Generalizing Vision-Language Models with Dedicated Prompt Guidance
Abstract
A two-step domain-expert-guided framework for vision-language model fine-tuning that improves domain generalization through parameter-efficient expert models and cross-modal attention guidance.
Fine-tuning large pretrained vision-language models (VLMs) has emerged as a prevalent paradigm for downstream adaptation, yet it faces a critical trade-off between domain specificity and domain generalization (DG) ability. Current methods typically fine-tune a universal model on the entire dataset, which potentially compromises the ability to generalize to unseen domains. To fill this gap, we provide a theoretical understanding of the generalization ability for VLM fine-tuning, which reveals that training multiple parameter-efficient expert models on partitioned source domains leads to better generalization than fine-tuning a universal model. Inspired by this finding, we propose a two-step domain-expert-Guided DG (GuiDG) framework. GuiDG first employs prompt tuning to obtain source domain experts, then introduces a Cross-Modal Attention module to guide the fine-tuning of the vision encoder via adaptive expert integration. To better evaluate few-shot DG, we construct ImageNet-DG from ImageNet and its variants. Extensive experiments on standard DG benchmarks and ImageNet-DG demonstrate that GuiDG improves upon state-of-the-art fine-tuning methods while maintaining efficiency.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper