Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeEnd-to-End Speech Translation for Low-Resource Languages Using Weakly Labeled Data
The scarcity of high-quality annotated data presents a significant challenge in developing effective end-to-end speech-to-text translation (ST) systems, particularly for low-resource languages. This paper explores the hypothesis that weakly labeled data can be used to build ST models for low-resource language pairs. We constructed speech-to-text translation datasets with the help of bitext mining using state-of-the-art sentence encoders. We mined the multilingual Shrutilipi corpus to build Shrutilipi-anuvaad, a dataset comprising ST data for language pairs Bengali-Hindi, Malayalam-Hindi, Odia-Hindi, and Telugu-Hindi. We created multiple versions of training data with varying degrees of quality and quantity to investigate the effect of quality versus quantity of weakly labeled data on ST model performance. Results demonstrate that ST systems can be built using weakly labeled data, with performance comparable to massive multi-modal multilingual baselines such as SONAR and SeamlessM4T.
Hindi/Bengali Sentiment Analysis Using Transfer Learning and Joint Dual Input Learning with Self Attention
Sentiment Analysis typically refers to using natural language processing, text analysis and computational linguistics to extract affect and emotion based information from text data. Our work explores how we can effectively use deep neural networks in transfer learning and joint dual input learning settings to effectively classify sentiments and detect hate speech in Hindi and Bengali data. We start by training Word2Vec word embeddings for Hindi HASOC dataset and Bengali hate speech and then train LSTM and subsequently, employ parameter sharing based transfer learning to Bengali sentiment classifiers by reusing and fine-tuning the trained weights of Hindi classifiers with both classifier being used as baseline in our study. Finally, we use BiLSTM with self attention in joint dual input learning setting where we train a single neural network on Hindi and Bengali dataset simultaneously using their respective embeddings.
Table Question Answering for Low-resourced Indic Languages
TableQA is the task of answering questions over tables of structured information, returning individual cells or tables as output. TableQA research has focused primarily on high-resource languages, leaving medium- and low-resource languages with little progress due to scarcity of annotated data and neural models. We address this gap by introducing a fully automatic large-scale tableQA data generation process for low-resource languages with limited budget. We incorporate our data generation method on two Indic languages, Bengali and Hindi, which have no tableQA datasets or models. TableQA models trained on our large-scale datasets outperform state-of-the-art LLMs. We further study the trained models on different aspects, including mathematical reasoning capabilities and zero-shot cross-lingual transfer. Our work is the first on low-resource tableQA focusing on scalable data generation and evaluation procedures. Our proposed data generation method can be applied to any low-resource language with a web presence. We release datasets, models, and code (https://github.com/kolk/Low-Resource-TableQA-Indic-languages).
L3Cube-IndicNews: News-based Short Text and Long Document Classification Datasets in Indic Languages
In this work, we introduce L3Cube-IndicNews, a multilingual text classification corpus aimed at curating a high-quality dataset for Indian regional languages, with a specific focus on news headlines and articles. We have centered our work on 10 prominent Indic languages, including Hindi, Bengali, Marathi, Telugu, Tamil, Gujarati, Kannada, Odia, Malayalam, and Punjabi. Each of these news datasets comprises 10 or more classes of news articles. L3Cube-IndicNews offers 3 distinct datasets tailored to handle different document lengths that are classified as: Short Headlines Classification (SHC) dataset containing the news headline and news category, Long Document Classification (LDC) dataset containing the whole news article and the news category, and Long Paragraph Classification (LPC) containing sub-articles of the news and the news category. We maintain consistent labeling across all 3 datasets for in-depth length-based analysis. We evaluate each of these Indic language datasets using 4 different models including monolingual BERT, multilingual Indic Sentence BERT (IndicSBERT), and IndicBERT. This research contributes significantly to expanding the pool of available text classification datasets and also makes it possible to develop topic classification models for Indian regional languages. This also serves as an excellent resource for cross-lingual analysis owing to the high overlap of labels among languages. The datasets and models are shared publicly at https://github.com/l3cube-pune/indic-nlp
IndicIRSuite: Multilingual Dataset and Neural Information Models for Indian Languages
