fundamentally limited in understanding dynamic spatiotemporal interactions. Humans effortlessly track and reason about object movements, rotations, and perspective shifts-abilities essential for robust dynamic real-world understanding yet notably lacking in current VLMs. In this paper, we introduce VLM4D, the first benchmark specifically designed to evaluate the spatiotemporal reasoning capabilities of VLMs. Our benchmark comprises diverse real-world and synthetic videos accompanied by carefully curated question-answer pairs emphasizing translational and rotational motions, perspective awareness, and motion continuity. Through comprehensive evaluations of state-of-the-art open and closed-source VLMs, we identify significant performance gaps compared to human baselines, highlighting fundamental deficiencies in existing models. Extensive analysis reveals that VLMs struggle particularly with integrating multiple visual cues and maintaining temporal coherence. We further explore promising directions, such as leveraging 4D feature field reconstruction and targeted spatiotemporal supervised fine-tuning, demonstrating their effectiveness in enhancing spatiotemporal comprehension. Our work aims to encourage deeper exploration into improving VLMs' spatial and temporal grounding, paving the way towards more capable and reliable visual intelligence for dynamic environments.
What Can RL Bring to VLA Generalization? An Empirical Study
Large Vision-Language Action (VLA) models have shown significant potential for embodied AI. However, their predominant training via supervised fine-tuning (SFT) limits generalization due to susceptibility to compounding errors under distribution shifts. Reinforcement learning (RL) offers a path to overcome these limitations by optimizing for task objectives via trial-and-error, yet a systematic understanding of its specific generalization benefits for VLAs compared to SFT is lacking. To address this, our study introduces a comprehensive benchmark for evaluating VLA generalization and systematically investigates the impact of RL fine-tuning across diverse visual, semantic, and execution dimensions. Our extensive experiments reveal that RL fine-tuning, particularly with PPO, significantly enhances generalization in semantic understanding and execution robustness over SFT, while maintaining comparable visual robustness. We identify PPO as a more effective RL algorithm for VLAs than LLM-derived methods like DPO and GRPO. We also develop a simple recipe for efficient PPO training on VLAs, and demonstrate its practical utility for improving VLA generalization. The project page is at https://rlvla.github.io
VCM: Vision Concept Modeling Based on Implicit Contrastive Learning with Vision-Language Instruction Fine-Tuning
Large Vision-Language Models (LVLMs) are pivotal for real-world AI tasks like embodied intelligence due to their strong vision-language reasoning abilities. However, current LVLMs process entire images at the token level, which is inefficient compared to humans who analyze information and generate content at the conceptual level, extracting relevant visual concepts with minimal effort. This inefficiency, stemming from the lack of a visual concept model, limits LVLMs' usability in real-world applications. To address this, we propose VCM, an end-to-end self-supervised visual concept modeling framework. VCM leverages implicit contrastive learning across multiple sampled instances and vision-language fine-tuning to construct a visual concept model without requiring costly concept-level annotations. Our results show that VCM significantly reduces computational costs (e.g., 85\% fewer FLOPs for LLaVA-1.5-7B) while maintaining strong performance across diverse image understanding tasks. Moreover, VCM enhances visual encoders' capabilities in classic visual concept perception tasks. Extensive quantitative and qualitative experiments validate the effectiveness and efficiency of VCM.
Youtu-VL: Unleashing Visual Potential via Unified Vision-Language Supervision
Despite the significant advancements represented by Vision-Language Models (VLMs), current architectures often exhibit limitations in retaining fine-grained visual information, leading to coarse-grained multimodal comprehension. We attribute this deficiency to a suboptimal training paradigm inherent in prevailing VLMs, which exhibits a text-dominant optimization bias by conceptualizing visual signals merely as passive conditional inputs rather than supervisory targets. To mitigate this, we introduce Youtu-VL, a framework leveraging the Vision-Language Unified Autoregressive Supervision (VLUAS) paradigm, which fundamentally shifts the optimization objective from ``vision-as-input'' to ``vision-as-target.'' By integrating visual tokens directly into the prediction stream, Youtu-VL applies unified autoregressive supervision to both visual details and linguistic content. Furthermore, we extend this paradigm to encompass vision-centric tasks, enabling a standard VLM to perform vision-centric tasks without task-specific additions. Extensive empirical evaluations demonstrate that Youtu-VL achieves competitive performance on both general multimodal tasks and vision-centric tasks, establishing a robust foundation for the development of comprehensive generalist visual agents.
GIRAFFE: Design Choices for Extending the Context Length of Visual Language Models
Visual Language Models (VLMs) demonstrate impressive capabilities in processing multimodal inputs, yet applications such as visual agents, which require handling multiple images and high-resolution videos, demand enhanced long-range modeling. Moreover, existing open-source VLMs lack systematic exploration into extending their context length, and commercial models often provide limited details. To tackle this, we aim to establish an effective solution that enhances long context performance of VLMs while preserving their capacities in short context scenarios. Towards this goal, we make the best design choice through extensive experiment settings from data curation to context window extending and utilizing: (1) we analyze data sources and length distributions to construct ETVLM - a data recipe to balance the performance across scenarios; (2) we examine existing position extending methods, identify their limitations and propose M-RoPE++ as an enhanced approach; we also choose to solely instruction-tune the backbone with mixed-source data; (3) we discuss how to better utilize extended context windows and propose hybrid-resolution training. Built on the Qwen-VL series model, we propose Giraffe, which is effectively extended to 128K lengths. Evaluated on extensive long context VLM benchmarks such as VideoMME and Viusal Haystacks, our Giraffe achieves state-of-the-art performance among similarly sized open-source long VLMs and is competitive with commercial model GPT-4V. We will open-source the code, data, and models.
