new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

Deep Learning for automated multi-scale functional field boundaries extraction using multi-date Sentinel-2 and PlanetScope imagery: Case Study of Netherlands and Pakistan

This study explores the effectiveness of multi-temporal satellite imagery for better functional field boundary delineation using deep learning semantic segmentation architecture on two distinct geographical and multi-scale farming systems of Netherlands and Pakistan. Multidate images of April, August and October 2022 were acquired for PlanetScope and Sentinel-2 in sub regions of Netherlands and November 2022, February and March 2023 for selected area of Dunyapur in Pakistan. For Netherlands, Basic registration crop parcels (BRP) vector layer was used as labeled training data. while self-crafted field boundary vector data were utilized for Pakistan. Four deep learning models with UNET architecture were evaluated using different combinations of multi-date images and NDVI stacks in the Netherlands subregions. A comparative analysis of IoU scores assessed the effectiveness of the proposed multi-date NDVI stack approach. These findings were then applied for transfer learning, using pre-trained models from the Netherlands on the selected area in Pakistan. Additionally, separate models were trained using self-crafted field boundary data for Pakistan, and combined models were developed using data from both the Netherlands and Pakistan. Results indicate that multi-date NDVI stacks provide additional temporal context, reflecting crop growth over different times of the season. The study underscores the critical role of multi-scale ground information from diverse geographical areas in developing robust and universally applicable models for field boundary delineation. The results also highlight the importance of fine spatial resolution for extraction of field boundaries in regions with small scale framing. The findings can be extended to multi-scale implementations for improved automatic field boundary delineation in heterogeneous agricultural environments.

  • 4 authors
·
Nov 24, 2024

LLM-Based Generalizable Hierarchical Task Planning and Execution for Heterogeneous Robot Teams with Event-Driven Replanning

This paper introduces CoMuRoS (Collaborative Multi-Robot System), a generalizable hierarchical architecture for heterogeneous robot teams that unifies centralized deliberation with decentralized execution, and supports event-driven replanning. A Task Manager LLM interprets natural-language goals, classifies tasks, and allocates subtasks using static rules plus dynamic contexts (task, history, robot and task status, and events).Each robot runs a local LLM that composes executable Python code from primitive skills (ROS2 nodes, policies), while onboard perception (VLMs/image processing) continuously monitors events and classifies them into relevant or irrelevant to the task. Task failures or user intent changes trigger replanning, allowing robots to assist teammates, resume tasks, or request human help. Hardware studies demonstrate autonomous recovery from disruptive events, filtering of irrelevant distractions, and tightly coordinated transport with emergent human-robot cooperation (e.g., multirobot collaborative object recovery success rate: 9/10, coordinated transport: 8/8, human-assisted recovery: 5/5).Simulation studies show intention-aware replanning. A curated textual benchmark spanning 22 scenarios (3 tasks each, around 20 robots) evaluates task allocation, classification, IoU, executability, and correctness, with high average scores (e.g., correctness up to 0.91) across multiple LLMs, a separate replanning set (5 scenarios) achieves 1.0 correctness. Compared with prior LLM-based systems, CoMuRoS uniquely demonstrates runtime, event-driven replanning on physical robots, delivering robust, flexible multi-robot and human-robot collaboration.

  • 4 authors
·
Nov 27, 2025