Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeTIAM -- A Metric for Evaluating Alignment in Text-to-Image Generation
The progress in the generation of synthetic images has made it crucial to assess their quality. While several metrics have been proposed to assess the rendering of images, it is crucial for Text-to-Image (T2I) models, which generate images based on a prompt, to consider additional aspects such as to which extent the generated image matches the important content of the prompt. Moreover, although the generated images usually result from a random starting point, the influence of this one is generally not considered. In this article, we propose a new metric based on prompt templates to study the alignment between the content specified in the prompt and the corresponding generated images. It allows us to better characterize the alignment in terms of the type of the specified objects, their number, and their color. We conducted a study on several recent T2I models about various aspects. An additional interesting result we obtained with our approach is that image quality can vary drastically depending on the latent noise used as a seed for the images. We also quantify the influence of the number of concepts in the prompt, their order as well as their (color) attributes. Finally, our method allows us to identify some latent seeds that produce better images than others, opening novel directions of research on this understudied topic.
TIARA: Multi-grained Retrieval for Robust Question Answering over Large Knowledge Bases
Pre-trained language models (PLMs) have shown their effectiveness in multiple scenarios. However, KBQA remains challenging, especially regarding coverage and generalization settings. This is due to two main factors: i) understanding the semantics of both questions and relevant knowledge from the KB; ii) generating executable logical forms with both semantic and syntactic correctness. In this paper, we present a new KBQA model, TIARA, which addresses those issues by applying multi-grained retrieval to help the PLM focus on the most relevant KB contexts, viz., entities, exemplary logical forms, and schema items. Moreover, constrained decoding is used to control the output space and reduce generation errors. Experiments over important benchmarks demonstrate the effectiveness of our approach. TIARA outperforms previous SOTA, including those using PLMs or oracle entity annotations, by at least 4.1 and 1.1 F1 points on GrailQA and WebQuestionsSP, respectively.
TIAGE: A Benchmark for Topic-Shift Aware Dialog Modeling
Human conversations naturally evolve around different topics and fluently move between them. In research on dialog systems, the ability to actively and smoothly transition to new topics is often ignored. In this paper we introduce TIAGE, a new topic-shift aware dialog benchmark constructed utilizing human annotations on topic shifts. Based on TIAGE, we introduce three tasks to investigate different scenarios of topic-shift modeling in dialog settings: topic-shift detection, topic-shift triggered response generation and topic-aware dialog generation. Experiments on these tasks show that the topic-shift signals in TIAGE are useful for topic-shift response generation. On the other hand, dialog systems still struggle to decide when to change topic. This indicates further research is needed in topic-shift aware dialog modeling.
Science with the TianQin observatory: Preliminary results on stellar-mass binary black holes
We study the prospect of using TianQin to detect stellar-mass binary black holes (SBBHs). We estimate the expected detection number as well as the precision of parameter estimation on SBBH inspirals, using five different population models. We note TianQin can possibly detect a few SBBH inspirals with signal to noise ratios greater than 12; lowering the threshold and combining multiple detectors can both boost the detection number. The source parameters can be recovered with good precision for most events above the detection threshold. For example, the precision of the merger time most likely occurs near 1s, making it possible to guide the detection of the ground-based detectors, the precision of the eccentricity e_0 most likely occurs near 10^{-4}, making it possible to distinguish the formation channels, and the precision of the mass parameter is better than 10^{-6} in general and most likely occurs near 10^{-7}. We note, in particular, that for a typical merger event, the error volume is likely to be small enough to contain only the host galaxy, which could greatly help in the study of gravitational wave cosmology and relevant studies through the multimessenger observation.
From Vocal Instructions to Household Tasks: The Inria Tiago++ in the euROBIN Service Robots Coopetition
This paper describes the Inria team's integrated robotics system used in the 1st euROBIN coopetition, during which service robots performed voice-activated household tasks in a kitchen setting.The team developed a modified Tiago++ platform that leverages a whole-body control stack for autonomous and teleoperated modes, and an LLM-based pipeline for instruction understanding and task planning. The key contributions (opens-sourced) are the integration of these components and the design of custom teleoperation devices, addressing practical challenges in the deployment of service robots.
Signal-to-noise Ratio Analytic Formulae of the Inspiral Binary Black Holes in TianQin
Binary black holes are one of the important sources for the TianQin gravitational wave project. Our research has revealed that, for TianQin, the signal-to-noise ratio of inspiral binary black holes can be computed analytically. This finding is expected to greatly simplify the estimation of detection capabilities for binary black holes. In this paper, we demonstrated the signal-to-noise ratio relationships from stellar-mass black holes to massive black holes. With the all-sky average condition, the signal-to-noise ratio for most binary black hole signals can be determined with a relative error of lesssim10%, with notable deviations only for chirp masses near 1000~M_odot. In contrast, the signal-to-noise ratio without the average includes an additional term, which we refer to as the response factor. Although this term is not easily calculated analytically, we provide a straightforward estimation method with an error margin of 1sigma within 2\%.
Copy Is All You Need
The dominant text generation models compose the output by sequentially selecting words from a fixed vocabulary. In this paper, we formulate text generation as progressively copying text segments (e.g., words or phrases) from an existing text collection. We compute the contextualized representations of meaningful text segments and index them using efficient vector search toolkits. The task of text generation is then decomposed into a series of copy-and-paste operations: at each time step, we seek suitable text spans from the text collection rather than selecting from a standalone vocabulary. Experiments on the standard language modeling benchmark (WikiText-103) show that our approach achieves better generation quality according to both automatic and human evaluations. Besides, its inference efficiency is comparable to token-level autoregressive models thanks to the reduction of decoding steps. We also show that our approach allows for effective domain adaptation by simply switching to domain-specific text collection without extra training. Finally, we observe that our approach attains additional performance gains by simply scaling up to larger text collections, again without further training.Our source codes are publicly available at \url{https://github.com/gmftbyGMFTBY/Copyisallyouneed.}
Shepherd: A Critic for Language Model Generation
As large language models improve, there is increasing interest in techniques that leverage these models' capabilities to refine their own outputs. In this work, we introduce Shepherd, a language model specifically tuned to critique responses and suggest refinements, extending beyond the capabilities of an untuned model to identify diverse errors and provide suggestions to remedy them. At the core of our approach is a high quality feedback dataset, which we curate from community feedback and human annotations. Even though Shepherd is small (7B parameters), its critiques are either equivalent or preferred to those from established models including ChatGPT. Using GPT-4 for evaluation, Shepherd reaches an average win-rate of 53-87% compared to competitive alternatives. In human evaluation, Shepherd strictly outperforms other models and on average closely ties with ChatGPT.
Scalable 3D Captioning with Pretrained Models
We introduce Cap3D, an automatic approach for generating descriptive text for 3D objects. This approach utilizes pretrained models from image captioning, image-text alignment, and LLM to consolidate captions from multiple views of a 3D asset, completely side-stepping the time-consuming and costly process of manual annotation. We apply Cap3D to the recently introduced large-scale 3D dataset, Objaverse, resulting in 660k 3D-text pairs. Our evaluation, conducted using 41k human annotations from the same dataset, demonstrates that Cap3D surpasses human-authored descriptions in terms of quality, cost, and speed. Through effective prompt engineering, Cap3D rivals human performance in generating geometric descriptions on 17k collected annotations from the ABO dataset. Finally, we finetune Text-to-3D models on Cap3D and human captions, and show Cap3D outperforms; and benchmark the SOTA including Point-E, Shape-E, and DreamFusion.
Statistical Rejection Sampling Improves Preference Optimization
Improving the alignment of language models with human preferences remains an active research challenge. Previous approaches have primarily utilized Reinforcement Learning from Human Feedback (RLHF) via online RL methods such as Proximal Policy Optimization (PPO). Recently, offline methods such as Sequence Likelihood Calibration (SLiC) and Direct Preference Optimization (DPO) have emerged as attractive alternatives, offering improvements in stability and scalability while maintaining competitive performance. SLiC refines its loss function using sequence pairs sampled from a supervised fine-tuned (SFT) policy, while DPO directly optimizes language models based on preference data, foregoing the need for a separate reward model. However, the maximum likelihood estimator (MLE) of the target optimal policy requires labeled preference pairs sampled from that policy. DPO's lack of a reward model constrains its ability to sample preference pairs from the optimal policy, and SLiC is restricted to sampling preference pairs only from the SFT policy. To address these limitations, we introduce a novel approach called Statistical Rejection Sampling Optimization (RSO) that aims to source preference data from the target optimal policy using rejection sampling, enabling a more accurate estimation of the optimal policy. We also propose a unified framework that enhances the loss functions used in both SLiC and DPO from a preference modeling standpoint. Through extensive experiments across three diverse tasks, we demonstrate that RSO consistently outperforms both SLiC and DPO on evaluations from both Large Language Model (LLM) and human raters.