Video Panels for Long Video Understanding
Recent Video-Language Models (VLMs) achieve promising results on long-video understanding, but their performance still lags behind that achieved on tasks involving images or short videos. This has led to great interest in improving the long context modeling of VLMs by introducing novel modules and additional complexity. % additional training time. In this paper, we take a different approach: rather than fine-tuning VLMs with the limited data available, we attempt to maximize the performance of existing models. To this end, we propose a novel visual prompting strategy specifically designed for long-video understanding. By combining multiple frames as panels into one image, we effectively trade off spatial details for temporal resolution. Our approach is training-free, parameter-free, and model-agnostic, and can be seamlessly integrated into existing VLMs. Extensive experiments on five established benchmarks across a wide range of model architectures, sizes, and context windows confirm the consistency of our approach. For the TimeScope (Long) dataset, which has the longest videos, the accuracy for video question answering is improved by up to 19.4\%. Overall, our method raises the bar for long video understanding models. We will make our code available upon acceptance.
On the Road with GPT-4V(ision): Early Explorations of Visual-Language Model on Autonomous Driving
The pursuit of autonomous driving technology hinges on the sophisticated integration of perception, decision-making, and control systems. Traditional approaches, both data-driven and rule-based, have been hindered by their inability to grasp the nuance of complex driving environments and the intentions of other road users. This has been a significant bottleneck, particularly in the development of common sense reasoning and nuanced scene understanding necessary for safe and reliable autonomous driving. The advent of Visual Language Models (VLM) represents a novel frontier in realizing fully autonomous vehicle driving. This report provides an exhaustive evaluation of the latest state-of-the-art VLM, \modelnamefull, and its application in autonomous driving scenarios. We explore the model's abilities to understand and reason about driving scenes, make decisions, and ultimately act in the capacity of a driver. Our comprehensive tests span from basic scene recognition to complex causal reasoning and real-time decision-making under varying conditions. Our findings reveal that \modelname demonstrates superior performance in scene understanding and causal reasoning compared to existing autonomous systems. It showcases the potential to handle out-of-distribution scenarios, recognize intentions, and make informed decisions in real driving contexts. However, challenges remain, particularly in direction discernment, traffic light recognition, vision grounding, and spatial reasoning tasks. These limitations underscore the need for further research and development. Project is now available on GitHub for interested parties to access and utilize: https://github.com/PJLab-ADG/GPT4V-AD-Exploration
Toward Ambulatory Vision: Learning Visually-Grounded Active View Selection
Vision Language Models (VLMs) excel at visual question answering (VQA) but remain limited to snapshot vision, reasoning from static images. In contrast, embodied agents require ambulatory vision, actively moving to obtain more informative views. We introduce Visually Grounded Active View Selection (VG-AVS), a task that selects the most informative next viewpoint using only the visual information in the current image, without relying on scene memory or external knowledge. To support this task, we construct a synthetic dataset with automatically generated paired query-target views and question-answer prompts. We also propose a framework that fine-tunes pretrained VLMs through supervised fine-tuning (SFT) followed by RL-based policy optimization. Our approach achieves strong question answering performance based on viewpoint selection and generalizes robustly to unseen synthetic and real scenes. Furthermore, incorporating our learned VG-AVS framework into existing scene-exploration-based EQA systems improves downstream question-answering accuracy.
Vision-G1: Towards General Vision Language Reasoning with Multi-Domain Data Curation
Despite their success, current training pipelines for reasoning VLMs focus on a limited range of tasks, such as mathematical and logical reasoning. As a result, these models face difficulties in generalizing their reasoning capabilities to a wide range of domains, primarily due to the scarcity of readily available and verifiable reward data beyond these narrowly defined areas. Moreover, integrating data from multiple domains is challenging, as the compatibility between domain-specific datasets remains uncertain. To address these limitations, we build a comprehensive RL-ready visual reasoning dataset from 46 data sources across 8 dimensions, covering a wide range of tasks such as infographic, mathematical, spatial, cross-image, graphic user interface, medical, common sense and general science. We propose an influence function based data selection and difficulty based filtering strategy to identify high-quality training samples from this dataset. Subsequently, we train the VLM, referred to as Vision-G1, using multi-round RL with a data curriculum to iteratively improve its visual reasoning capabilities. Our model achieves state-of-the-art performance across various visual reasoning benchmarks, outperforming similar-sized VLMs and even proprietary models like GPT-4o and Gemini-1.5 Flash. The model, code and dataset are publicly available at https://github.com/yuh-zha/Vision-G1.
V2PE: Improving Multimodal Long-Context Capability of Vision-Language Models with Variable Visual Position Encoding
Vision-Language Models (VLMs) have shown promising capabilities in handling various multimodal tasks, yet they struggle in long-context scenarios, particularly in tasks involving videos, high-resolution images, or lengthy image-text documents. In our work, we first conduct an empirical analysis of the long-context capabilities of VLMs using our augmented long-context multimodal datasets. Our findings reveal that directly applying the positional encoding mechanism used for textual tokens to visual tokens is suboptimal, and VLM performance degrades sharply when the position encoding exceeds the model's context window. To address this, we propose Variable Visual Position Encoding (V2PE), a novel positional encoding approach that employs variable and smaller increments for visual tokens, enabling more efficient management of long multimodal sequences. Our experiments demonstrate the effectiveness of V2PE to enhances VLMs' ability to effectively understand and reason over long multimodal contexts. We further integrate V2PE with our augmented long-context multimodal datasets to fine-tune the open-source VLM, InternVL2. The fine-tuned model achieves strong performance on both standard and long-context multimodal tasks. Notably, when the sequence length of the training dataset is increased to 256K tokens, the model is capable of processing multimodal sequences up to 1M tokens, highlighting its potential for real-world long-context applications.
