new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 16

BrowseComp-Plus: A More Fair and Transparent Evaluation Benchmark of Deep-Research Agent

Deep-Research agents, which integrate large language models (LLMs) with search tools, have shown success in improving the effectiveness of handling complex queries that require iterative search planning and reasoning over search results. Evaluations on current benchmarks like BrowseComp relies on black-box live web search APIs, have notable limitations in (1) fairness: dynamic and opaque web APIs hinder fair comparisons and reproducibility of deep research methods; (2) transparency: lack of control over the document corpus makes it difficult to isolate retriever contributions. In other words, the current evaluations may compare a complete deep research system at a given time, but they do not foster well-controlled experiments to provide insights into the capability of underlying deep research LLMs. To address these challenges, we introduce BrowseComp-Plus, a benchmark derived from BrowseComp, employing a fixed, carefully curated corpus. Each query in BrowseComp-Plus includes human-verified supporting documents and mined challenging negatives, enabling controlled experimentation. The benchmark is shown to be effective in distinguishing the performance of deep research systems. For instance, the open-source model Search-R1, when paired with the BM25 retriever, achieves 3.86% accuracy, whereas the GPT-5 achieves 55.9%. Integrating the GPT-5 with the Qwen3-Embedding-8B retriever further enhances its accuracy to 70.1% with fewer search calls. This benchmark allows comprehensive evaluation and disentangled analysis of deep research agents and retrieval methods, fostering insights into retrieval effectiveness, citation accuracy, and context engineering in Deep-Research system.

Open Data Synthesis For Deep Research

Large language models (LLMs) are increasingly expected to go beyond simple factual queries toward Deep Research-tasks that require decomposing questions into sub-problems, coordinating multi-step reasoning, and synthesizing evidence from diverse sources. We formalize Deep Research tasks with verifiable answers as Hierarchical Constraint Satisfaction Problems (HCSPs), which are fundamentally different from single-constraint, multi-hop, or flat CSP formulations. However, existing benchmarks (e.g., Natural Questions, HotpotQA) fail to capture this complexity, while recent synthetic datasets often introduce shortcut reasoning, knowledge leakage, or lack sufficient structural depth. To address this gap, we introduce InfoSeek, a scalable framework for synthesizing complex Deep Research tasks. InfoSeek uses a dual-agent system to recursively build a Research Tree from large-scale webpages, blurring intermediate nodes into valid sub-problems, and converting these trees into natural language questions that require traversing the full hierarchy. It also enables rapid scaling, yielding over 50K training examples, a curated test set, and reasoning trajectories generated via reject sampling. Experiments show that models trained on InfoSeek consistently outperform strong baselines. On a challenging benchmark BrowseComp-Plus, 3B LLMs optimized with InfoSeek surpass much larger 32B models and lightweight commercial APIs (e.g., Gemini2.5-Flash), while achieving performance comparable to stronger APIs (e.g., Gemini2.5-Pro). By preserving meta-information such as intermediate steps and retrieval labels, InfoSeek further supports advanced optimization strategies, including compound reward design and trajectory-level exploration. We provide our codes and datasets in https://github.com/VectorSpaceLab/InfoSeek{this repository}.

Towards a Science of Scaling Agent Systems

Agents, language model (LM)-based systems that are capable of reasoning, planning, and acting are becoming the dominant paradigm for real-world AI applications. Despite this widespread adoption, the principles that determine their performance remain underexplored, leaving practitioners to rely on heuristics rather than principled design choices. We address this gap by deriving quantitative scaling principles for agent systems. We evaluate this across four diverse benchmarks: Finance-Agent, BrowseComp-Plus, PlanCraft, and Workbench. Using five canonical architectures (Single, Independent, Centralized, Decentralized, Hybrid) instantiated across three LLM families, we perform a controlled evaluation spanning 180 configurations with standardized tools and token budgets. We derive a predictive model using empirical coordination metrics, including efficiency, overhead, error amplification, and redundancy, that achieves cross-validated R^2=0.513. We identify three dominant effects: (1) a tool-coordination trade-off: under fixed computational budgets, tool-heavy tasks suffer disproportionately from multi-agent overhead. (2) a capability saturation: coordination yields diminishing or negative returns (beta=-0.408, p<0.001) once single-agent baselines exceed ~45%. (3) topology-dependent error amplification: independent agents amplify errors 17.2x through unchecked propagation, while centralized coordination contains this to 4.4x. Centralized coordination improves performance by 80.9% on parallelizable tasks like financial reasoning, while decentralized coordination excels on dynamic web navigation (+9.2% vs. +0.2%). Yet for sequential reasoning tasks, all multi-agent variants degraded performance by 39-70%. The framework predicts the optimal coordination strategy for 87% of held-out configurations, providing a predictive principle of agentic scaling based on measurable task properties.