Flexible Isosurface Extraction for Gradient-Based Mesh Optimization
This work considers gradient-based mesh optimization, where we iteratively optimize for a 3D surface mesh by representing it as the isosurface of a scalar field, an increasingly common paradigm in applications including photogrammetry, generative modeling, and inverse physics. Existing implementations adapt classic isosurface extraction algorithms like Marching Cubes or Dual Contouring; these techniques were designed to extract meshes from fixed, known fields, and in the optimization setting they lack the degrees of freedom to represent high-quality feature-preserving meshes, or suffer from numerical instabilities. We introduce FlexiCubes, an isosurface representation specifically designed for optimizing an unknown mesh with respect to geometric, visual, or even physical objectives. Our main insight is to introduce additional carefully-chosen parameters into the representation, which allow local flexible adjustments to the extracted mesh geometry and connectivity. These parameters are updated along with the underlying scalar field via automatic differentiation when optimizing for a downstream task. We base our extraction scheme on Dual Marching Cubes for improved topological properties, and present extensions to optionally generate tetrahedral and hierarchically-adaptive meshes. Extensive experiments validate FlexiCubes on both synthetic benchmarks and real-world applications, showing that it offers significant improvements in mesh quality and geometric fidelity.
Efficient Diffusion Training via Min-SNR Weighting Strategy
Denoising diffusion models have been a mainstream approach for image generation, however, training these models often suffers from slow convergence. In this paper, we discovered that the slow convergence is partly due to conflicting optimization directions between timesteps. To address this issue, we treat the diffusion training as a multi-task learning problem, and introduce a simple yet effective approach referred to as Min-SNR-gamma. This method adapts loss weights of timesteps based on clamped signal-to-noise ratios, which effectively balances the conflicts among timesteps. Our results demonstrate a significant improvement in converging speed, 3.4times faster than previous weighting strategies. It is also more effective, achieving a new record FID score of 2.06 on the ImageNet 256times256 benchmark using smaller architectures than that employed in previous state-of-the-art. The code is available at https://github.com/TiankaiHang/Min-SNR-Diffusion-Training.
Controllable Text-to-Image Generation with GPT-4
Current text-to-image generation models often struggle to follow textual instructions, especially the ones requiring spatial reasoning. On the other hand, Large Language Models (LLMs), such as GPT-4, have shown remarkable precision in generating code snippets for sketching out text inputs graphically, e.g., via TikZ. In this work, we introduce Control-GPT to guide the diffusion-based text-to-image pipelines with programmatic sketches generated by GPT-4, enhancing their abilities for instruction following. Control-GPT works by querying GPT-4 to write TikZ code, and the generated sketches are used as references alongside the text instructions for diffusion models (e.g., ControlNet) to generate photo-realistic images. One major challenge to training our pipeline is the lack of a dataset containing aligned text, images, and sketches. We address the issue by converting instance masks in existing datasets into polygons to mimic the sketches used at test time. As a result, Control-GPT greatly boosts the controllability of image generation. It establishes a new state-of-art on the spatial arrangement and object positioning generation and enhances users' control of object positions, sizes, etc., nearly doubling the accuracy of prior models. Our work, as a first attempt, shows the potential for employing LLMs to enhance the performance in computer vision tasks.
Large Language Models as Tool Makers
Recent research shows the potential of enhancing the problem-solving ability of large language models (LLMs) through the use of external tools. However, prior work along this line depends on the availability of existing tools. In this work, we take an initial step towards removing this dependency by proposing a closed-loop framework, referred to as LLMs As Tool Makers (LATM), where LLMs create their own reusable tools for problem-solving. Our approach consists of two key phases: 1) tool making: an LLM acts as the tool maker that crafts tools for given tasks, where a tool is implemented as a Python utility function. 2) tool using: an LLM acts as the tool user, which applies the tool built by the tool maker for problem-solving. The tool user can be either the same or a different LLM from the tool maker. Tool-making enables an LLM to continually generate tools that can be applied to different requests so that future requests can call the corresponding APIs when beneficial for solving the tasks. Furthermore, the division of labor among LLMs for tool-making and tool-using phases introduces the opportunity to achieve cost effectiveness without degrading the quality of generated tools and problem solutions. For example, recognizing that tool-making demands more sophisticated capabilities than tool-using, we can apply a powerful yet resource-intensive model as the tool maker, and a lightweight while cost-effective model as the tool user. We validate the effectiveness of our approach across a variety of complex reasoning tasks, including Big-Bench tasks. With GPT-4 as the tool maker and GPT-3.5 as the tool user, LATM can achieve performance that is on par with using GPT-4 for both tool making and tool using, while the inference cost is significantly reduced.
BERTScore: Evaluating Text Generation with BERT
We propose BERTScore, an automatic evaluation metric for text generation. Analogously to common metrics, BERTScore computes a similarity score for each token in the candidate sentence with each token in the reference sentence. However, instead of exact matches, we compute token similarity using contextual embeddings. We evaluate using the outputs of 363 machine translation and image captioning systems. BERTScore correlates better with human judgments and provides stronger model selection performance than existing metrics. Finally, we use an adversarial paraphrase detection task to show that BERTScore is more robust to challenging examples when compared to existing metrics.
DreamEdit: Subject-driven Image Editing
Subject-driven image generation aims at generating images containing customized subjects, which has recently drawn enormous attention from the research community. However, the previous works cannot precisely control the background and position of the target subject. In this work, we aspire to fill the void and propose two novel subject-driven sub-tasks, i.e., Subject Replacement and Subject Addition. The new tasks are challenging in multiple aspects: replacing a subject with a customized one can change its shape, texture, and color, while adding a target subject to a designated position in a provided scene necessitates a context-aware posture. To conquer these two novel tasks, we first manually curate a new dataset DreamEditBench containing 22 different types of subjects, and 440 source images with different difficulty levels. We plan to host DreamEditBench as a platform and hire trained evaluators for standard human evaluation. We also devise an innovative method DreamEditor to resolve these tasks by performing iterative generation, which enables a smooth adaptation to the customized subject. In this project, we conduct automatic and human evaluations to understand the performance of DreamEditor and baselines on DreamEditBench. For Subject Replacement, we found that the existing models are sensitive to the shape and color of the original subject. The model failure rate will dramatically increase when the source and target subjects are highly different. For Subject Addition, we found that the existing models cannot easily blend the customized subjects into the background smoothly, leading to noticeable artifacts in the generated image. We hope DreamEditBench can become a standard platform to enable future investigations toward building more controllable subject-driven image editing. Our project homepage is https://dreameditbenchteam.github.io/.
Graph-based Topology Reasoning for Driving Scenes
Understanding the road genome is essential to realize autonomous driving. This highly intelligent problem contains two aspects - the connection relationship of lanes, and the assignment relationship between lanes and traffic elements, where a comprehensive topology reasoning method is vacant. On one hand, previous map learning techniques struggle in deriving lane connectivity with segmentation or laneline paradigms; or prior lane topology-oriented approaches focus on centerline detection and neglect the interaction modeling. On the other hand, the traffic element to lane assignment problem is limited in the image domain, leaving how to construct the correspondence from two views an unexplored challenge. To address these issues, we present TopoNet, the first end-to-end framework capable of abstracting traffic knowledge beyond conventional perception tasks. To capture the driving scene topology, we introduce three key designs: (1) an embedding module to incorporate semantic knowledge from 2D elements into a unified feature space; (2) a curated scene graph neural network to model relationships and enable feature interaction inside the network; (3) instead of transmitting messages arbitrarily, a scene knowledge graph is devised to differentiate prior knowledge from various types of the road genome. We evaluate TopoNet on the challenging scene understanding benchmark, OpenLane-V2, where our approach outperforms all previous works by a great margin on all perceptual and topological metrics. The code is released at https://github.com/OpenDriveLab/TopoNet
CrossLoc3D: Aerial-Ground Cross-Source 3D Place Recognition
We present CrossLoc3D, a novel 3D place recognition method that solves a large-scale point matching problem in a cross-source setting. Cross-source point cloud data corresponds to point sets captured by depth sensors with different accuracies or from different distances and perspectives. We address the challenges in terms of developing 3D place recognition methods that account for the representation gap between points captured by different sources. Our method handles cross-source data by utilizing multi-grained features and selecting convolution kernel sizes that correspond to most prominent features. Inspired by the diffusion models, our method uses a novel iterative refinement process that gradually shifts the embedding spaces from different sources to a single canonical space for better metric learning. In addition, we present CS-Campus3D, the first 3D aerial-ground cross-source dataset consisting of point cloud data from both aerial and ground LiDAR scans. The point clouds in CS-Campus3D have representation gaps and other features like different views, point densities, and noise patterns. We show that our CrossLoc3D algorithm can achieve an improvement of 4.74% - 15.37% in terms of the top 1 average recall on our CS-Campus3D benchmark and achieves performance comparable to state-of-the-art 3D place recognition method on the Oxford RobotCar. We will release the code and CS-Campus3D benchmark.