Meta-Learning an In-Context Transformer Model of Human Higher Visual Cortex
Understanding functional representations within higher visual cortex is a fundamental question in computational neuroscience. While artificial neural networks pretrained on large-scale datasets exhibit striking representational alignment with human neural responses, learning image-computable models of visual cortex relies on individual-level, large-scale fMRI datasets. The necessity for expensive, time-intensive, and often impractical data acquisition limits the generalizability of encoders to new subjects and stimuli. BraInCoRL uses in-context learning to predict voxelwise neural responses from few-shot examples without any additional finetuning for novel subjects and stimuli. We leverage a transformer architecture that can flexibly condition on a variable number of in-context image stimuli, learning an inductive bias over multiple subjects. During training, we explicitly optimize the model for in-context learning. By jointly conditioning on image features and voxel activations, our model learns to directly generate better performing voxelwise models of higher visual cortex. We demonstrate that BraInCoRL consistently outperforms existing voxelwise encoder designs in a low-data regime when evaluated on entirely novel images, while also exhibiting strong test-time scaling behavior. The model also generalizes to an entirely new visual fMRI dataset, which uses different subjects and fMRI data acquisition parameters. Further, BraInCoRL facilitates better interpretability of neural signals in higher visual cortex by attending to semantically relevant stimuli. Finally, we show that our framework enables interpretable mappings from natural language queries to voxel selectivity.
Ground-R1: Incentivizing Grounded Visual Reasoning via Reinforcement Learning
Large Vision-Language Models (LVLMs) have demonstrated impressive general capabilities across a wide range of multi-modal tasks. However, the reasoning processes of LVLMs often suffer from unreliable outputs and limited interpretability. To address this, grounded visual reasoning has emerged as a promising paradigm that enforces responses anchored on salient visual evidence regions. However, existing approaches typically rely on costly supervision such as bounding box annotations, chain-of-thought rationale or external tool calls, limiting their scalability. In this work, we propose Ground-R1, a reinforcement learning framework that enables grounded visual reasoning without requiring explicit evidence or rationale annotations. Ground-R1 consists of a grounding phase that generates evidence region rollouts based on format constraints, and an answering phase that produces responses guided by both answer correctness and format adherence rewards. Extensive experiments across multiple visual reasoning benchmarks manifest that Ground-R1 achieves superior performance and exhibits emergent cognitive behaviors such as uncertainty awareness, spatial perception, and iterative refinement, offering a scalable and interpretable alternative to existing approaches.
Visual Large Language Models for Generalized and Specialized Applications
Visual-language models (VLM) have emerged as a powerful tool for learning a unified embedding space for vision and language. Inspired by large language models, which have demonstrated strong reasoning and multi-task capabilities, visual large language models (VLLMs) are gaining increasing attention for building general-purpose VLMs. Despite the significant progress made in VLLMs, the related literature remains limited, particularly from a comprehensive application perspective, encompassing generalized and specialized applications across vision (image, video, depth), action, and language modalities. In this survey, we focus on the diverse applications of VLLMs, examining their using scenarios, identifying ethics consideration and challenges, and discussing future directions for their development. By synthesizing these contents, we aim to provide a comprehensive guide that will pave the way for future innovations and broader applications of VLLMs. The paper list repository is available: https://github.com/JackYFL/awesome-VLLMs.
VKnowU: Evaluating Visual Knowledge Understanding in Multimodal LLMs
While Multimodal Large Language Models (MLLMs) have become adept at recognizing objects, they often lack the intuitive, human-like understanding of the world's underlying physical and social principles. This high-level vision-grounded semantics, which we term visual knowledge, forms a bridge between perception and reasoning, yet remains an underexplored area in current MLLMs. To systematically evaluate this capability, we present VKnowU, a comprehensive benchmark featuring 1,680 questions in 1,249 videos, covering 8 core types of visual knowledge spanning both world-centric (e.g., intuitive physics) and human-centric (e.g., subjective intentions). Evaluation of 23 SOTA MLLMs reveals that leading models still fall short of human performance, with particularly notable gaps in the world-centric. To bridge this gap, we introduce a new dataset, VKnowQA, and VideoKnow+, a baseline model that explicitly incorporates visual knowledge into MLLMs. VideoKnow+ follows a structured See-Think-Answer paradigm and adopts reinforcement learning with visual knowledge reward, achieving a +3.7% improvement on VKnowU and consistent gains on MVBench, Video-MME, and MMVU. Our work highlights visual knowledge as a missing cornerstone for developing more generalizable MLLMs that can not only see but also truly understand our physical and social worlds.
Hidden in plain sight: VLMs overlook their visual representations
Language provides a natural interface to specify and evaluate performance on visual tasks. To realize this possibility, vision language models (VLMs) must successfully integrate visual and linguistic information. Our work compares VLMs to a direct readout of their visual encoders to understand their ability to integrate across these modalities. Across a series of vision-centric benchmarks (e.g., depth estimation, correspondence), we find that VLMs perform substantially worse than their visual encoders, dropping to near-chance performance. We investigate these results through a series of analyses across the entire VLM: namely 1) the degradation of vision representations, 2) brittleness to task prompt, and 3) the language model's role in solving the task. We find that the bottleneck in performing these vision-centric tasks lies in this third category; VLMs are not effectively using visual information easily accessible throughout the entire model, and they inherit the language priors present in the LLM. Our work helps diagnose the failure modes of open-source VLMs, and presents a series of evaluations useful for future investigations into visual understanding within VLMs.