In this paper, we introduce Neural Information Retrieval resources for 11 widely spoken Indian Languages (Assamese, Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi, Oriya, Punjabi, Tamil, and Telugu) from two major Indian language families (Indo-Aryan and Dravidian). These resources include (a) INDIC-MARCO, a multilingual version of the MSMARCO dataset in 11 Indian Languages created using Machine Translation, and (b) Indic-ColBERT, a collection of 11 distinct Monolingual Neural Information Retrieval models, each trained on one of the 11 languages in the INDIC-MARCO dataset. To the best of our knowledge, IndicIRSuite is the first attempt at building large-scale Neural Information Retrieval resources for a large number of Indian languages, and we hope that it will help accelerate research in Neural IR for Indian Languages. Experiments demonstrate that Indic-ColBERT achieves 47.47% improvement in the MRR@10 score averaged over the INDIC-MARCO baselines for all 11 Indian languages except Oriya, 12.26% improvement in the NDCG@10 score averaged over the MIRACL Bengali and Hindi Language baselines, and 20% improvement in the MRR@100 Score over the Mr.Tydi Bengali Language baseline. IndicIRSuite is available at https://github.com/saifulhaq95/IndicIRSuite
L3Cube-HindBERT and DevBERT: Pre-Trained BERT Transformer models for Devanagari based Hindi and Marathi Languages
The monolingual Hindi BERT models currently available on the model hub do not perform better than the multi-lingual models on downstream tasks. We present L3Cube-HindBERT, a Hindi BERT model pre-trained on Hindi monolingual corpus. Further, since Indic languages, Hindi and Marathi share the Devanagari script, we train a single model for both languages. We release DevBERT, a Devanagari BERT model trained on both Marathi and Hindi monolingual datasets. We evaluate these models on downstream Hindi and Marathi text classification and named entity recognition tasks. The HindBERT and DevBERT-based models show significant improvements over multi-lingual MuRIL, IndicBERT, and XLM-R. Based on these observations we also release monolingual BERT models for other Indic languages Kannada, Telugu, Malayalam, Tamil, Gujarati, Assamese, Odia, Bengali, and Punjabi. These models are shared at https://huggingface.co/l3cube-pune .
IndicMMLU-Pro: Benchmarking Indic Large Language Models on Multi-Task Language Understanding
Known by more than 1.5 billion people in the Indian subcontinent, Indic languages present unique challenges and opportunities for natural language processing (NLP) research due to their rich cultural heritage, linguistic diversity, and complex structures. IndicMMLU-Pro is a comprehensive benchmark designed to evaluate Large Language Models (LLMs) across Indic languages, building upon the MMLU Pro (Massive Multitask Language Understanding) framework. Covering major languages such as Hindi, Bengali, Gujarati, Marathi, Kannada, Punjabi, Tamil, Telugu, and Urdu, our benchmark addresses the unique challenges and opportunities presented by the linguistic diversity of the Indian subcontinent. This benchmark encompasses a wide range of tasks in language comprehension, reasoning, and generation, meticulously crafted to capture the intricacies of Indian languages. IndicMMLU-Pro provides a standardized evaluation framework to push the research boundaries in Indic language AI, facilitating the development of more accurate, efficient, and culturally sensitive models. This paper outlines the benchmarks' design principles, task taxonomy, and data collection methodology, and presents baseline results from state-of-the-art multilingual models.
Regional Tiny Stories: Using Small Models to Compare Language Learning and Tokenizer Performance
Small Language Models (SLMs) offer efficient alternatives to LLMs for specific domains. The 2023 TinyStories study developed an English dataset that allows SLMs with 1 to 10 million parameters to produce coherent outputs. Our research expands this framework by translating the original dataset into Indian languages and creating synthetic data using LLMs. We focus on Hindi, Marathi, and Bengali, evaluating SLMs for regional language processing and understanding linguistic complexity. We show that SLMs efficiently process regional languages with significantly fewer parameters than LLMs, providing a complementary framework for ``inference based evaluation" of tokenization strategies and linguistic complexity. Our analysis shows that language-specific tokenizers outperform general-purpose ones for Indian languages. Empirical validations, supported by information-theoretic and morphological analyses, provides fundamental understanding behind the better performance of Hindi models over Marathi and Bengali. Additionally, we show that synthetic datasets outperform translated content for training SLMs. Correlation analyses reveal cross-linguistic patterns and language-specific relationships between creativity, grammatical precision, and narrative completeness. These findings advance both the practical application of SLMs to underserved languages and our theoretical understanding of neural language development.