Converse: A Tree-Based Modular Task-Oriented Dialogue System
Creating a system that can have meaningful conversations with humans to help accomplish tasks is one of the ultimate goals of Artificial Intelligence (AI). It has defined the meaning of AI since the beginning. A lot has been accomplished in this area recently, with voice assistant products entering our daily lives and chat bot systems becoming commonplace in customer service. At first glance there seems to be no shortage of options for dialogue systems. However, the frequently deployed dialogue systems today seem to all struggle with a critical weakness - they are hard to build and harder to maintain. At the core of the struggle is the need to script every single turn of interactions between the bot and the human user. This makes the dialogue systems more difficult to maintain as the tasks become more complex and more tasks are added to the system. In this paper, we propose Converse, a flexible tree-based modular task-oriented dialogue system. Converse uses an and-or tree structure to represent tasks and offers powerful multi-task dialogue management. Converse supports task dependency and task switching, which are unique features compared to other open-source dialogue frameworks. At the same time, Converse aims to make the bot building process easy and simple, for both professional and non-professional software developers. The code is available at https://github.com/salesforce/Converse.
SeqGPT: An Out-of-the-box Large Language Model for Open Domain Sequence Understanding
Large language models (LLMs) have shown impressive ability for open-domain NLP tasks. However, LLMs are sometimes too footloose for natural language understanding (NLU) tasks which always have restricted output and input format. Their performances on NLU tasks are highly related to prompts or demonstrations and are shown to be poor at performing several representative NLU tasks, such as event extraction and entity typing. To this end, we present SeqGPT, a bilingual (i.e., English and Chinese) open-source autoregressive model specially enhanced for open-domain natural language understanding. We express all NLU tasks with two atomic tasks, which define fixed instructions to restrict the input and output format but still ``open'' for arbitrarily varied label sets. The model is first instruction-tuned with extremely fine-grained labeled data synthesized by ChatGPT and then further fine-tuned by 233 different atomic tasks from 152 datasets across various domains. The experimental results show that SeqGPT has decent classification and extraction ability, and is capable of performing language understanding tasks on unseen domains. We also conduct empirical studies on the scaling of data and model size as well as on the transfer across tasks. Our model is accessible at https://github.com/Alibaba-NLP/SeqGPT.
NTK-approximating MLP Fusion for Efficient Language Model Fine-tuning
Fine-tuning a pre-trained language model (PLM) emerges as the predominant strategy in many natural language processing applications. However, even fine-tuning the PLMs and doing inference are expensive, especially on edge devices with low computing power. Some general approaches (e.g. quantization and distillation) have been widely studied to reduce the compute/memory of PLM fine-tuning, while very few one-shot compression techniques are explored. In this paper, we investigate the neural tangent kernel (NTK)--which reveals the gradient descent dynamics of neural networks--of the multilayer perceptrons (MLP) modules in a PLM and propose to coin a lightweight PLM through NTK-approximating MLP fusion. To achieve this, we reconsider the MLP as a bundle of sub-MLPs, and cluster them into a given number of centroids, which can then be restored as a compressed MLP and surprisingly shown to well approximate the NTK of the original PLM. Extensive experiments of PLM fine-tuning on both natural language understanding (NLU) and generation (NLG) tasks are provided to verify the effectiveness of the proposed method MLP fusion. Our code is available at https://github.com/weitianxin/MLP_Fusion.
Ada3D : Exploiting the Spatial Redundancy with Adaptive Inference for Efficient 3D Object Detection
Voxel-based methods have achieved state-of-the-art performance for 3D object detection in autonomous driving. However, their significant computational and memory costs pose a challenge for their application to resource-constrained vehicles. One reason for this high resource consumption is the presence of a large number of redundant background points in Lidar point clouds, resulting in spatial redundancy in both 3D voxel and dense BEV map representations. To address this issue, we propose an adaptive inference framework called Ada3D, which focuses on exploiting the input-level spatial redundancy. Ada3D adaptively filters the redundant input, guided by a lightweight importance predictor and the unique properties of the Lidar point cloud. Additionally, we utilize the BEV features' intrinsic sparsity by introducing the Sparsity Preserving Batch Normalization. With Ada3D, we achieve 40% reduction for 3D voxels and decrease the density of 2D BEV feature maps from 100% to 20% without sacrificing accuracy. Ada3D reduces the model computational and memory cost by 5x, and achieves 1.52x/1.45x end-to-end GPU latency and 1.5x/4.5x GPU peak memory optimization for the 3D and 2D backbone respectively.
RepoBench: Benchmarking Repository-Level Code Auto-Completion Systems
Large Language Models (LLMs) have greatly advanced code auto-completion systems, with a potential for substantial productivity enhancements for developers. However, current benchmarks mainly focus on single-file tasks, leaving an assessment gap for more complex, real-world, multi-file programming scenarios. To fill this gap, we introduce RepoBench, a new benchmark specifically designed for evaluating repository-level code auto-completion systems. RepoBench consists of three interconnected evaluation tasks: RepoBench-R (Retrieval), RepoBench-C (Code Completion), and RepoBench-P (Pipeline). Each task respectively measures the system's ability to retrieve the most relevant code snippets from other files as cross-file context, predict the next line of code with cross-file and in-file context, and handle complex tasks that require a combination of both retrieval and next-line prediction. RepoBench aims to facilitate a more complete comparison of performance and encouraging continuous improvement in auto-completion systems. RepoBench is publicly available at https://github.com/Leolty/repobench.
On Calibrating Diffusion Probabilistic Models
Recently, diffusion probabilistic models (DPMs) have achieved promising results in diverse generative tasks. A typical DPM framework includes a forward process that gradually diffuses the data distribution and a reverse process that recovers the data distribution from time-dependent data scores. In this work, we observe that the stochastic reverse process of data scores is a martingale, from which concentration bounds and the optional stopping theorem for data scores can be derived. Then, we discover a simple way for calibrating an arbitrary pretrained DPM, with which the score matching loss can be reduced and the lower bounds of model likelihood can consequently be increased. We provide general calibration guidelines under various model parametrizations. Our calibration method is performed only once and the resulting models can be used repeatedly for sampling. We conduct experiments on multiple datasets to empirically validate our proposal. Our code is at https://github.com/thudzj/Calibrated-DPMs.
Benchmarking Large Language Models for News Summarization
Large language models (LLMs) have shown promise for automatic summarization but the reasons behind their successes are poorly understood. By conducting a human evaluation on ten LLMs across different pretraining methods, prompts, and model scales, we make two important observations. First, we find instruction tuning, and not model size, is the key to the LLM's zero-shot summarization capability. Second, existing studies have been limited by low-quality references, leading to underestimates of human performance and lower few-shot and finetuning performance. To better evaluate LLMs, we perform human evaluation over high-quality summaries we collect from freelance writers. Despite major stylistic differences such as the amount of paraphrasing, we find that LMM summaries are judged to be on par with human written summaries.