ViSS-R1: Self-Supervised Reinforcement Video Reasoning
Complex video reasoning remains a significant challenge for Multimodal Large Language Models (MLLMs), as current R1-based methodologies often prioritize text-centric reasoning derived from text-based and image-based developments. In video tasks, such strategies frequently underutilize rich visual information, leading to potential shortcut learning and increased susceptibility to hallucination. To foster a more robust, visual-centric video understanding, we start by introducing a novel self-supervised reinforcement learning GRPO algorithm (Pretext-GRPO) within the standard R1 pipeline, in which positive rewards are assigned for correctly solving pretext tasks on transformed visual inputs, which makes the model to non-trivially process the visual information. Building on the effectiveness of Pretext-GRPO, we further propose the ViSS-R1 framework, which streamlines and integrates pretext-task-based self-supervised learning directly into the MLLM's R1 post-training paradigm. Instead of relying solely on sparse visual cues, our framework compels models to reason about transformed visual input by simultaneously processing both pretext questions (concerning transformations) and true user queries. This necessitates identifying the applied transformation and reconstructing the original video to formulate accurate final answers. Comprehensive evaluations on six widely-used video reasoning and understanding benchmarks demonstrate the effectiveness and superiority of our Pretext-GRPO and ViSS-R1 for complex video reasoning. Our codes and models will be publicly available.
Can Vision-Language Models be a Good Guesser? Exploring VLMs for Times and Location Reasoning
Vision-Language Models (VLMs) are expected to be capable of reasoning with commonsense knowledge as human beings. One example is that humans can reason where and when an image is taken based on their knowledge. This makes us wonder if, based on visual cues, Vision-Language Models that are pre-trained with large-scale image-text resources can achieve and even outperform human's capability in reasoning times and location. To address this question, we propose a two-stage \recognition\space and \reasoning\space probing task, applied to discriminative and generative VLMs to uncover whether VLMs can recognize times and location-relevant features and further reason about it. To facilitate the investigation, we introduce WikiTiLo, a well-curated image dataset compromising images with rich socio-cultural cues. In the extensive experimental studies, we find that although VLMs can effectively retain relevant features in visual encoders, they still fail to make perfect reasoning. We will release our dataset and codes to facilitate future studies.
Cascade Prompt Learning for Vision-Language Model Adaptation
Prompt learning has surfaced as an effective approach to enhance the performance of Vision-Language Models (VLMs) like CLIP when applied to downstream tasks. However, current learnable prompt tokens are primarily used for the single phase of adapting to tasks (i.e., adapting prompt), easily leading to overfitting risks. In this work, we propose a novel Cascade Prompt Learning CasPL framework to enable prompt learning to serve both generic and specific expertise (i.e., boosting and adapting prompt) simultaneously. Specifically, CasPL is a new learning paradigm comprising two distinct phases of learnable prompts: the first boosting prompt is crafted to extract domain-general knowledge from a senior larger CLIP teacher model by aligning their predicted logits using extensive unlabeled domain images. The second adapting prompt is then cascaded with the frozen first set to fine-tune the downstream tasks, following the approaches employed in prior research. In this manner, CasPL can effectively capture both domain-general and task-specific representations into explicitly different gradual groups of prompts, thus potentially alleviating overfitting issues in the target domain. It's worth noting that CasPL serves as a plug-and-play module that can seamlessly integrate into any existing prompt learning approach. CasPL achieves a significantly better balance between performance and inference speed, which is especially beneficial for deploying smaller VLM models in resource-constrained environments. Compared to the previous state-of-the-art method PromptSRC, CasPL shows an average improvement of 1.85% for base classes, 3.44% for novel classes, and 2.72% for the harmonic mean over 11 image classification datasets. Code is publicly available at: https://github.com/megvii-research/CasPL.
Benchmarking Multimodal Mathematical Reasoning with Explicit Visual Dependency
Recent advancements in Large Vision-Language Models (LVLMs) have significantly enhanced their ability to integrate visual and linguistic information, achieving near-human proficiency in tasks like object recognition, captioning, and visual question answering. However, current benchmarks typically focus on knowledge-centric evaluations that assess domain-specific expertise, often neglecting the core ability to reason about fundamental mathematical elements and visual concepts. We identify a gap in evaluating elementary-level math problems, which rely on explicit visual dependencies-requiring models to discern, integrate, and reason across multiple images while incorporating commonsense knowledge, all of which are crucial for advancing toward broader AGI capabilities. To address this gap, we introduce VCBENCH, a comprehensive benchmark for multimodal mathematical reasoning with explicit visual dependencies. VCBENCH includes 1,720 problems across six cognitive domains, featuring 6,697 images (averaging 3.9 per question) to ensure multi-image reasoning. We evaluate 26 state-of-the-art LVLMs on VCBENCH, revealing substantial performance disparities, with even the top models unable to exceed 50% accuracy. Our findings highlight the ongoing challenges in visual-mathematical integration and suggest avenues for future LVLM advancements.
Vector-ICL: In-context Learning with Continuous Vector Representations
Large language models (LLMs) have shown remarkable in-context learning (ICL) capabilities on textual data. We explore whether these capabilities can be extended to continuous vectors from diverse domains, obtained from black-box pretrained encoders. By aligning input data with an LLM's embedding space through lightweight projectors, we observe that LLMs can effectively process and learn from these projected vectors, which we term Vector-ICL. In particular, we find that pretraining projectors with general language modeling objectives enables Vector-ICL, while task-specific finetuning further enhances performance. In our experiments across various tasks and modalities, including text reconstruction, numerical function regression, text classification, summarization, molecule captioning, time-series classification, graph classification, and fMRI decoding, Vector-ICL often surpasses both few-shot ICL and domain-specific model or tuning. We further conduct analyses and case studies, indicating the potential of LLMs to process vector representations beyond traditional token-based paradigms.