Recurrent Neural Network based Part-of-Speech Tagger for Code-Mixed Social Media Text
This paper describes Centre for Development of Advanced Computing's (CDACM) submission to the shared task-'Tool Contest on POS tagging for Code-Mixed Indian Social Media (Facebook, Twitter, and Whatsapp) Text', collocated with ICON-2016. The shared task was to predict Part of Speech (POS) tag at word level for a given text. The code-mixed text is generated mostly on social media by multilingual users. The presence of the multilingual words, transliterations, and spelling variations make such content linguistically complex. In this paper, we propose an approach to POS tag code-mixed social media text using Recurrent Neural Network Language Model (RNN-LM) architecture. We submitted the results for Hindi-English (hi-en), Bengali-English (bn-en), and Telugu-English (te-en) code-mixed data.
edATLAS: An Efficient Disambiguation Algorithm for Texting in Languages with Abugida Scripts
Abugida refers to a phonogram writing system where each syllable is represented using a single consonant or typographic ligature, along with a default vowel or optional diacritic(s) to denote other vowels. However, texting in these languages has some unique challenges in spite of the advent of devices with soft keyboard supporting custom key layouts. The number of characters in these languages is large enough to require characters to be spread over multiple views in the layout. Having to switch between views many times to type a single word hinders the natural thought process. This prevents popular usage of native keyboard layouts. On the other hand, supporting romanized scripts (native words transcribed using Latin characters) with language model based suggestions is also set back by the lack of uniform romanization rules. To this end, we propose a disambiguation algorithm and showcase its usefulness in two novel mutually non-exclusive input methods for languages natively using the abugida writing system: (a) disambiguation of ambiguous input for abugida scripts, and (b) disambiguation of word variants in romanized scripts. We benchmark these approaches using public datasets, and show an improvement in typing speed by 19.49%, 25.13%, and 14.89%, in Hindi, Bengali, and Thai, respectively, using Ambiguous Input, owing to the human ease of locating keys combined with the efficiency of our inference method. Our Word Variant Disambiguation (WDA) maps valid variants of romanized words, previously treated as Out-of-Vocab, to a vocabulary of 100k words with high accuracy, leading to an increase in Error Correction F1 score by 10.03% and Next Word Prediction (NWP) by 62.50% on average.
A Multilingual Parallel Corpora Collection Effort for Indian Languages
We present sentence aligned parallel corpora across 10 Indian Languages - Hindi, Telugu, Tamil, Malayalam, Gujarati, Urdu, Bengali, Oriya, Marathi, Punjabi, and English - many of which are categorized as low resource. The corpora are compiled from online sources which have content shared across languages. The corpora presented significantly extends present resources that are either not large enough or are restricted to a specific domain (such as health). We also provide a separate test corpus compiled from an independent online source that can be independently used for validating the performance in 10 Indian languages. Alongside, we report on the methods of constructing such corpora using tools enabled by recent advances in machine translation and cross-lingual retrieval using deep neural network based methods.
Hypers at ComMA@ICON: Modelling Aggressiveness, Gender Bias and Communal Bias Identification
Due to the exponentially increasing reach of social media, it is essential to focus on its negative aspects as it can potentially divide society and incite people into violence. In this paper, we present our system description of work on the shared task ComMA@ICON, where we have to classify how aggressive the sentence is and if the sentence is gender-biased or communal biased. These three could be the primary reasons to cause significant problems in society. As team Hypers we have proposed an approach that utilizes different pretrained models with Attention and mean pooling methods. We were able to get Rank 3 with 0.223 Instance F1 score on Bengali, Rank 2 with 0.322 Instance F1 score on Multi-lingual set, Rank 4 with 0.129 Instance F1 score on Meitei and Rank 5 with 0.336 Instance F1 score on Hindi. The source code and the pretrained models of this work can be found here.