CLIP2Point: Transfer CLIP to Point Cloud Classification with Image-Depth Pre-training
Pre-training across 3D vision and language remains under development because of limited training data. Recent works attempt to transfer vision-language pre-training models to 3D vision. PointCLIP converts point cloud data to multi-view depth maps, adopting CLIP for shape classification. However, its performance is restricted by the domain gap between rendered depth maps and images, as well as the diversity of depth distributions. To address this issue, we propose CLIP2Point, an image-depth pre-training method by contrastive learning to transfer CLIP to the 3D domain, and adapt it to point cloud classification. We introduce a new depth rendering setting that forms a better visual effect, and then render 52,460 pairs of images and depth maps from ShapeNet for pre-training. The pre-training scheme of CLIP2Point combines cross-modality learning to enforce the depth features for capturing expressive visual and textual features and intra-modality learning to enhance the invariance of depth aggregation. Additionally, we propose a novel Dual-Path Adapter (DPA) module, i.e., a dual-path structure with simplified adapters for few-shot learning. The dual-path structure allows the joint use of CLIP and CLIP2Point, and the simplified adapter can well fit few-shot tasks without post-search. Experimental results show that CLIP2Point is effective in transferring CLIP knowledge to 3D vision. Our CLIP2Point outperforms PointCLIP and other self-supervised 3D networks, achieving state-of-the-art results on zero-shot and few-shot classification.
MVP: Multi-task Supervised Pre-training for Natural Language Generation
Pre-trained language models (PLMs) have achieved remarkable success in natural language generation (NLG) tasks. Up to now, most NLG-oriented PLMs are pre-trained in an unsupervised manner using the large-scale general corpus. In the meanwhile, an increasing number of models pre-trained with labeled data (i.e., ``supervised pre-training'') showcase superior performance compared to unsupervised pre-trained models. Motivated by the success of supervised pre-training, we propose Multi-task superVised Pre-training~(MVP) for natural language generation. We collect a large-scale natural language generation corpus, MVPCorpus, from 77 datasets over 11 diverse NLG tasks. Then we unify these examples into a general text-to-text format to pre-train the text generation model MVP in a supervised manner. For each task, we further pre-train specific soft prompts to stimulate the model's capacity to perform a specific task. Extensive experiments have demonstrated the effectiveness and generality of our MVP model in a number of NLG tasks, which achieves state-of-the-art performance on 13 out of 17 datasets.
Crystal Diffusion Variational Autoencoder for Periodic Material Generation
Generating the periodic structure of stable materials is a long-standing challenge for the material design community. This task is difficult because stable materials only exist in a low-dimensional subspace of all possible periodic arrangements of atoms: 1) the coordinates must lie in the local energy minimum defined by quantum mechanics, and 2) global stability also requires the structure to follow the complex, yet specific bonding preferences between different atom types. Existing methods fail to incorporate these factors and often lack proper invariances. We propose a Crystal Diffusion Variational Autoencoder (CDVAE) that captures the physical inductive bias of material stability. By learning from the data distribution of stable materials, the decoder generates materials in a diffusion process that moves atomic coordinates towards a lower energy state and updates atom types to satisfy bonding preferences between neighbors. Our model also explicitly encodes interactions across periodic boundaries and respects permutation, translation, rotation, and periodic invariances. We significantly outperform past methods in three tasks: 1) reconstructing the input structure, 2) generating valid, diverse, and realistic materials, and 3) generating materials that optimize a specific property. We also provide several standard datasets and evaluation metrics for the broader machine learning community.
GANav: Efficient Terrain Segmentation for Robot Navigation in Unstructured Outdoor Environments
We propose GANav, a novel group-wise attention mechanism to identify safe and navigable regions in off-road terrains and unstructured environments from RGB images. Our approach classifies terrains based on their navigability levels using coarse-grained semantic segmentation. Our novel group-wise attention loss enables any backbone network to explicitly focus on the different groups' features with low spatial resolution. Our design leads to efficient inference while maintaining a high level of accuracy compared to existing SOTA methods. Our extensive evaluations on the RUGD and RELLIS-3D datasets shows that GANav achieves an improvement over the SOTA mIoU by 2.25-39.05% on RUGD and 5.17-19.06% on RELLIS-3D. We interface GANav with a deep reinforcement learning-based navigation algorithm and highlight its benefits in terms of navigation in real-world unstructured terrains. We integrate our GANav-based navigation algorithm with ClearPath Jackal and Husky robots, and observe an increase of 10% in terms of success rate, 2-47% in terms of selecting the surface with the best navigability and a decrease of 4.6-13.9% in trajectory roughness. Further, GANav reduces the false positive rate of forbidden regions by 37.79%. Code, videos, and a full technical report are available at https://gamma.umd.edu/offroad/.
WALL-E: Embodied Robotic WAiter Load Lifting with Large Language Model
Enabling robots to understand language instructions and react accordingly to visual perception has been a long-standing goal in the robotics research community. Achieving this goal requires cutting-edge advances in natural language processing, computer vision, and robotics engineering. Thus, this paper mainly investigates the potential of integrating the most recent Large Language Models (LLMs) and existing visual grounding and robotic grasping system to enhance the effectiveness of the human-robot interaction. We introduce the WALL-E (Embodied Robotic WAiter load lifting with Large Language model) as an example of this integration. The system utilizes the LLM of ChatGPT to summarize the preference object of the users as a target instruction via the multi-round interactive dialogue. The target instruction is then forwarded to a visual grounding system for object pose and size estimation, following which the robot grasps the object accordingly. We deploy this LLM-empowered system on the physical robot to provide a more user-friendly interface for the instruction-guided grasping task. The further experimental results on various real-world scenarios demonstrated the feasibility and efficacy of our proposed framework. See the project website at: https://star-uu-wang.github.io/WALL-E/
Rendering Humans from Object-Occluded Monocular Videos
3D understanding and rendering of moving humans from monocular videos is a challenging task. Despite recent progress, the task remains difficult in real-world scenarios, where obstacles may block the camera view and cause partial occlusions in the captured videos. Existing methods cannot handle such defects due to two reasons. First, the standard rendering strategy relies on point-point mapping, which could lead to dramatic disparities between the visible and occluded areas of the body. Second, the naive direct regression approach does not consider any feasibility criteria (ie, prior information) for rendering under occlusions. To tackle the above drawbacks, we present OccNeRF, a neural rendering method that achieves better rendering of humans in severely occluded scenes. As direct solutions to the two drawbacks, we propose surface-based rendering by integrating geometry and visibility priors. We validate our method on both simulated and real-world occlusions and demonstrate our method's superiority.
GaFET: Learning Geometry-aware Facial Expression Translation from In-The-Wild Images
While current face animation methods can manipulate expressions individually, they suffer from several limitations. The expressions manipulated by some motion-based facial reenactment models are crude. Other ideas modeled with facial action units cannot generalize to arbitrary expressions not covered by annotations. In this paper, we introduce a novel Geometry-aware Facial Expression Translation (GaFET) framework, which is based on parametric 3D facial representations and can stably decoupled expression. Among them, a Multi-level Feature Aligned Transformer is proposed to complement non-geometric facial detail features while addressing the alignment challenge of spatial features. Further, we design a De-expression model based on StyleGAN, in order to reduce the learning difficulty of GaFET in unpaired "in-the-wild" images. Extensive qualitative and quantitative experiments demonstrate that we achieve higher-quality and more accurate facial expression transfer results compared to state-of-the-art methods, and demonstrate applicability of various poses and complex textures. Besides, videos or annotated training data are omitted, making our method easier to use and generalize.
Say Goodbye to RNN-T Loss: A Novel CIF-based Transducer Architecture for Automatic Speech Recognition
RNN-T models are widely used in ASR, which rely on the RNN-T loss to achieve length alignment between input audio and target sequence. However, the implementation complexity and the alignment-based optimization target of RNN-T loss lead to computational redundancy and a reduced role for predictor network, respectively. In this paper, we propose a novel model named CIF-Transducer (CIF-T) which incorporates the Continuous Integrate-and-Fire (CIF) mechanism with the RNN-T model to achieve efficient alignment. In this way, the RNN-T loss is abandoned, thus bringing a computational reduction and allowing the predictor network a more significant role. We also introduce Funnel-CIF, Context Blocks, Unified Gating and Bilinear Pooling joint network, and auxiliary training strategy to further improve performance. Experiments on the 178-hour AISHELL-1 and 10000-hour WenetSpeech datasets show that CIF-T achieves state-of-the-art results with lower computational overhead compared to RNN-T models.
