FAID: Fine-Grained AI-Generated Text Detection Using Multi-Task Auxiliary and Multi-Level Contrastive Learning
Abstract
A multilingual, multi-domain dataset and fine-grained detection framework are presented to distinguish between human-written, LLM-generated, and human-LLM collaborative texts while identifying underlying LLM families.
The growing collaboration between humans and AI models in generative tasks has introduced new challenges in distinguishing between human-written, LLM-generated, and human--LLM collaborative texts. In this work, we collect a multilingual, multi-domain, multi-generator dataset FAIDSet. We further introduce a fine-grained detection framework FAID to classify text into these three categories, and also to identify the underlying LLM family of the generator. Unlike existing binary classifiers, FAID is built to capture both authorship and model-specific characteristics. Our method combines multi-level contrastive learning with multi-task auxiliary classification to learn subtle stylistic cues. By modeling LLM families as distinct stylistic entities, we incorporate an adaptation to address distributional shifts without retraining for unseen data. Our experimental results demonstrate that FAID outperforms several baselines, particularly enhancing the generalization accuracy on unseen domains and new LLMs, thus offering a potential solution for improving transparency and accountability in AI-assisted writing.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 1
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper