Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCross-modality (CT-MRI) prior augmented deep learning for robust lung tumor segmentation from small MR datasets
Lack of large expert annotated MR datasets makes training deep learning models difficult. Therefore, a cross-modality (MR-CT) deep learning segmentation approach that augments training data using pseudo MR images produced by transforming expert-segmented CT images was developed. Eighty-One T2-weighted MRI scans from 28 patients with non-small cell lung cancers were analyzed. Cross-modality prior encoding the transformation of CT to pseudo MR images resembling T2w MRI was learned as a generative adversarial deep learning model. This model augmented training data arising from 6 expert-segmented T2w MR patient scans with 377 pseudo MRI from non-small cell lung cancer CT patient scans with obtained from the Cancer Imaging Archive. A two-dimensional Unet implemented with batch normalization was trained to segment the tumors from T2w MRI. This method was benchmarked against (a) standard data augmentation and two state-of-the art cross-modality pseudo MR-based augmentation and (b) two segmentation networks. Segmentation accuracy was computed using Dice similarity coefficient (DSC), Hausdroff distance metrics, and volume ratio. The proposed approach produced the lowest statistical variability in the intensity distribution between pseudo and T2w MR images measured as Kullback-Leibler divergence of 0.069. This method produced the highest segmentation accuracy with a DSC of 0.75 and the lowest Hausdroff distance on the test dataset. This approach produced highly similar estimations of tumor growth as an expert (P = 0.37). A novel deep learning MR segmentation was developed that overcomes the limitation of learning robust models from small datasets by leveraging learned cross-modality priors to augment training. The results show the feasibility of the approach and the corresponding improvement over the state-of-the-art methods.
MRSegmentator: Robust Multi-Modality Segmentation of 40 Classes in MRI and CT Sequences
Purpose: To introduce a deep learning model capable of multi-organ segmentation in MRI scans, offering a solution to the current limitations in MRI analysis due to challenges in resolution, standardized intensity values, and variability in sequences. Materials and Methods: he model was trained on 1,200 manually annotated MRI scans from the UK Biobank, 221 in-house MRI scans and 1228 CT scans, leveraging cross-modality transfer learning from CT segmentation models. A human-in-the-loop annotation workflow was employed to efficiently create high-quality segmentations. The model's performance was evaluated on NAKO and the AMOS22 dataset containing 600 and 60 MRI examinations. Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD) was used to assess segmentation accuracy. The model will be open sourced. Results: The model showcased high accuracy in segmenting well-defined organs, achieving Dice Similarity Coefficient (DSC) scores of 0.97 for the right and left lungs, and 0.95 for the heart. It also demonstrated robustness in organs like the liver (DSC: 0.96) and kidneys (DSC: 0.95 left, 0.95 right), which present more variability. However, segmentation of smaller and complex structures such as the portal and splenic veins (DSC: 0.54) and adrenal glands (DSC: 0.65 left, 0.61 right) revealed the need for further model optimization. Conclusion: The proposed model is a robust, tool for accurate segmentation of 40 anatomical structures in MRI and CT images. By leveraging cross-modality learning and interactive annotation, the model achieves strong performance and generalizability across diverse datasets, making it a valuable resource for researchers and clinicians. It is open source and can be downloaded from https://github.com/hhaentze/MRSegmentator.
A New Dataset and Performance Benchmark for Real-time Spacecraft Segmentation in Onboard Flight Computers
Spacecraft deployed in outer space are routinely subjected to various forms of damage due to exposure to hazardous environments. In addition, there are significant risks to the subsequent process of in-space repairs through human extravehicular activity or robotic manipulation, incurring substantial operational costs. Recent developments in image segmentation could enable the development of reliable and cost-effective autonomous inspection systems. While these models often require large amounts of training data to achieve satisfactory results, publicly available annotated spacecraft segmentation data are very scarce. Here, we present a new dataset of nearly 64k annotated spacecraft images that was created using real spacecraft models, superimposed on a mixture of real and synthetic backgrounds generated using NASA's TTALOS pipeline. To mimic camera distortions and noise in real-world image acquisition, we also added different types of noise and distortion to the images. Finally, we finetuned YOLOv8 and YOLOv11 segmentation models to generate performance benchmarks for the dataset under well-defined hardware and inference time constraints to mimic real-world image segmentation challenges for real-time onboard applications in space on NASA's inspector spacecraft. The resulting models, when tested under these constraints, achieved a Dice score of 0.92, Hausdorff distance of 0.69, and an inference time of about 0.5 second. The dataset and models for performance benchmark are available at https://github.com/RiceD2KLab/SWiM.