Tangent Model Composition for Ensembling and Continual Fine-tuning
Tangent Model Composition (TMC) is a method to combine component models independently fine-tuned around a pre-trained point. Component models are tangent vectors to the pre-trained model that can be added, scaled, or subtracted to support incremental learning, ensembling, or unlearning. Component models are composed at inference time via scalar combination, reducing the cost of ensembling to that of a single model. TMC improves accuracy by 4.2% compared to ensembling non-linearly fine-tuned models at a 2.5x to 10x reduction of inference cost, growing linearly with the number of component models. Each component model can be forgotten at zero cost, with no residual effect on the resulting inference. When used for continual fine-tuning, TMC is not constrained by sequential bias and can be executed in parallel on federated data. TMC outperforms recently published continual fine-tuning methods almost uniformly on each setting -- task-incremental, class-incremental, and data-incremental -- on a total of 13 experiments across 3 benchmark datasets, despite not using any replay buffer. TMC is designed for composing models that are local to a pre-trained embedding, but could be extended to more general settings.
FreeCOS: Self-Supervised Learning from Fractals and Unlabeled Images for Curvilinear Object Segmentation
Curvilinear object segmentation is critical for many applications. However, manually annotating curvilinear objects is very time-consuming and error-prone, yielding insufficiently available annotated datasets for existing supervised methods and domain adaptation methods. This paper proposes a self-supervised curvilinear object segmentation method that learns robust and distinctive features from fractals and unlabeled images (FreeCOS). The key contributions include a novel Fractal-FDA synthesis (FFS) module and a geometric information alignment (GIA) approach. FFS generates curvilinear structures based on the parametric Fractal L-system and integrates the generated structures into unlabeled images to obtain synthetic training images via Fourier Domain Adaptation. GIA reduces the intensity differences between the synthetic and unlabeled images by comparing the intensity order of a given pixel to the values of its nearby neighbors. Such image alignment can explicitly remove the dependency on absolute intensity values and enhance the inherent geometric characteristics which are common in both synthetic and real images. In addition, GIA aligns features of synthetic and real images via the prediction space adaptation loss (PSAL) and the curvilinear mask contrastive loss (CMCL). Extensive experimental results on four public datasets, i.e., XCAD, DRIVE, STARE and CrackTree demonstrate that our method outperforms the state-of-the-art unsupervised methods, self-supervised methods and traditional methods by a large margin. The source code of this work is available at https://github.com/TY-Shi/FreeCOS.
CMATH: Can Your Language Model Pass Chinese Elementary School Math Test?
We present the Chinese Elementary School Math Word Problems (CMATH) dataset, comprising 1.7k elementary school-level math word problems with detailed annotations, source from actual Chinese workbooks and exams. This dataset aims to provide a benchmark tool for assessing the following question: to what grade level of elementary school math do the abilities of popular large language models (LLMs) correspond? We evaluate a variety of popular LLMs, including both commercial and open-source options, and discover that only GPT-4 achieves success (accuracy geq 60\%) across all six elementary school grades, while other models falter at different grade levels. Furthermore, we assess the robustness of several top-performing LLMs by augmenting the original problems in the CMATH dataset with distracting information. Our findings reveal that GPT-4 is able to maintains robustness, while other model fail. We anticipate that our study will expose limitations in LLMs' arithmetic and reasoning capabilities, and promote their ongoing development and advancement.
Taxonomy-Structured Domain Adaptation
Domain adaptation aims to mitigate distribution shifts among different domains. However, traditional formulations are mostly limited to categorical domains, greatly simplifying nuanced domain relationships in the real world. In this work, we tackle a generalization with taxonomy-structured domains, which formalizes domains with nested, hierarchical similarity structures such as animal species and product catalogs. We build on the classic adversarial framework and introduce a novel taxonomist, which competes with the adversarial discriminator to preserve the taxonomy information. The equilibrium recovers the classic adversarial domain adaptation's solution if given a non-informative domain taxonomy (e.g., a flat taxonomy where all leaf nodes connect to the root node) while yielding non-trivial results with other taxonomies. Empirically, our method achieves state-of-the-art performance on both synthetic and real-world datasets with successful adaptation. Code is available at https://github.com/Wang-ML-Lab/TSDA.
Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate
Modern large language models (LLMs) like ChatGPT have shown remarkable performance on general language tasks but still struggle on complex reasoning tasks, which drives the research on cognitive behaviors of LLMs to explore human-like problem-solving strategies. Along this direction, one representative strategy is self-reflection, which asks an LLM to refine the solution with the feedback generated by itself iteratively. However, our study shows that such reflection-style methods suffer from the Degeneration-of-Thought (DoT) problem: once the LLM has established confidence in its solutions, it is unable to generate novel thoughts later through reflection even if its initial stance is incorrect. To address the DoT problem, we propose a Multi-Agent Debate (MAD) framework, in which multiple agents express their arguments in the state of "tit for tat" and a judge manages the debate process to obtain a final solution. Clearly, our MAD framework encourages divergent thinking in LLMs which would be helpful for tasks that require deep levels of contemplation. Experiment results on two challenging datasets, commonsense machine translation and counter-intuitive arithmetic reasoning, demonstrate the effectiveness of our MAD framework. Extensive analyses suggest that the adaptive break of debate and the modest level of "tit for tat" state are required for MAD to obtain good performance. Moreover, we find that LLMs might not be a fair judge if different LLMs are used for agents. Codes: https://github.com/Skytliang/Multi-Agents-Debate
Learning to Jump: Thinning and Thickening Latent Counts for Generative Modeling
Learning to denoise has emerged as a prominent paradigm to design state-of-the-art deep generative models for natural images. How to use it to model the distributions of both continuous real-valued data and categorical data has been well studied in recently proposed diffusion models. However, it is found in this paper to have limited ability in modeling some other types of data, such as count and non-negative continuous data, that are often highly sparse, skewed, heavy-tailed, and/or overdispersed. To this end, we propose learning to jump as a general recipe for generative modeling of various types of data. Using a forward count thinning process to construct learning objectives to train a deep neural network, it employs a reverse count thickening process to iteratively refine its generation through that network. We demonstrate when learning to jump is expected to perform comparably to learning to denoise, and when it is expected to perform better. For example, learning to jump is recommended when the training data is non-negative and exhibits strong sparsity, skewness, heavy-tailedness, and/or heterogeneity.
MRN: Multiplexed Routing Network for Incremental Multilingual Text Recognition
Multilingual text recognition (MLTR) systems typically focus on a fixed set of languages, which makes it difficult to handle newly added languages or adapt to ever-changing data distribution. In this paper, we propose the Incremental MLTR (IMLTR) task in the context of incremental learning (IL), where different languages are introduced in batches. IMLTR is particularly challenging due to rehearsal-imbalance, which refers to the uneven distribution of sample characters in the rehearsal set, used to retain a small amount of old data as past memories. To address this issue, we propose a Multiplexed Routing Network (MRN). MRN trains a recognizer for each language that is currently seen. Subsequently, a language domain predictor is learned based on the rehearsal set to weigh the recognizers. Since the recognizers are derived from the original data, MRN effectively reduces the reliance on older data and better fights against catastrophic forgetting, the core issue in IL. We extensively evaluate MRN on MLT17 and MLT19 datasets. It outperforms existing general-purpose IL methods by large margins, with average accuracy improvements ranging from 10.3% to 35.8% under different settings. Code is available at https://github.com/simplify23/MRN.
RCOT: Detecting and Rectifying Factual Inconsistency in Reasoning by Reversing Chain-of-Thought
Large language Models (LLMs) have achieved promising performance on arithmetic reasoning tasks by incorporating step-by-step chain-of-thought (CoT) prompting. However, LLMs face challenges in maintaining factual consistency during reasoning, exhibiting tendencies to condition overlooking, question misinterpretation, and condition hallucination over given problems. Existing methods use coarse-grained feedback (e.g., whether the answer is correct) to improve factual consistency. In this work, we propose RCoT (Reversing Chain-of-Thought), a novel method to improve LLMs' reasoning abilities by automatically detecting and rectifying factual inconsistency in LLMs' generated solutions. To detect factual inconsistency, RCoT first asks LLMs to reconstruct the problem based on generated solutions. Then fine-grained comparisons between the original problem and the reconstructed problem expose the factual inconsistency in the original solutions. To rectify the solution, RCoT formulates detected factual inconsistency into fine-grained feedback to guide LLMs in revising solutions. Experimental results demonstrate consistent improvements of RCoT over standard CoT across seven arithmetic datasets. Moreover, we find that manually written fine-grained feedback can dramatically improve LLMs' reasoning abilities (e.g., ChatGPT reaches 94.6% accuracy on GSM8K), encouraging the community to further explore the fine-grained feedback generation methods.