PALO: A Polyglot Large Multimodal Model for 5B People
In pursuit of more inclusive Vision-Language Models (VLMs), this study introduces a Large Multilingual Multimodal Model called Palo. Palo offers visual reasoning capabilities in 10 major languages, including English, Chinese, Hindi, Spanish, French, Arabic, Bengali, Russian, Urdu, and Japanese, that span a total of sim5B people (65\% of the world population). Our approach involves a semi-automated translation approach to adapt the multimodal instruction dataset from English to the target languages using a fine-tuned Large Language Model, thereby ensuring high linguistic fidelity while allowing scalability due to minimal manual effort. The incorporation of diverse instruction sets helps us boost overall performance across multiple languages especially those that are underrepresented like Hindi, Arabic, Bengali, and Urdu. The resulting models are trained across three scales (1.7B, 7B and 13B parameters) to show the generalization and scalability where we observe substantial improvements compared to strong baselines. We also propose the first multilingual multimodal benchmark for the forthcoming approaches to evaluate their vision-language reasoning capabilities across languages. Code: https://github.com/mbzuai-oryx/PALO.
BharatBBQ: A Multilingual Bias Benchmark for Question Answering in the Indian Context
Evaluating social biases in language models (LMs) is crucial for ensuring fairness and minimizing the reinforcement of harmful stereotypes in AI systems. Existing benchmarks, such as the Bias Benchmark for Question Answering (BBQ), primarily focus on Western contexts, limiting their applicability to the Indian context. To address this gap, we introduce BharatBBQ, a culturally adapted benchmark designed to assess biases in Hindi, English, Marathi, Bengali, Tamil, Telugu, Odia, and Assamese. BharatBBQ covers 13 social categories, including 3 intersectional groups, reflecting prevalent biases in the Indian sociocultural landscape. Our dataset contains 49,108 examples in one language that are expanded using translation and verification to 392,864 examples in eight different languages. We evaluate five multilingual LM families across zero and few-shot settings, analyzing their bias and stereotypical bias scores. Our findings highlight persistent biases across languages and social categories and often amplified biases in Indian languages compared to English, demonstrating the necessity of linguistically and culturally grounded benchmarks for bias evaluation.
A Three-Pronged Approach to Cross-Lingual Adaptation with Multilingual LLMs
Low-resource languages, by its very definition, tend to be under represented in the pre-training corpora of Large Language Models. In this work, we investigate three low-resource cross-lingual approaches that enable an LLM adapt to tasks in previously unseen languages. Llama-2 is an LLM where Indic languages, among many other language families, contribute to less than 0.005% of the total 2 trillion token pre-training corpora. In this work, we experiment with the English-dominated Llama-2 for cross-lingual transfer to three Indic languages, Bengali, Hindi, and Tamil as target languages. We study three approaches for cross-lingual transfer, under ICL and fine-tuning. One, we find that adding additional supervisory signals via a dominant language in the LLM, leads to improvements, both under in-context learning and fine-tuning. Two, adapting the target languages to word reordering may be beneficial under ICL, but its impact diminishes with fine tuning. Finally, continued pre-training in one low-resource language can improve model performance for other related low-resource languages.
Are Large Language Models Actually Good at Text Style Transfer?
We analyze the performance of large language models (LLMs) on Text Style Transfer (TST), specifically focusing on sentiment transfer and text detoxification across three languages: English, Hindi, and Bengali. Text Style Transfer involves modifying the linguistic style of a text while preserving its core content. We evaluate the capabilities of pre-trained LLMs using zero-shot and few-shot prompting as well as parameter-efficient finetuning on publicly available datasets. Our evaluation using automatic metrics, GPT-4 and human evaluations reveals that while some prompted LLMs perform well in English, their performance in on other languages (Hindi, Bengali) remains average. However, finetuning significantly improves results compared to zero-shot and few-shot prompting, making them comparable to previous state-of-the-art. This underscores the necessity of dedicated datasets and specialized models for effective TST.