A problem of Hirst for the Hurwitz continued fraction and the Hausdorff dimension of sets with restricted slowly growing digits
We address the problem of determining the Hausdorff dimension of sets consisting of complex irrationals whose complex continued fraction digits satisfy prescribed restrictions and growth conditions. For the Hurwitz continued fraction, we confirm Hirst's conjecture, as a complex analogue of the result of Wang and Wu [Bull. Lond. Math. Soc. {\bf 40} (2008), no. 1, 18--22] for the regular continued fraction. We also prove a complex analogue of the second-named author's result on the Hausdorff dimension of sets with restricted slowly growing digits [Proc. Amer. Math. Soc. {\bf 151} (2023), no. 9, 3645--3653]. To these ends, we exploit an infinite conformal iterated function system associated with the Hurwitz continued fraction.
Longitudinal Segmentation of MS Lesions via Temporal Difference Weighting
Accurate segmentation of Multiple Sclerosis (MS) lesions in longitudinal MRI scans is crucial for monitoring disease progression and treatment efficacy. Although changes across time are taken into account when assessing images in clinical practice, most existing deep learning methods treat scans from different timepoints separately. Among studies utilizing longitudinal images, a simple channel-wise concatenation is the primary albeit suboptimal method employed to integrate timepoints. We introduce a novel approach that explicitly incorporates temporal differences between baseline and follow-up scans through a unique architectural inductive bias called Difference Weighting Block. It merges features from two timepoints, emphasizing changes between scans. We achieve superior scores in lesion segmentation (Dice Score, Hausdorff distance) as well as lesion detection (lesion-level F_1 score) as compared to state-of-the-art longitudinal and single timepoint models across two datasets. Our code is made publicly available at www.github.com/MIC-DKFZ/Longitudinal-Difference-Weighting.
Interactive Segmentation Model for Placenta Segmentation from 3D Ultrasound images
Placenta volume measurement from 3D ultrasound images is critical for predicting pregnancy outcomes, and manual annotation is the gold standard. However, such manual annotation is expensive and time-consuming. Automated segmentation algorithms can often successfully segment the placenta, but these methods may not consistently produce robust segmentations suitable for practical use. Recently, inspired by the Segment Anything Model (SAM), deep learning-based interactive segmentation models have been widely applied in the medical imaging domain. These models produce a segmentation from visual prompts provided to indicate the target region, which may offer a feasible solution for practical use. However, none of these models are specifically designed for interactively segmenting 3D ultrasound images, which remain challenging due to the inherent noise of this modality. In this paper, we evaluate publicly available state-of-the-art 3D interactive segmentation models in contrast to a human-in-the-loop approach for the placenta segmentation task. The Dice score, normalized surface Dice, averaged symmetric surface distance, and 95-percent Hausdorff distance are used as evaluation metrics. We consider a Dice score of 0.95 a successful segmentation. Our results indicate that the human-in-the-loop segmentation model reaches this standard. Moreover, we assess the efficiency of the human-in-the-loop model as a function of the amount of prompts. Our results demonstrate that the human-in-the-loop model is both effective and efficient for interactive placenta segmentation. The code is available at https://github.com/MedICL-VU/PRISM-placenta.
Fat Polygonal Partitions with Applications to Visualization and Embeddings
Let T be a rooted and weighted tree, where the weight of any node is equal to the sum of the weights of its children. The popular Treemap algorithm visualizes such a tree as a hierarchical partition of a square into rectangles, where the area of the rectangle corresponding to any node in T is equal to the weight of that node. The aspect ratio of the rectangles in such a rectangular partition necessarily depends on the weights and can become arbitrarily high. We introduce a new hierarchical partition scheme, called a polygonal partition, which uses convex polygons rather than just rectangles. We present two methods for constructing polygonal partitions, both having guarantees on the worst-case aspect ratio of the constructed polygons; in particular, both methods guarantee a bound on the aspect ratio that is independent of the weights of the nodes. We also consider rectangular partitions with slack, where the areas of the rectangles may differ slightly from the weights of the corresponding nodes. We show that this makes it possible to obtain partitions with constant aspect ratio. This result generalizes to hyper-rectangular partitions in R^d. We use these partitions with slack for embedding ultrametrics into d-dimensional Euclidean space: we give a rm polylog(Delta)-approximation algorithm for embedding n-point ultrametrics into R^d with minimum distortion, where Delta denotes the spread of the metric, i.e., the ratio between the largest and the smallest distance between two points. The previously best-known approximation ratio for this problem was polynomial in n. This is the first algorithm for embedding a non-trivial family of weighted-graph metrics into a space of constant dimension that achieves polylogarithmic approximation ratio.