Generative Table Pre-training Empowers Models for Tabular Prediction
Recently, the topic of table pre-training has attracted considerable research interest. However, how to employ table pre-training to boost the performance of tabular prediction remains an open challenge. In this paper, we propose TapTap, the first attempt that leverages table pre-training to empower models for tabular prediction. After pre-training on a large corpus of real-world tabular data, TapTap can generate high-quality synthetic tables to support various applications on tabular data, including privacy protection, low resource regime, missing value imputation, and imbalanced classification. Extensive experiments on 12 datasets demonstrate that TapTap outperforms a total of 16 baselines in different scenarios. Meanwhile, it can be easily combined with various backbone models, including LightGBM, Multilayer Perceptron (MLP) and Transformer. Moreover, with the aid of table pre-training, models trained using synthetic data generated by TapTap can even compete with models using the original dataset on half of the experimental datasets, marking a milestone in the development of synthetic tabular data generation. The codes are available at https://github.com/ZhangTP1996/TapTap.
High-dimensional Clustering onto Hamiltonian Cycle
Clustering aims to group unlabelled samples based on their similarities. It has become a significant tool for the analysis of high-dimensional data. However, most of the clustering methods merely generate pseudo labels and thus are unable to simultaneously present the similarities between different clusters and outliers. This paper proposes a new framework called High-dimensional Clustering onto Hamiltonian Cycle (HCHC) to solve the above problems. First, HCHC combines global structure with local structure in one objective function for deep clustering, improving the labels as relative probabilities, to mine the similarities between different clusters while keeping the local structure in each cluster. Then, the anchors of different clusters are sorted on the optimal Hamiltonian cycle generated by the cluster similarities and mapped on the circumference of a circle. Finally, a sample with a higher probability of a cluster will be mapped closer to the corresponding anchor. In this way, our framework allows us to appreciate three aspects visually and simultaneously - clusters (formed by samples with high probabilities), cluster similarities (represented as circular distances), and outliers (recognized as dots far away from all clusters). The experiments illustrate the superiority of HCHC.
ChatABL: Abductive Learning via Natural Language Interaction with ChatGPT
Large language models (LLMs) such as ChatGPT have recently demonstrated significant potential in mathematical abilities, providing valuable reasoning paradigm consistent with human natural language. However, LLMs currently have difficulty in bridging perception, language understanding and reasoning capabilities due to incompatibility of the underlying information flow among them, making it challenging to accomplish tasks autonomously. On the other hand, abductive learning (ABL) frameworks for integrating the two abilities of perception and reasoning has seen significant success in inverse decipherment of incomplete facts, but it is limited by the lack of semantic understanding of logical reasoning rules and the dependence on complicated domain knowledge representation. This paper presents a novel method (ChatABL) for integrating LLMs into the ABL framework, aiming at unifying the three abilities in a more user-friendly and understandable manner. The proposed method uses the strengths of LLMs' understanding and logical reasoning to correct the incomplete logical facts for optimizing the performance of perceptual module, by summarizing and reorganizing reasoning rules represented in natural language format. Similarly, perceptual module provides necessary reasoning examples for LLMs in natural language format. The variable-length handwritten equation deciphering task, an abstract expression of the Mayan calendar decoding, is used as a testbed to demonstrate that ChatABL has reasoning ability beyond most existing state-of-the-art methods, which has been well supported by comparative studies. To our best knowledge, the proposed ChatABL is the first attempt to explore a new pattern for further approaching human-level cognitive ability via natural language interaction with ChatGPT.
Token Boosting for Robust Self-Supervised Visual Transformer Pre-training
Learning with large-scale unlabeled data has become a powerful tool for pre-training Visual Transformers (VTs). However, prior works tend to overlook that, in real-world scenarios, the input data may be corrupted and unreliable. Pre-training VTs on such corrupted data can be challenging, especially when we pre-train via the masked autoencoding approach, where both the inputs and masked ``ground truth" targets can potentially be unreliable in this case. To address this limitation, we introduce the Token Boosting Module (TBM) as a plug-and-play component for VTs that effectively allows the VT to learn to extract clean and robust features during masked autoencoding pre-training. We provide theoretical analysis to show how TBM improves model pre-training with more robust and generalizable representations, thus benefiting downstream tasks. We conduct extensive experiments to analyze TBM's effectiveness, and results on four corrupted datasets demonstrate that TBM consistently improves performance on downstream tasks.
UMC: A Unified Bandwidth-efficient and Multi-resolution based Collaborative Perception Framework
Multi-agent collaborative perception (MCP) has recently attracted much attention. It includes three key processes: communication for sharing, collaboration for integration, and reconstruction for different downstream tasks. Existing methods pursue designing the collaboration process alone, ignoring their intrinsic interactions and resulting in suboptimal performance. In contrast, we aim to propose a Unified Collaborative perception framework named UMC, optimizing the communication, collaboration, and reconstruction processes with the Multi-resolution technique. The communication introduces a novel trainable multi-resolution and selective-region (MRSR) mechanism, achieving higher quality and lower bandwidth. Then, a graph-based collaboration is proposed, conducting on each resolution to adapt the MRSR. Finally, the reconstruction integrates the multi-resolution collaborative features for downstream tasks. Since the general metric can not reflect the performance enhancement brought by MCP systematically, we introduce a brand-new evaluation metric that evaluates the MCP from different perspectives. To verify our algorithm, we conducted experiments on the V2X-Sim and OPV2V datasets. Our quantitative and qualitative experiments prove that the proposed UMC greatly outperforms the state-of-the-art collaborative perception approaches.
MBPTrack: Improving 3D Point Cloud Tracking with Memory Networks and Box Priors
3D single object tracking has been a crucial problem for decades with numerous applications such as autonomous driving. Despite its wide-ranging use, this task remains challenging due to the significant appearance variation caused by occlusion and size differences among tracked targets. To address these issues, we present MBPTrack, which adopts a Memory mechanism to utilize past information and formulates localization in a coarse-to-fine scheme using Box Priors given in the first frame. Specifically, past frames with targetness masks serve as an external memory, and a transformer-based module propagates tracked target cues from the memory to the current frame. To precisely localize objects of all sizes, MBPTrack first predicts the target center via Hough voting. By leveraging box priors given in the first frame, we adaptively sample reference points around the target center that roughly cover the target of different sizes. Then, we obtain dense feature maps by aggregating point features into the reference points, where localization can be performed more effectively. Extensive experiments demonstrate that MBPTrack achieves state-of-the-art performance on KITTI, nuScenes and Waymo Open Dataset, while running at 50 FPS on a single RTX3090 GPU.
The Wisdom of Hindsight Makes Language Models Better Instruction Followers
Reinforcement learning has seen wide success in finetuning large language models to better align with instructions via human feedback. The so-called algorithm, Reinforcement Learning with Human Feedback (RLHF) demonstrates impressive performance on the GPT series models. However, the underlying Reinforcement Learning (RL) algorithm is complex and requires an additional training pipeline for reward and value networks. In this paper, we consider an alternative approach: converting feedback to instruction by relabeling the original one and training the model for better alignment in a supervised manner. Such an algorithm doesn't require any additional parameters except for the original language model and maximally reuses the pretraining pipeline. To achieve this, we formulate instruction alignment problem for language models as a goal-reaching problem in decision making. We propose Hindsight Instruction Relabeling (HIR), a novel algorithm for aligning language models with instructions. The resulting two-stage algorithm shed light to a family of reward-free approaches that utilize the hindsightly relabeled instructions based on feedback. We evaluate the performance of HIR extensively on 12 challenging BigBench reasoning tasks and show that HIR outperforms the baseline algorithms and is comparable to or even surpasses supervised finetuning.
Unsupervised Manifold Linearizing and Clustering
We consider the problem of simultaneously clustering and learning a linear representation of data lying close to a union of low-dimensional manifolds, a fundamental task in machine learning and computer vision. When the manifolds are assumed to be linear subspaces, this reduces to the classical problem of subspace clustering, which has been studied extensively over the past two decades. Unfortunately, many real-world datasets such as natural images can not be well approximated by linear subspaces. On the other hand, numerous works have attempted to learn an appropriate transformation of the data, such that data is mapped from a union of general non-linear manifolds to a union of linear subspaces (with points from the same manifold being mapped to the same subspace). However, many existing works have limitations such as assuming knowledge of the membership of samples to clusters, requiring high sampling density, or being shown theoretically to learn trivial representations. In this paper, we propose to optimize the Maximal Coding Rate Reduction metric with respect to both the data representation and a novel doubly stochastic cluster membership, inspired by state-of-the-art subspace clustering results. We give a parameterization of such a representation and membership, allowing efficient mini-batching and one-shot initialization. Experiments on CIFAR-10, -20, -100, and TinyImageNet-200 datasets show that the proposed method is much more accurate and scalable than state-of-the-art deep clustering methods, and further learns a latent linear representation of the data.