More Than the Final Answer: Improving Visual Extraction and Logical Consistency in Vision-Language Models
Reinforcement learning from verifiable rewards (RLVR) has recently been extended from text-only LLMs to vision-language models (VLMs) to elicit long-chain multimodal reasoning. However, RLVR-trained VLMs still exhibit two persistent failure modes: inaccurate visual extraction (missing or hallucinating details) and logically inconsistent chains-of-thought, largely because verifiable signals supervise only the final answer. We propose PeRL-VL (Perception and Reasoning Learning for Vision-Language Models), a decoupled framework that separately improves visual perception and textual reasoning on top of RLVR. For perception, PeRL-VL introduces a VLM-based description reward that scores the model's self-generated image descriptions for faithfulness and sufficiency. For reasoning, PeRL-VL adds a text-only Reasoning SFT stage on logic-rich chain-of-thought data, enhancing coherence and logical consistency independently of vision. Across diverse multimodal benchmarks, PeRL-VL improves average Pass@1 accuracy from 63.3% (base Qwen2.5-VL-7B) to 68.8%, outperforming standard RLVR, text-only reasoning SFT, and naive multimodal distillation from GPT-4o.
Language Models Can See Better: Visual Contrastive Decoding For LLM Multimodal Reasoning
Although Large Language Models (LLMs) excel in reasoning and generation for language tasks, they are not specifically designed for multimodal challenges. Training Multimodal Large Language Models (MLLMs), however, is resource-intensive and constrained by various training limitations. In this paper, we propose the Modular-based Visual Contrastive Decoding (MVCD) framework to move this obstacle. Our framework leverages LLMs' In-Context Learning (ICL) capability and the proposed visual contrastive-example decoding (CED), specifically tailored for this framework, without requiring any additional training. By converting visual signals into text and focusing on contrastive output distributions during decoding, we can highlight the new information introduced by contextual examples, explore their connections, and avoid over-reliance on prior encoded knowledge. MVCD enhances LLMs' visual perception to make it see and reason over the input visuals. To demonstrate MVCD's effectiveness, we conduct experiments with four LLMs across five question answering datasets. Our results not only show consistent improvement in model accuracy but well explain the effective components inside our decoding strategy. Our code will be available at https://github.com/Pbhgit/MVCD.
PIVOT: Iterative Visual Prompting Elicits Actionable Knowledge for VLMs
Vision language models (VLMs) have shown impressive capabilities across a variety of tasks, from logical reasoning to visual understanding. This opens the door to richer interaction with the world, for example robotic control. However, VLMs produce only textual outputs, while robotic control and other spatial tasks require outputting continuous coordinates, actions, or trajectories. How can we enable VLMs to handle such settings without fine-tuning on task-specific data? In this paper, we propose a novel visual prompting approach for VLMs that we call Prompting with Iterative Visual Optimization (PIVOT), which casts tasks as iterative visual question answering. In each iteration, the image is annotated with a visual representation of proposals that the VLM can refer to (e.g., candidate robot actions, localizations, or trajectories). The VLM then selects the best ones for the task. These proposals are iteratively refined, allowing the VLM to eventually zero in on the best available answer. We investigate PIVOT on real-world robotic navigation, real-world manipulation from images, instruction following in simulation, and additional spatial inference tasks such as localization. We find, perhaps surprisingly, that our approach enables zero-shot control of robotic systems without any robot training data, navigation in a variety of environments, and other capabilities. Although current performance is far from perfect, our work highlights potentials and limitations of this new regime and shows a promising approach for Internet-Scale VLMs in robotic and spatial reasoning domains. Website: pivot-prompt.github.io and HuggingFace: https://huggingface.co/spaces/pivot-prompt/pivot-prompt-demo.
VURF: A General-purpose Reasoning and Self-refinement Framework for Video Understanding
Recent studies have demonstrated the effectiveness of Large Language Models (LLMs) as reasoning modules that can deconstruct complex tasks into more manageable sub-tasks, particularly when applied to visual reasoning tasks for images. In contrast, this paper introduces a Video Understanding and Reasoning Framework (VURF) based on the reasoning power of LLMs. Ours is a novel approach to extend the utility of LLMs in the context of video tasks, leveraging their capacity to generalize from minimal input and output demonstrations within a contextual framework. By presenting LLMs with pairs of instructions and their corresponding high-level programs, we harness their contextual learning capabilities to generate executable visual programs for video understanding. To enhance program's accuracy and robustness, we implement two important strategies. Firstly, we employ a feedback-generation approach, powered by GPT-3.5, to rectify errors in programs utilizing unsupported functions. Secondly, taking motivation from recent works on self refinement of LLM outputs, we introduce an iterative procedure for improving the quality of the in-context examples by aligning the initial outputs to the outputs that would have been generated had the LLM not been bound by the structure of the in-context examples. Our results on several video-specific tasks, including visual QA, video anticipation, pose estimation and multi-video QA illustrate the efficacy of these enhancements in improving the performance of visual programming approaches for video tasks. Our Codes and data will be publicly released.