Hausdorff Distance Matching with Adaptive Query Denoising for Rotated Detection Transformer
Detection Transformers (DETR) have recently set new benchmarks in object detection. However, their performance in detecting rotated objects lags behind established oriented object detectors. Our analysis identifies a key observation: the boundary discontinuity and square-like problem in bipartite matching poses an issue with assigning appropriate ground truths to predictions, leading to duplicate low-confidence predictions. To address this, we introduce a Hausdorff distance-based cost for bipartite matching, which more accurately quantifies the discrepancy between predictions and ground truths. Additionally, we find that a static denoising approach impedes the training of rotated DETR, especially as the quality of the detector's predictions begins to exceed that of the noised ground truths. To overcome this, we propose an adaptive query denoising method that employs bipartite matching to selectively eliminate noised queries that detract from model improvement. When compared to models adopting a ResNet-50 backbone, our proposed model yields remarkable improvements, achieving +4.18 AP_{50}, +4.59 AP_{50}, and +4.99 AP_{50} on DOTA-v2.0, DOTA-v1.5, and DIOR-R, respectively.
AutoKnots: Adaptive Knot Allocation for Spline Interpolation
In astrophysical and cosmological analyses, the increasing quality and volume of astronomical data demand efficient and precise computational tools. This work introduces a novel adaptive algorithm for automatic knots (AutoKnots) allocation in spline interpolation, designed to meet user-defined precision requirements. Unlike traditional methods that rely on manually configured knot distributions with numerous parameters, the proposed technique automatically determines the optimal number and placement of knots based on interpolation error criteria. This simplifies configuration, often requiring only a single parameter. The algorithm progressively improves the interpolation by adaptively sampling the function-to-be-approximated, f(x), in regions where the interpolation error exceeds the desired threshold. All function evaluations contribute directly to the final approximation, ensuring efficiency. While each resampling step involves recomputing the interpolation table, this process is highly optimized and usually computationally negligible compared to the cost of evaluating f(x). We show the algorithm's efficacy through a series of precision tests on different functions. However, the study underscores the necessity for caution when dealing with certain function types, notably those featuring plateaus. To address this challenge, a heuristic enhancement is incorporated, improving accuracy in flat regions. This algorithm has been extensively used and tested over the years. NumCosmo includes a comprehensive set of unit tests that rigorously evaluate the algorithm both directly and indirectly, underscoring its robustness and reliability. As a practical application, we compute the surface mass density Sigma(R) and the average surface mass density Sigma(<R) for Navarro-Frenk-White and Hernquist halo density profiles, which provide analytical benchmarks. (abridged)
Practical applications of metric space magnitude and weighting vectors
Metric space magnitude, an active subject of research in algebraic topology, originally arose in the context of biology, where it was used to represent the effective number of distinct species in an environment. In a more general setting, the magnitude of a metric space is a real number that aims to quantify the effective number of distinct points in the space. The contribution of each point to a metric space's global magnitude, which is encoded by the {\em weighting vector}, captures much of the underlying geometry of the original metric space. Surprisingly, when the metric space is Euclidean, the weighting vector also serves as an effective tool for boundary detection. This allows the weighting vector to serve as the foundation of novel algorithms for classic machine learning tasks such as classification, outlier detection and active learning. We demonstrate, using experiments and comparisons on classic benchmark datasets, the promise of the proposed magnitude and weighting vector-based approaches.
Weighting vectors for machine learning: numerical harmonic analysis applied to boundary detection
Metric space magnitude, an active field of research in algebraic topology, is a scalar quantity that summarizes the effective number of distinct points that live in a general metric space. The {\em weighting vector} is a closely-related concept that captures, in a nontrivial way, much of the underlying geometry of the original metric space. Recent work has demonstrated that when the metric space is Euclidean, the weighting vector serves as an effective tool for boundary detection. We recast this result and show the weighting vector may be viewed as a solution to a kernelized SVM. As one consequence, we apply this new insight to the task of outlier detection, and we demonstrate performance that is competitive or exceeds performance of state-of-the-art techniques on benchmark data sets. Under mild assumptions, we show the weighting vector, which has computational cost of matrix inversion, can be efficiently approximated in linear time. We show how nearest neighbor methods can approximate solutions to the minimization problems defined by SVMs.