Multilingual and code-switching ASR challenges for low resource Indian languages
Recently, there is increasing interest in multilingual automatic speech recognition (ASR) where a speech recognition system caters to multiple low resource languages by taking advantage of low amounts of labeled corpora in multiple languages. With multilingualism becoming common in today's world, there has been increasing interest in code-switching ASR as well. In code-switching, multiple languages are freely interchanged within a single sentence or between sentences. The success of low-resource multilingual and code-switching ASR often depends on the variety of languages in terms of their acoustics, linguistic characteristics as well as the amount of data available and how these are carefully considered in building the ASR system. In this challenge, we would like to focus on building multilingual and code-switching ASR systems through two different subtasks related to a total of seven Indian languages, namely Hindi, Marathi, Odia, Tamil, Telugu, Gujarati and Bengali. For this purpose, we provide a total of ~600 hours of transcribed speech data, comprising train and test sets, in these languages including two code-switched language pairs, Hindi-English and Bengali-English. We also provide a baseline recipe for both the tasks with a WER of 30.73% and 32.45% on the test sets of multilingual and code-switching subtasks, respectively.
L3CubeMahaSent: A Marathi Tweet-based Sentiment Analysis Dataset
Sentiment analysis is one of the most fundamental tasks in Natural Language Processing. Popular languages like English, Arabic, Russian, Mandarin, and also Indian languages such as Hindi, Bengali, Tamil have seen a significant amount of work in this area. However, the Marathi language which is the third most popular language in India still lags behind due to the absence of proper datasets. In this paper, we present the first major publicly available Marathi Sentiment Analysis Dataset - L3CubeMahaSent. It is curated using tweets extracted from various Maharashtrian personalities' Twitter accounts. Our dataset consists of ~16,000 distinct tweets classified in three broad classes viz. positive, negative, and neutral. We also present the guidelines using which we annotated the tweets. Finally, we present the statistics of our dataset and baseline classification results using CNN, LSTM, ULMFiT, and BERT-based deep learning models.
A Novel Multi-Stage Prompting Approach for Language Agnostic MCQ Generation using GPT
We introduce a multi-stage prompting approach (MSP) for the generation of multiple choice questions (MCQs), harnessing the capabilities of GPT models such as text-davinci-003 and GPT-4, renowned for their excellence across various NLP tasks. Our approach incorporates the innovative concept of chain-of-thought prompting, a progressive technique in which the GPT model is provided with a series of interconnected cues to guide the MCQ generation process. Automated evaluations consistently demonstrate the superiority of our proposed MSP method over the traditional single-stage prompting (SSP) baseline, resulting in the production of high-quality distractors. Furthermore, the one-shot MSP technique enhances automatic evaluation results, contributing to improved distractor generation in multiple languages, including English, German, Bengali, and Hindi. In human evaluations, questions generated using our approach exhibit superior levels of grammaticality, answerability, and difficulty, highlighting its efficacy in various languages.
Cross-lingual Editing in Multilingual Language Models
The training of large language models (LLMs) necessitates substantial data and computational resources, and updating outdated LLMs entails significant efforts and resources. While numerous model editing techniques (METs) have emerged to efficiently update model outputs without retraining, their effectiveness in multilingual LLMs, where knowledge is stored in diverse languages, remains an underexplored research area. This research paper introduces the cross-lingual model editing (XME) paradigm, wherein a fact is edited in one language, and the subsequent update propagation is observed across other languages. To investigate the XME paradigm, we conducted experiments using BLOOM, mBERT, and XLM-RoBERTa using the two writing scripts: Latin (English, French, and Spanish) and Indic (Hindi, Gujarati, and Bengali). The results reveal notable performance limitations of state-of-the-art METs under the XME setting, mainly when the languages involved belong to two distinct script families. These findings highlight the need for further research and development of XME techniques to address these challenges. For more comprehensive information, the dataset used in this research and the associated code are publicly available at the following URLhttps://github.com/lingo-iitgn/XME.