Implicit In-context Learning
In-context Learning (ICL) empowers large language models (LLMs) to adapt to unseen tasks during inference by prefixing a few demonstration examples prior to test queries. Despite its versatility, ICL incurs substantial computational and memory overheads compared to zero-shot learning and is susceptible to the selection and order of demonstration examples. In this work, we introduce Implicit In-context Learning (I2CL), an innovative paradigm that addresses the challenges associated with traditional ICL by absorbing demonstration examples within the activation space. I2CL first generates a condensed vector representation, namely a context vector, from the demonstration examples. It then integrates the context vector during inference by injecting a linear combination of the context vector and query activations into the model's residual streams. Empirical evaluation on nine real-world tasks across three model architectures demonstrates that I2CL achieves few-shot performance with zero-shot cost and exhibits robustness against the variation of demonstration examples. Furthermore, I2CL facilitates a novel representation of "task-ids", enhancing task similarity detection and enabling effective transfer learning. We provide a comprehensive analysis of I2CL, offering deeper insights into its mechanisms and broader implications for ICL. The source code is available at: https://github.com/LzVv123456/I2CL.
ViC-Bench: Benchmarking Visual-Interleaved Chain-of-Thought Capability in MLLMs with Free-Style Intermediate State Representations
Visual-Interleaved Chain-of-Thought (VI-CoT) enables MLLMs to continually update their understanding and decisions based on step-wise intermediate visual states (IVS), much like a human would, which demonstrates impressive success in various tasks, thereby leading to emerged advancements in related benchmarks. Despite promising progress, current benchmarks provide models with relatively fixed IVS, rather than free-style IVS, whch might forcibly distort the original thinking trajectories, failing to evaluate their intrinsic reasoning capabilities. More importantly, existing benchmarks neglect to systematically explore the impact factors that IVS would impart to untamed reasoning performance. To tackle above gaps, we introduce a specialized benchmark termed ViC-Bench, consisting of four representive tasks: maze navigation, jigsaw puzzle, embodied long-horizon planning, and complex counting, where each task has dedicated free-style IVS generation pipeline supporting function calls. To systematically examine VI-CoT capability, we propose a thorough evaluation suite incorporating a progressive three-stage strategy with targeted new metrics. Besides, we establish Incremental Prompting Information Injection (IPII) strategy to ablatively explore the prompting factors for VI-CoT. We extensively conduct evaluations for 18 advanced MLLMs, revealing key insights into their VI-CoT capability. Our proposed benchmark is publicly open at Huggingface.
Transformers as Algorithms: Generalization and Stability in In-context Learning
In-context learning (ICL) is a type of prompting where a transformer model operates on a sequence of (input, output) examples and performs inference on-the-fly. In this work, we formalize in-context learning as an algorithm learning problem where a transformer model implicitly constructs a hypothesis function at inference-time. We first explore the statistical aspects of this abstraction through the lens of multitask learning: We obtain generalization bounds for ICL when the input prompt is (1) a sequence of i.i.d. (input, label) pairs or (2) a trajectory arising from a dynamical system. The crux of our analysis is relating the excess risk to the stability of the algorithm implemented by the transformer. We characterize when transformer/attention architecture provably obeys the stability condition and also provide empirical verification. For generalization on unseen tasks, we identify an inductive bias phenomenon in which the transfer learning risk is governed by the task complexity and the number of MTL tasks in a highly predictable manner. Finally, we provide numerical evaluations that (1) demonstrate transformers can indeed implement near-optimal algorithms on classical regression problems with i.i.d. and dynamic data, (2) provide insights on stability, and (3) verify our theoretical predictions.
In-Context Learning Strategies Emerge Rationally
Recent work analyzing in-context learning (ICL) has identified a broad set of strategies that describe model behavior in different experimental conditions. We aim to unify these findings by asking why a model learns these disparate strategies in the first place. Specifically, we start with the observation that when trained to learn a mixture of tasks, as is popular in the literature, the strategies learned by a model for performing ICL can be captured by a family of Bayesian predictors: a memorizing predictor, which assumes a discrete prior on the set of seen tasks, and a generalizing predictor, where the prior matches the underlying task distribution. Adopting the normative lens of rational analysis, where a learner's behavior is explained as an optimal adaptation to data given computational constraints, we develop a hierarchical Bayesian framework that almost perfectly predicts Transformer next-token predictions throughout training -- without assuming access to its weights. Under this framework, pretraining is viewed as a process of updating the posterior probability of different strategies, and inference-time behavior as a posterior-weighted average over these strategies' predictions. Our framework draws on common assumptions about neural network learning dynamics, which make explicit a tradeoff between loss and complexity among candidate strategies: beyond how well it explains the data, a model's preference towards implementing a strategy is dictated by its complexity. This helps explain well-known ICL phenomena, while offering novel predictions: e.g., we show a superlinear trend in the timescale for transitioning from generalization to memorization as task diversity increases. Overall, our work advances an explanatory and predictive account of ICL grounded in tradeoffs between strategy loss and complexity.
Activating Visual Context and Commonsense Reasoning through Masked Prediction in VLMs
Recent breakthroughs in reasoning models have markedly advanced the reasoning capabilities of large language models, particularly via training on tasks with verifiable rewards. Yet, a significant gap persists in their adaptation to real world multimodal scenarios, most notably, vision language tasks, due to a heavy focus on single modal language settings. While efforts to transplant reinforcement learning techniques from NLP to VLMs have emerged, these approaches often remain confined to perception centric tasks or reduce images to textual summaries, failing to fully exploit visual context and commonsense knowledge, ultimately constraining the generalization of reasoning capabilities across diverse multimodal environments. To address this limitation, we introduce a novel fine tuning task, Masked Prediction via Context and Commonsense, which forces models to integrate visual context and commonsense reasoning by reconstructing semantically meaningful content from occluded images, thereby laying the foundation for generalized reasoning. To systematically evaluate the model performance in generalized reasoning, we developed a specialized evaluation benchmark, MPCC Eval, and employed various fine tuning strategies to guide reasoning. Among these, we introduced an innovative training method, Reinforcement Fine tuning with Prior Sampling, which not only enhances model performance but also improves its generalized reasoning capabilities in OOD and cross task scenarios.