Momentum Decoding: Open-ended Text Generation As Graph Exploration
Open-ended text generation with autoregressive language models (LMs) is one of the core tasks in natural language processing. However, maximization-based decoding methods (e.g., greedy/beam search) often lead to the degeneration problem, i.e., the generated text is unnatural and contains undesirable repetitions. Existing solutions to this problem either introduce randomness prone to incoherence or require a look-ahead mechanism that demands extra computational overhead. In this study, we formulate open-ended text generation from a new perspective, i.e., we view it as an exploration process within a directed graph. Thereby, we understand the phenomenon of degeneration as circular loops within the directed graph. Based on our formulation, we propose a novel decoding method -- momentum decoding -- which encourages the LM to greedily explore new nodes outside the current graph. Meanwhile, it also allows the LM to return to the existing nodes with a momentum downgraded by a pre-defined resistance function. We extensively test our approach on three benchmarks from different domains through automatic and human evaluations. The results show that momentum decoding performs comparably with the current state of the art while enjoying notably improved inference speed and computation FLOPs. Furthermore, we conduct a detailed analysis to reveal the merits and inner workings of our approach. Our codes and other related resources are publicly available at https://github.com/gmftbyGMFTBY/MomentumDecoding.
Coder Reviewer Reranking for Code Generation
Sampling diverse programs from a code language model and reranking with model likelihood is a popular method for code generation but it is prone to preferring degenerate solutions. Inspired by collaborative programming, we propose Coder-Reviewer reranking. We augment Coder language models from past work, which generate programs given language instructions, with Reviewer models, which evaluate the likelihood of the instruction given the generated programs. We perform an extensive study across six datasets with eight models from three model families. Experimental results show that Coder-Reviewer reranking leads to consistent and significant improvement (up to 17% absolute accuracy gain) over reranking with the Coder model only. When combined with executability filtering, Coder-Reviewer reranking can often outperform the minimum Bayes risk method. Coder-Reviewer reranking is easy to implement by prompting, can generalize to different programming languages, and works well with off-the-shelf hyperparameters.
OpenFE: Automated Feature Generation with Expert-level Performance
The goal of automated feature generation is to liberate machine learning experts from the laborious task of manual feature generation, which is crucial for improving the learning performance of tabular data. The major challenge in automated feature generation is to efficiently and accurately identify effective features from a vast pool of candidate features. In this paper, we present OpenFE, an automated feature generation tool that provides competitive results against machine learning experts. OpenFE achieves high efficiency and accuracy with two components: 1) a novel feature boosting method for accurately evaluating the incremental performance of candidate features and 2) a two-stage pruning algorithm that performs feature pruning in a coarse-to-fine manner. Extensive experiments on ten benchmark datasets show that OpenFE outperforms existing baseline methods by a large margin. We further evaluate OpenFE in two Kaggle competitions with thousands of data science teams participating. In the two competitions, features generated by OpenFE with a simple baseline model can beat 99.3% and 99.6% data science teams respectively. In addition to the empirical results, we provide a theoretical perspective to show that feature generation can be beneficial in a simple yet representative setting. The code is available at https://github.com/ZhangTP1996/OpenFE.
Autoregressive Structured Prediction with Language Models
Recent years have seen a paradigm shift in NLP towards using pretrained language models ({PLM}) for a wide range of tasks. However, there are many difficult design decisions to represent structures (e.g. tagged text, coreference chains) in a way such that they can be captured by PLMs. Prior work on structured prediction with PLMs typically flattens the structured output into a sequence, which limits the quality of structural information being learned and leads to inferior performance compared to classic discriminative models. In this work, we describe an approach to model structures as sequences of actions in an autoregressive manner with PLMs, allowing in-structure dependencies to be learned without any loss. Our approach achieves the new state-of-the-art on all the structured prediction tasks we looked at, namely, named entity recognition, end-to-end relation extraction, and coreference resolution.
Optimization for Amortized Inverse Problems
Incorporating a deep generative model as the prior distribution in inverse problems has established substantial success in reconstructing images from corrupted observations. Notwithstanding, the existing optimization approaches use gradient descent largely without adapting to the non-convex nature of the problem and can be sensitive to initial values, impeding further performance improvement. In this paper, we propose an efficient amortized optimization scheme for inverse problems with a deep generative prior. Specifically, the optimization task with high degrees of difficulty is decomposed into optimizing a sequence of much easier ones. We provide a theoretical guarantee of the proposed algorithm and empirically validate it on different inverse problems. As a result, our approach outperforms baseline methods qualitatively and quantitatively by a large margin.
VINet: Visual and Inertial-based Terrain Classification and Adaptive Navigation over Unknown Terrain
We present a visual and inertial-based terrain classification network (VINet) for robotic navigation over different traversable surfaces. We use a novel navigation-based labeling scheme for terrain classification and generalization on unknown surfaces. Our proposed perception method and adaptive scheduling control framework can make predictions according to terrain navigation properties and lead to better performance on both terrain classification and navigation control on known and unknown surfaces. Our VINet can achieve 98.37% in terms of accuracy under supervised setting on known terrains and improve the accuracy by 8.51% on unknown terrains compared to previous methods. We deploy VINet on a mobile tracked robot for trajectory following and navigation on different terrains, and we demonstrate an improvement of 10.3% compared to a baseline controller in terms of RMSE.
Domain-Adaptive Text Classification with Structured Knowledge from Unlabeled Data
Domain adaptive text classification is a challenging problem for the large-scale pretrained language models because they often require expensive additional labeled data to adapt to new domains. Existing works usually fails to leverage the implicit relationships among words across domains. In this paper, we propose a novel method, called Domain Adaptation with Structured Knowledge (DASK), to enhance domain adaptation by exploiting word-level semantic relationships. DASK first builds a knowledge graph to capture the relationship between pivot terms (domain-independent words) and non-pivot terms in the target domain. Then during training, DASK injects pivot-related knowledge graph information into source domain texts. For the downstream task, these knowledge-injected texts are fed into a BERT variant capable of processing knowledge-injected textual data. Thanks to the knowledge injection, our model learns domain-invariant features for non-pivots according to their relationships with pivots. DASK ensures the pivots to have domain-invariant behaviors by dynamically inferring via the polarity scores of candidate pivots during training with pseudo-labels. We validate DASK on a wide range of cross-domain sentiment classification tasks and observe up to 2.9% absolute performance improvement over baselines for 20 different domain pairs. Code will be made available at https://github.com/hikaru-nara/DASK.
Robustness and Accuracy Could Be Reconcilable by (Proper) Definition
The trade-off between robustness and accuracy has been widely studied in the adversarial literature. Although still controversial, the prevailing view is that this trade-off is inherent, either empirically or theoretically. Thus, we dig for the origin of this trade-off in adversarial training and find that it may stem from the improperly defined robust error, which imposes an inductive bias of local invariance -- an overcorrection towards smoothness. Given this, we advocate employing local equivariance to describe the ideal behavior of a robust model, leading to a self-consistent robust error named SCORE. By definition, SCORE facilitates the reconciliation between robustness and accuracy, while still handling the worst-case uncertainty via robust optimization. By simply substituting KL divergence with variants of distance metrics, SCORE can be efficiently minimized. Empirically, our models achieve top-rank performance on RobustBench under AutoAttack. Besides, SCORE provides instructive insights for explaining the overfitting phenomenon and semantic input gradients observed on robust models. Code is available at https://github.com/P2333/SCORE.
Neural Implicit Surface Evolution
This work investigates the use of smooth neural networks for modeling dynamic variations of implicit surfaces under the level set equation (LSE). For this, it extends the representation of neural implicit surfaces to the space-time R^3times R, which opens up mechanisms for continuous geometric transformations. Examples include evolving an initial surface towards general vector fields, smoothing and sharpening using the mean curvature equation, and interpolations of initial conditions. The network training considers two constraints. A data term is responsible for fitting the initial condition to the corresponding time instant, usually R^3 times {0}. Then, a LSE term forces the network to approximate the underlying geometric evolution given by the LSE, without any supervision. The network can also be initialized based on previously trained initial conditions, resulting in faster convergence compared to the standard approach.