BhashaVerse : Translation Ecosystem for Indian Subcontinent Languages
This paper focuses on developing translation models and related applications for 36 Indian languages, including Assamese, Awadhi, Bengali, Bhojpuri, Braj, Bodo, Dogri, English, Konkani, Gondi, Gujarati, Hindi, Hinglish, Ho, Kannada, Kangri, Kashmiri (Arabic and Devanagari), Khasi, Mizo, Magahi, Maithili, Malayalam, Marathi, Manipuri (Bengali and Meitei), Nepali, Oriya, Punjabi, Sanskrit, Santali, Sinhala, Sindhi (Arabic and Devanagari), Tamil, Tulu, Telugu, and Urdu. Achieving this requires parallel and other types of corpora for all 36 * 36 language pairs, addressing challenges like script variations, phonetic differences, and syntactic diversity. For instance, languages like Kashmiri and Sindhi, which use multiple scripts, demand script normalization for alignment, while low-resource languages such as Khasi and Santali require synthetic data augmentation to ensure sufficient coverage and quality. To address these challenges, this work proposes strategies for corpus creation by leveraging existing resources, developing parallel datasets, generating domain-specific corpora, and utilizing synthetic data techniques. Additionally, it evaluates machine translation across various dimensions, including standard and discourse-level translation, domain-specific translation, reference-based and reference-free evaluation, error analysis, and automatic post-editing. By integrating these elements, the study establishes a comprehensive framework to improve machine translation quality and enable better cross-lingual communication in India's linguistically diverse ecosystem.
GeniL: A Multilingual Dataset on Generalizing Language
LLMs are increasingly transforming our digital ecosystem, but they often inherit societal biases learned from their training data, for instance stereotypes associating certain attributes with specific identity groups. While whether and how these biases are mitigated may depend on the specific use cases, being able to effectively detect instances of stereotype perpetuation is a crucial first step. Current methods to assess presence of stereotypes in generated language rely on simple template or co-occurrence based measures, without accounting for the variety of sentential contexts they manifest in. We argue that understanding the sentential context is crucial for detecting instances of generalization. We distinguish two types of generalizations: (1) language that merely mentions the presence of a generalization ("people think the French are very rude"), and (2) language that reinforces such a generalization ("as French they must be rude"), from non-generalizing context ("My French friends think I am rude"). For meaningful stereotype evaluations, we need to reliably distinguish such instances of generalizations. We introduce the new task of detecting generalization in language, and build GeniL, a multilingual dataset of over 50K sentences from 9 languages (English, Arabic, Bengali, Spanish, French, Hindi, Indonesian, Malay, and Portuguese) annotated for instances of generalizations. We demonstrate that the likelihood of a co-occurrence being an instance of generalization is usually low, and varies across different languages, identity groups, and attributes. We build classifiers to detect generalization in language with an overall PR-AUC of 58.7, with varying degrees of performance across languages. Our research provides data and tools to enable a nuanced understanding of stereotype perpetuation, a crucial step towards more inclusive and responsible language technologies.
Mukhyansh: A Headline Generation Dataset for Indic Languages
The task of headline generation within the realm of Natural Language Processing (NLP) holds immense significance, as it strives to distill the true essence of textual content into concise and attention-grabbing summaries. While noteworthy progress has been made in headline generation for widely spoken languages like English, there persist numerous challenges when it comes to generating headlines in low-resource languages, such as the rich and diverse Indian languages. A prominent obstacle that specifically hinders headline generation in Indian languages is the scarcity of high-quality annotated data. To address this crucial gap, we proudly present Mukhyansh, an extensive multilingual dataset, tailored for Indian language headline generation. Comprising an impressive collection of over 3.39 million article-headline pairs, Mukhyansh spans across eight prominent Indian languages, namely Telugu, Tamil, Kannada, Malayalam, Hindi, Bengali, Marathi, and Gujarati. We present a comprehensive evaluation of several state-of-the-art baseline models. Additionally, through an empirical analysis of existing works, we demonstrate that Mukhyansh outperforms all other models, achieving an impressive average ROUGE-L score of 31.43 across all 8 languages.
L3Cube-IndicSBERT: A simple approach for learning cross-lingual sentence representations using multilingual BERT
The multilingual Sentence-BERT (SBERT) models map different languages to common representation space and are useful for cross-language similarity and mining tasks. We propose a simple yet effective approach to convert vanilla multilingual BERT models into multilingual sentence BERT models using synthetic corpus. We simply aggregate translated NLI or STS datasets of the low-resource target languages together and perform SBERT-like fine-tuning of the vanilla multilingual BERT model. We show that multilingual BERT models are inherent cross-lingual learners and this simple baseline fine-tuning approach without explicit cross-lingual training yields exceptional cross-lingual properties. We show the efficacy of our approach on 10 major Indic languages and also show the applicability of our approach to non-Indic languages German and French. Using this approach, we further present L3Cube-IndicSBERT, the first multilingual sentence representation model specifically for Indian languages Hindi, Marathi, Kannada, Telugu, Malayalam, Tamil, Gujarati, Odia, Bengali, and Punjabi. The IndicSBERT exhibits strong cross-lingual capabilities and performs significantly better than alternatives like LaBSE, LASER, and paraphrase-multilingual-mpnet-base-v2 on Indic cross-lingual and monolingual sentence similarity tasks. We also release monolingual SBERT models for each of the languages and show that IndicSBERT performs competitively with its monolingual counterparts. These models have been evaluated using embedding similarity scores and classification accuracy.