VILA: On Pre-training for Visual Language Models
Visual language models (VLMs) rapidly progressed with the recent success of large language models. There have been growing efforts on visual instruction tuning to extend the LLM with visual inputs, but lacks an in-depth study of the visual language pre-training process, where the model learns to perform joint modeling on both modalities. In this work, we examine the design options for VLM pre-training by augmenting LLM towards VLM through step-by-step controllable comparisons. We introduce three main findings: (1) freezing LLMs during pre-training can achieve decent zero-shot performance, but lack in-context learning capability, which requires unfreezing the LLM; (2) interleaved pre-training data is beneficial whereas image-text pairs alone are not optimal; (3) re-blending text-only instruction data to image-text data during instruction fine-tuning not only remedies the degradation of text-only tasks, but also boosts VLM task accuracy. With an enhanced pre-training recipe we build VILA, a Visual Language model family that consistently outperforms the state-of-the-art models, e.g., LLaVA-1.5, across main benchmarks without bells and whistles. Multi-modal pre-training also helps unveil appealing properties of VILA, including multi-image reasoning, enhanced in-context learning, and better world knowledge.
Measuring Multimodal Mathematical Reasoning with MATH-Vision Dataset
Recent advancements in Large Multimodal Models (LMMs) have shown promising results in mathematical reasoning within visual contexts, with models approaching human-level performance on existing benchmarks such as MathVista. However, we observe significant limitations in the diversity of questions and breadth of subjects covered by these benchmarks. To address this issue, we present the MATH-Vision (MATH-V) dataset, a meticulously curated collection of 3,040 high-quality mathematical problems with visual contexts sourced from real math competitions. Spanning 16 distinct mathematical disciplines and graded across 5 levels of difficulty, our dataset provides a comprehensive and diverse set of challenges for evaluating the mathematical reasoning abilities of LMMs. Through extensive experimentation, we unveil a notable performance gap between current LMMs and human performance on MATH-V, underscoring the imperative for further advancements in LMMs. Moreover, our detailed categorization allows for a thorough error analysis of LMMs, offering valuable insights to guide future research and development. The project is available at https://mathvision-cuhk.github.io
What's Making That Sound Right Now? Video-centric Audio-Visual Localization
Audio-Visual Localization (AVL) aims to identify sound-emitting sources within a visual scene. However, existing studies focus on image-level audio-visual associations, failing to capture temporal dynamics. Moreover, they assume simplified scenarios where sound sources are always visible and involve only a single object. To address these limitations, we propose AVATAR, a video-centric AVL benchmark that incorporates high-resolution temporal information. AVATAR introduces four distinct scenarios -- Single-sound, Mixed-sound, Multi-entity, and Off-screen -- enabling a more comprehensive evaluation of AVL models. Additionally, we present TAVLO, a novel video-centric AVL model that explicitly integrates temporal information. Experimental results show that conventional methods struggle to track temporal variations due to their reliance on global audio features and frame-level mappings. In contrast, TAVLO achieves robust and precise audio-visual alignment by leveraging high-resolution temporal modeling. Our work empirically demonstrates the importance of temporal dynamics in AVL and establishes a new standard for video-centric audio-visual localization.
Vision-Language Memory for Spatial Reasoning
Spatial reasoning is a critical capability for intelligent robots, yet current vision-language models (VLMs) still fall short of human-level performance in video-based spatial reasoning. This gap mainly stems from two challenges: a semantic-geometric misalignment that prevents consistent 3D understanding, and the absence of persistent memory to retain 3D representation and understanding over time. To address these limitations, we present VLM^2, a Vision-Language Model with persistent Memory for spatial reasoning with a view-consistent, 3D-aware representation purely from 2D video. Specifically, to enhance long-horizon reasoning, we incorporate a dual-memory module, consisting of a working memory that operates as a sliding window to focus on immediate context, and an episodic memory that consolidates and stores critical long-term information. This design enables efficient and long-horizon spatial reasoning with a fixed computational cost. Extensive experiments on multiple benchmarks show that VLM^2 achieves state-of-the-art performance among video-only models, significantly advancing the frontier of visual-spatial intelligence.
Multi-Step Visual Reasoning with Visual Tokens Scaling and Verification
Multi-modal large language models (MLLMs) have achieved remarkable capabilities by integrating visual perception with language understanding, enabling applications such as image-grounded dialogue, visual question answering, and scientific analysis. However, most MLLMs adopt a static inference paradigm, encoding the entire image into fixed visual tokens upfront, which limits their ability to iteratively refine understanding or adapt to context during inference. This contrasts sharply with human perception, which is dynamic, selective, and feedback-driven. In this work, we introduce a novel framework for inference-time visual token scaling that enables MLLMs to perform iterative, verifier-guided reasoning over visual content. We formulate the problem as a Markov Decision Process, involving a reasoner that proposes visual actions and a verifier, which is trained via multi-step Direct Preference Optimization (DPO), that evaluates these actions and determines when reasoning should terminate. To support this, we present a new dataset, VTS, comprising supervised reasoning trajectories (VTS-SFT) and preference-labeled reasoning comparisons (VTS-DPO). Our method significantly outperforms existing approaches across diverse visual reasoning benchmarks, offering not only improved accuracy but also more interpretable and grounded reasoning processes. These results demonstrate the promise of dynamic inference mechanisms for enabling fine-grained, context-aware visual reasoning in next-generation MLLMs.