HairCLIP: Design Your Hair by Text and Reference Image
Hair editing is an interesting and challenging problem in computer vision and graphics. Many existing methods require well-drawn sketches or masks as conditional inputs for editing, however these interactions are neither straightforward nor efficient. In order to free users from the tedious interaction process, this paper proposes a new hair editing interaction mode, which enables manipulating hair attributes individually or jointly based on the texts or reference images provided by users. For this purpose, we encode the image and text conditions in a shared embedding space and propose a unified hair editing framework by leveraging the powerful image text representation capability of the Contrastive Language-Image Pre-Training (CLIP) model. With the carefully designed network structures and loss functions, our framework can perform high-quality hair editing in a disentangled manner. Extensive experiments demonstrate the superiority of our approach in terms of manipulation accuracy, visual realism of editing results, and irrelevant attribute preservation. Project repo is https://github.com/wty-ustc/HairCLIP.
TNS: Terrain Traversability Mapping and Navigation System for Autonomous Excavators
We present a terrain traversability mapping and navigation system (TNS) for autonomous excavator applications in an unstructured environment. We use an efficient approach to extract terrain features from RGB images and 3D point clouds and incorporate them into a global map for planning and navigation. Our system can adapt to changing environments and update the terrain information in real-time. Moreover, we present a novel dataset, the Complex Worksite Terrain (CWT) dataset, which consists of RGB images from construction sites with seven categories based on navigability. Our novel algorithms improve the mapping accuracy over previous SOTA methods by 4.17-30.48% and reduce MSE on the traversability map by 13.8-71.4%. We have combined our mapping approach with planning and control modules in an autonomous excavator navigation system and observe 49.3% improvement in the overall success rate. Based on TNS, we demonstrate the first autonomous excavator that can navigate through unstructured environments consisting of deep pits, steep hills, rock piles, and other complex terrain features.
M3DeTR: Multi-representation, Multi-scale, Mutual-relation 3D Object Detection with Transformers
We present a novel architecture for 3D object detection, M3DeTR, which combines different point cloud representations (raw, voxels, bird-eye view) with different feature scales based on multi-scale feature pyramids. M3DeTR is the first approach that unifies multiple point cloud representations, feature scales, as well as models mutual relationships between point clouds simultaneously using transformers. We perform extensive ablation experiments that highlight the benefits of fusing representation and scale, and modeling the relationships. Our method achieves state-of-the-art performance on the KITTI 3D object detection dataset and Waymo Open Dataset. Results show that M3DeTR improves the baseline significantly by 1.48% mAP for all classes on Waymo Open Dataset. In particular, our approach ranks 1st on the well-known KITTI 3D Detection Benchmark for both car and cyclist classes, and ranks 1st on Waymo Open Dataset with single frame point cloud input. Our code is available at: https://github.com/rayguan97/M3DETR.
SimCSE: Simple Contrastive Learning of Sentence Embeddings
This paper presents SimCSE, a simple contrastive learning framework that greatly advances state-of-the-art sentence embeddings. We first describe an unsupervised approach, which takes an input sentence and predicts itself in a contrastive objective, with only standard dropout used as noise. This simple method works surprisingly well, performing on par with previous supervised counterparts. We find that dropout acts as minimal data augmentation, and removing it leads to a representation collapse. Then, we propose a supervised approach, which incorporates annotated pairs from natural language inference datasets into our contrastive learning framework by using "entailment" pairs as positives and "contradiction" pairs as hard negatives. We evaluate SimCSE on standard semantic textual similarity (STS) tasks, and our unsupervised and supervised models using BERT base achieve an average of 76.3% and 81.6% Spearman's correlation respectively, a 4.2% and 2.2% improvement compared to the previous best results. We also show -- both theoretically and empirically -- that the contrastive learning objective regularizes pre-trained embeddings' anisotropic space to be more uniform, and it better aligns positive pairs when supervised signals are available.
Making Pre-trained Language Models Better Few-shot Learners
The recent GPT-3 model (Brown et al., 2020) achieves remarkable few-shot performance solely by leveraging a natural-language prompt and a few task demonstrations as input context. Inspired by their findings, we study few-shot learning in a more practical scenario, where we use smaller language models for which fine-tuning is computationally efficient. We present LM-BFF--better few-shot fine-tuning of language models--a suite of simple and complementary techniques for fine-tuning language models on a small number of annotated examples. Our approach includes (1) prompt-based fine-tuning together with a novel pipeline for automating prompt generation; and (2) a refined strategy for dynamically and selectively incorporating demonstrations into each context. Finally, we present a systematic evaluation for analyzing few-shot performance on a range of NLP tasks, including classification and regression. Our experiments demonstrate that our methods combine to dramatically outperform standard fine-tuning procedures in this low resource setting, achieving up to 30% absolute improvement, and 11% on average across all tasks. Our approach makes minimal assumptions on task resources and domain expertise, and hence constitutes a strong task-agnostic method for few-shot learning.
Cross-Domain Sentiment Classification with Contrastive Learning and Mutual Information Maximization
Contrastive learning (CL) has been successful as a powerful representation learning method. In this work we propose CLIM: Contrastive Learning with mutual Information Maximization, to explore the potential of CL on cross-domain sentiment classification. To the best of our knowledge, CLIM is the first to adopt contrastive learning for natural language processing (NLP) tasks across domains. Due to scarcity of labels on the target domain, we introduce mutual information maximization (MIM) apart from CL to exploit the features that best support the final prediction. Furthermore, MIM is able to maintain a relatively balanced distribution of the model's prediction, and enlarges the margin between classes on the target domain. The larger margin increases our model's robustness and enables the same classifier to be optimal across domains. Consequently, we achieve new state-of-the-art results on the Amazon-review dataset as well as the airlines dataset, showing the efficacy of our proposed method CLIM.
SPARTA: Efficient Open-Domain Question Answering via Sparse Transformer Matching Retrieval
We introduce SPARTA, a novel neural retrieval method that shows great promise in performance, generalization, and interpretability for open-domain question answering. Unlike many neural ranking methods that use dense vector nearest neighbor search, SPARTA learns a sparse representation that can be efficiently implemented as an Inverted Index. The resulting representation enables scalable neural retrieval that does not require expensive approximate vector search and leads to better performance than its dense counterpart. We validated our approaches on 4 open-domain question answering (OpenQA) tasks and 11 retrieval question answering (ReQA) tasks. SPARTA achieves new state-of-the-art results across a variety of open-domain question answering tasks in both English and Chinese datasets, including open SQuAD, Natuarl Question, CMRC and etc. Analysis also confirms that the proposed method creates human interpretable representation and allows flexible control over the trade-off between performance and efficiency.
FewRel 2.0: Towards More Challenging Few-Shot Relation Classification
We present FewRel 2.0, a more challenging task to investigate two aspects of few-shot relation classification models: (1) Can they adapt to a new domain with only a handful of instances? (2) Can they detect none-of-the-above (NOTA) relations? To construct FewRel 2.0, we build upon the FewRel dataset (Han et al., 2018) by adding a new test set in a quite different domain, and a NOTA relation choice. With the new dataset and extensive experimental analysis, we found (1) that the state-of-the-art few-shot relation classification models struggle on these two aspects, and (2) that the commonly-used techniques for domain adaptation and NOTA detection still cannot handle the two challenges well. Our research calls for more attention and further efforts to these two real-world issues. All details and resources about the dataset and baselines are released at https: //github.com/thunlp/fewrel.
Training Deep Nets with Sublinear Memory Cost
We propose a systematic approach to reduce the memory consumption of deep neural network training. Specifically, we design an algorithm that costs O(sqrt(n)) memory to train a n layer network, with only the computational cost of an extra forward pass per mini-batch. As many of the state-of-the-art models hit the upper bound of the GPU memory, our algorithm allows deeper and more complex models to be explored, and helps advance the innovations in deep learning research. We focus on reducing the memory cost to store the intermediate feature maps and gradients during training. Computation graph analysis is used for automatic in-place operation and memory sharing optimizations. We show that it is possible to trade computation for memory - giving a more memory efficient training algorithm with a little extra computation cost. In the extreme case, our analysis also shows that the memory consumption can be reduced to O(log n) with as little as O(n log n) extra cost for forward computation. Our experiments show that we can reduce the memory cost of a 1,000-layer deep residual network from 48G to 7G with only 30 percent additional running time cost on ImageNet problems. Similarly, significant memory cost reduction is observed in training complex recurrent neural networks on very long sequences.