A Culturally-diverse Multilingual Multimodal Video Benchmark & Model
Large multimodal models (LMMs) have recently gained attention due to their effectiveness to understand and generate descriptions of visual content. Most existing LMMs are in English language. While few recent works explore multilingual image LMMs, to the best of our knowledge, moving beyond the English language for cultural and linguistic inclusivity is yet to be investigated in the context of video LMMs. In pursuit of more inclusive video LMMs, we introduce a multilingual Video LMM benchmark, named ViMUL-Bench, to evaluate Video LMMs across 14 languages, including both low- and high-resource languages: English, Chinese, Spanish, French, German, Hindi, Arabic, Russian, Bengali, Urdu, Sinhala, Tamil, Swedish, and Japanese. Our ViMUL-Bench is designed to rigorously test video LMMs across 15 categories including eight culturally diverse categories, ranging from lifestyles and festivals to foods and rituals and from local landmarks to prominent cultural personalities. ViMUL-Bench comprises both open-ended (short and long-form) and multiple-choice questions spanning various video durations (short, medium, and long) with 8k samples that are manually verified by native language speakers. In addition, we also introduce a machine translated multilingual video training set comprising 1.2 million samples and develop a simple multilingual video LMM, named ViMUL, that is shown to provide a better tradeoff between high-and low-resource languages for video understanding. We hope our ViMUL-Bench and multilingual video LMM along with a large-scale multilingual video training set will help ease future research in developing cultural and linguistic inclusive multilingual video LMMs. Our proposed benchmark, video LMM and training data will be publicly released at https://mbzuai-oryx.github.io/ViMUL/.
Bengali Document Layout Analysis with Detectron2
Document digitization is vital for preserving historical records, efficient document management, and advancing OCR (Optical Character Recognition) research. Document Layout Analysis (DLA) involves segmenting documents into meaningful units like text boxes, paragraphs, images, and tables. Challenges arise when dealing with diverse layouts, historical documents, and unique scripts like Bengali, hindered by the lack of comprehensive Bengali DLA datasets. We improved the accuracy of the DLA model for Bengali documents by utilizing advanced Mask R-CNN models available in the Detectron2 library. Our evaluation involved three variants: Mask R-CNN R-50, R-101, and X-101, both with and without pretrained weights from PubLayNet, on the BaDLAD dataset, which contains human-annotated Bengali documents in four categories: text boxes, paragraphs, images, and tables. Results show the effectiveness of these models in accurately segmenting Bengali documents. We discuss speed-accuracy tradeoffs and underscore the significance of pretrained weights. Our findings expand the applicability of Mask R-CNN in document layout analysis, efficient document management, and OCR research while suggesting future avenues for fine-tuning and data augmentation.
BaDLAD: A Large Multi-Domain Bengali Document Layout Analysis Dataset
While strides have been made in deep learning based Bengali Optical Character Recognition (OCR) in the past decade, the absence of large Document Layout Analysis (DLA) datasets has hindered the application of OCR in document transcription, e.g., transcribing historical documents and newspapers. Moreover, rule-based DLA systems that are currently being employed in practice are not robust to domain variations and out-of-distribution layouts. To this end, we present the first multidomain large Bengali Document Layout Analysis Dataset: BaDLAD. This dataset contains 33,695 human annotated document samples from six domains - i) books and magazines, ii) public domain govt. documents, iii) liberation war documents, iv) newspapers, v) historical newspapers, and vi) property deeds, with 710K polygon annotations for four unit types: text-box, paragraph, image, and table. Through preliminary experiments benchmarking the performance of existing state-of-the-art deep learning architectures for English DLA, we demonstrate the efficacy of our dataset in training deep learning based Bengali document digitization models.