Link-Context Learning for Multimodal LLMs
The ability to learn from context with novel concepts, and deliver appropriate responses are essential in human conversations. Despite current Multimodal Large Language Models (MLLMs) and Large Language Models (LLMs) being trained on mega-scale datasets, recognizing unseen images or understanding novel concepts in a training-free manner remains a challenge. In-Context Learning (ICL) explores training-free few-shot learning, where models are encouraged to ``learn to learn" from limited tasks and generalize to unseen tasks. In this work, we propose link-context learning (LCL), which emphasizes "reasoning from cause and effect" to augment the learning capabilities of MLLMs. LCL goes beyond traditional ICL by explicitly strengthening the causal relationship between the support set and the query set. By providing demonstrations with causal links, LCL guides the model to discern not only the analogy but also the underlying causal associations between data points, which empowers MLLMs to recognize unseen images and understand novel concepts more effectively. To facilitate the evaluation of this novel approach, we introduce the ISEKAI dataset, comprising exclusively of unseen generated image-label pairs designed for link-context learning. Extensive experiments show that our LCL-MLLM exhibits strong link-context learning capabilities to novel concepts over vanilla MLLMs. Code and data will be released at https://github.com/isekai-portal/Link-Context-Learning.
VisMem: Latent Vision Memory Unlocks Potential of Vision-Language Models
Despite the remarkable success of Vision-Language Models (VLMs), their performance on a range of complex visual tasks is often hindered by a "visual processing bottleneck": a propensity to lose grounding in visual evidence and exhibit a deficit in contextualized visual experience during prolonged generation. Drawing inspiration from human cognitive memory theory, which distinguishes short-term visually-dominant memory and long-term semantically-dominant memory, we propose VisMem, a cognitively-aligned framework that equips VLMs with dynamic latent vision memories, a short-term module for fine-grained perceptual retention and a long-term module for abstract semantic consolidation. These memories are seamlessly invoked during inference, allowing VLMs to maintain both perceptual fidelity and semantic consistency across thinking and generation. Extensive experiments across diverse visual benchmarks for understanding, reasoning, and generation reveal that VisMem delivers a significant average performance boost of 11.8% relative to the vanilla model and outperforms all counterparts, establishing a new paradigm for latent-space memory enhancement. The code will be available: https://github.com/YU-deep/VisMem.git.
VTool-R1: VLMs Learn to Think with Images via Reinforcement Learning on Multimodal Tool Use
Reinforcement Learning Finetuning (RFT) has significantly advanced the reasoning capabilities of large language models (LLMs) by enabling long chains of thought, self-correction, and effective tool use. While recent works attempt to extend RFT to vision-language models (VLMs), these efforts largely produce text-only reasoning conditioned on static image inputs, falling short of true multimodal reasoning in the response. In contrast, test-time methods like Visual Sketchpad incorporate visual steps but lack training mechanisms. We introduce VTool-R1, the first framework that trains VLMs to generate multimodal chains of thought by interleaving text and intermediate visual reasoning steps. VTool-R1 integrates Python-based visual editing tools into the RFT process, enabling VLMs to learn when and how to generate visual reasoning steps that benefit final reasoning. Trained with outcome-based rewards tied to task accuracy, our approach elicits strategic visual tool use for reasoning without relying on process-based supervision. Experiments on structured visual question answering over charts and tables show that VTool-R1 enhances reasoning performance by teaching VLMs to "think with images" and generate multimodal chain of thoughts with tools.
Prompting Visual-Language Models for Efficient Video Understanding
Image-based visual-language (I-VL) pre-training has shown great success for learning joint visual-textual representations from large-scale web data, revealing remarkable ability for zero-shot generalisation. This paper presents a simple but strong baseline to efficiently adapt the pre-trained I-VL model, and exploit its powerful ability for resource-hungry video understanding tasks, with minimal training. Specifically, we propose to optimise a few random vectors, termed as continuous prompt vectors, that convert video-related tasks into the same format as the pre-training objectives. In addition, to bridge the gap between static images and videos, temporal information is encoded with lightweight Transformers stacking on top of frame-wise visual features. Experimentally, we conduct extensive ablation studies to analyse the critical components. On 10 public benchmarks of action recognition, action localisation, and text-video retrieval, across closed-set, few-shot, and zero-shot scenarios, we achieve competitive or state-of-the-art performance to existing methods, despite optimising significantly fewer parameters.
VipAct: Visual-Perception Enhancement via Specialized VLM Agent Collaboration and Tool-use
While vision-language models (VLMs) have demonstrated remarkable performance across various tasks combining textual and visual information, they continue to struggle with fine-grained visual perception tasks that require detailed pixel-level analysis. Effectively eliciting comprehensive reasoning from VLMs on such intricate visual elements remains an open challenge. In this paper, we present VipAct, an agent framework that enhances VLMs by integrating multi-agent collaboration and vision expert models, enabling more precise visual understanding and comprehensive reasoning. VipAct consists of an orchestrator agent, which manages task requirement analysis, planning, and coordination, along with specialized agents that handle specific tasks such as image captioning and vision expert models that provide high-precision perceptual information. This multi-agent approach allows VLMs to better perform fine-grained visual perception tasks by synergizing planning, reasoning, and tool use. We evaluate VipAct on benchmarks featuring a diverse set of visual perception tasks, with experimental results demonstrating significant performance improvements over state-of-the-art baselines across all tasks. Furthermore, comprehensive ablation studies reveal the critical role of multi-agent collaboration in eliciting more detailed System-2 reasoning and highlight the importance of image input for task planning. Additionally, our error analysis identifies patterns of VLMs' inherent limitations in visual perception, providing insights into potential future improvements. VipAct offers a flexible and extensible framework, paving the way for more advanced visual perception systems across various real-world applications.
