new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 9

Exploring Optimal Transport-Based Multi-Grained Alignments for Text-Molecule Retrieval

The field of bioinformatics has seen significant progress, making the cross-modal text-molecule retrieval task increasingly vital. This task focuses on accurately retrieving molecule structures based on textual descriptions, by effectively aligning textual descriptions and molecules to assist researchers in identifying suitable molecular candidates. However, many existing approaches overlook the details inherent in molecule sub-structures. In this work, we introduce the Optimal TRansport-based Multi-grained Alignments model (ORMA), a novel approach that facilitates multi-grained alignments between textual descriptions and molecules. Our model features a text encoder and a molecule encoder. The text encoder processes textual descriptions to generate both token-level and sentence-level representations, while molecules are modeled as hierarchical heterogeneous graphs, encompassing atom, motif, and molecule nodes to extract representations at these three levels. A key innovation in ORMA is the application of Optimal Transport (OT) to align tokens with motifs, creating multi-token representations that integrate multiple token alignments with their corresponding motifs. Additionally, we employ contrastive learning to refine cross-modal alignments at three distinct scales: token-atom, multitoken-motif, and sentence-molecule, ensuring that the similarities between correctly matched text-molecule pairs are maximized while those of unmatched pairs are minimized. To our knowledge, this is the first attempt to explore alignments at both the motif and multi-token levels. Experimental results on the ChEBI-20 and PCdes datasets demonstrate that ORMA significantly outperforms existing state-of-the-art (SOTA) models.

  • 7 authors
·
Nov 4, 2024

MolReFlect: Towards In-Context Fine-grained Alignments between Molecules and Texts

Molecule discovery is a pivotal research field, impacting everything from the medicines we take to the materials we use. Recently, Large Language Models (LLMs) have been widely adopted in molecule understanding and generation, yet the alignments between molecules and their corresponding captions remain a significant challenge. Previous endeavours often treat the molecule as a general SMILES string or molecular graph, neglecting the fine-grained alignments between the molecular sub-structures and the descriptive textual phrases, which are crucial for accurate and explainable predictions. In this case, we introduce MolReFlect, a novel teacher-student framework designed to contextually perform the molecule-caption alignments in a fine-grained way. Our approach initially leverages a larger teacher LLM to label the detailed alignments by directly extracting critical phrases from molecule captions or SMILES strings and implying them to corresponding sub-structures or characteristics. To refine these alignments, we propose In-Context Selective Reflection, which retrieves previous extraction results as context examples for teacher LLM to reflect and lets a smaller student LLM select from in-context reflection and previous extraction results. Finally, we enhance the learning process of the student LLM through Chain-of-Thought In-Context Molecule Tuning, integrating the fine-grained alignments and the reasoning processes within the Chain-of-Thought format. Our experimental results demonstrate that MolReFlect enables LLMs like Mistral-7B to significantly outperform the previous baselines, achieving SOTA performance on the ChEBI-20 dataset. This advancement not only enhances the generative capabilities of LLMs in the molecule-caption translation task, but also contributes to a more explainable framework.

  • 9 authors
·
Nov 21, 2024 2